1
|
Schilling KG, Combes AJE, Ramadass K, Rheault F, Sweeney G, Prock L, Sriram S, Cohen-Adad J, Gore JC, Landman BA, Smith SA, O'Grady KP. Influence of preprocessing, distortion correction and cardiac triggering on the quality of diffusion MR images of spinal cord. Magn Reson Imaging 2024; 108:11-21. [PMID: 38309376 PMCID: PMC11218893 DOI: 10.1016/j.mri.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 02/05/2024]
Abstract
Diffusion MRI of the spinal cord (SC) is susceptible to geometric distortion caused by field inhomogeneities, and prone to misalignment across time series and signal dropout caused by biological motion. Several modifications of image acquisition and image processing techniques have been introduced to overcome these artifacts, but their specific benefits are largely unproven and warrant further investigations. We aim to evaluate two specific aspects of image acquisition and processing that address image quality in diffusion studies of the spinal cord: susceptibility corrections to reduce geometric distortions, and cardiac triggering to minimize motion artifacts. First, we evaluate 4 distortion preprocessing strategies on 7 datasets of the cervical and lumbar SC and find that while distortion correction techniques increase geometric similarity to structural images, they are largely driven by the high-contrast cerebrospinal fluid, and do not consistently improve the geometry within the cord nor improve white-to-gray matter contrast. We recommend at a minimum to perform bulk-motion correction in preprocessing and posit that improvements/adaptations are needed for spinal cord distortion preprocessing algorithms, which are currently optimized and designed for brain imaging. Second, we design experiments to evaluate the impact of removing cardiac triggering. We show that when triggering is foregone, images are qualitatively similar to triggered sequences, do not have increased prevalence of artifacts, and result in similar diffusion tensor indices with similar reproducibility to triggered acquisitions. When triggering is removed, much shorter acquisitions are possible, which are also qualitatively and quantitatively similar to triggered sequences. We suggest that removing cardiac triggering for cervical SC diffusion can be a reasonable option to save time with minimal sacrifice to image quality.
Collapse
Affiliation(s)
- Kurt G Schilling
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Anna J E Combes
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Karthik Ramadass
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA; Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Francois Rheault
- Medical Imaging and Neuroinformatic (MINi) Lab, Department of Computer Science, University of Sherbrooke, Canada
| | - Grace Sweeney
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Logan Prock
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Subramaniam Sriram
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, QC, Canada; Mila - Quebec AI Institute, Montreal, QC, Canada; Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - John C Gore
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA; Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Seth A Smith
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kristin P O'Grady
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
2
|
Cronin AE, Liebig P, Detombe SA, Duggal N, Bartha R. Reproducibility of 3D pH-weighted chemical exchange saturation transfer contrast in the healthy cervical spinal cord. NMR IN BIOMEDICINE 2024; 37:e5103. [PMID: 38243648 DOI: 10.1002/nbm.5103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Spinal cord ischemia and hypoxia can be caused by compression, injury, and vascular alterations. Measuring ischemia and hypoxia directly in the spinal cord noninvasively remains challenging. Ischemia and hypoxia alter tissue pH, providing a physiologic parameter that may be more directly related to tissue viability. Chemical exchange saturation transfer (CEST) is an MRI contrast mechanism that can be made sensitive to pH. More specifically, amine/amide concentration independent detection (AACID) is a recently developed endogenous CEST contrast that has demonstrated sensitivity to intracellular pH at 9.4 T. The goal of this study was to evaluate the reproducibility of AACID CEST measurements at different levels of the healthy cervical spinal cord at 3.0 T incorporating B1 correction. Using a 3.0 T MRI scanner, two 3D CEST scans (saturation pulse train followed by a 3D snapshot gradient-echo readout) were performed on 12 healthy subjects approximately 10 days apart, with the CEST volume centered at the C4 level for all subjects. Scan-rescan reproducibility was evaluated by examining between and within-subject coefficients of variation (CVs) and absolute AACID value differences. The C4 level of the spinal cord demonstrated the lowest within-subject CVs (4.1%-4.3%), between-subject CVs (5.6%-6.3%), and absolute AACID percent difference (5.8-6.1%). The B1 correction scheme significantly improved reproducibility (adjusted p-value = 0.002) compared with the noncorrected data, suggesting that implementing B1 corrections in the spinal cord is beneficial. It was concluded that pH-weighted AACID measurements, incorporating B1-inhomogeneity correction, were reproducible within subjects along the healthy cervical spinal cord and that optimal image quality was achieved at the center of the 3D CEST volume.
Collapse
Affiliation(s)
- Alicia E Cronin
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | | | - Sarah A Detombe
- Department of Clinical Neurological Sciences, London Health Sciences Centre, London, Ontario, Canada
| | - Neil Duggal
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Department of Clinical Neurological Sciences, London Health Sciences Centre, London, Ontario, Canada
| | - Robert Bartha
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
3
|
Radiation myelopathy following stereotactic body radiation therapy for spine metastases. J Neurooncol 2022; 159:23-31. [PMID: 35737172 DOI: 10.1007/s11060-022-04037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/13/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Stereotactic body radiation therapy (SBRT) is now considered a standard of care treatment option in the management of spine metastases. One of the most feared complications of spine SBRT is radiation myelopathy (RM). METHODS We provided a narrative review of RM following spine SBRT based on review of the published literature, including data on spinal cord dose constraints associated with the risk of RM, strategies to mitigate the risk, and management options for RM. RESULTS There are limited published data of cases of RM following spine SBRT with detailed spinal cord dosimetry. The HyTEC report provided recommendations for the point maximal dose (Dmax) for the spinal cord that is associated with a < 5% risk of RM for 1-5 fractions spine SBRT. In the setting of spine SBRT reirradiation after previous conventional external beam radiation therapy (cEBRT), factors associated with RM are: SBRT spinal cord Dmax, cumulative spinal cord Dmax, and the time interval between previous RT and SBRT reirradiation. There are various strategies to mitigate the risk of RM, including accurate delineation of the spinal cord (or thecal sac), strict adherence to the recommended spinal cord dose constraints, and robust treatment immobilisation set-up and delivery. Limited effective treatment options are available for patients who develop RM, and these include corticosteroids, hyperbaric oxygen, and bevacizumab; however, none have been supported by high quality evidence. CONCLUSION RM is a rare but devastating complication following SBRT for spine metastases. There are strategies to minimise the risk of RM to ensure safe delivery of spine SBRT.
Collapse
|
4
|
Cilla S, Cellini F, Romano C, Macchia G, Pezzulla D, Viola P, Buwenge M, Indovina L, Valentini V, Morganti AG, Deodato F. Personalized Automation of Treatment Planning for Linac-Based Stereotactic Body Radiotherapy of Spine Cancer. Front Oncol 2022; 12:824532. [PMID: 35186757 PMCID: PMC8848468 DOI: 10.3389/fonc.2022.824532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/05/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose/Objective(s) Stereotactic ablative body radiotherapy (SBRT) for vertebral metastases is a challenging treatment process. Planning automation has recently reported the potential to improve plan quality and increase planning efficiency. We performed a dosimetric evaluation of the new Personalized engine implemented in Pinnacle3 for full planning automation of SBRT spine treatments in terms of plan quality, treatment efficiency, and delivery accuracy. Materials/Methods The Pinnacle3 treatment planning system was used to reoptimize six patients with spinal metastases, employing two separate automated engines. These two automated engines, the existing Autoplanning and the new Personalized, are both template-based algorithms that employ a wishlist to construct planning goals and an iterative technique to replicate the planning procedure performed by skilled planners. The boost tumor volume (BTV) was defined as the macroscopically visible lesion on RM examination, and the planning target volume (PTV) corresponds with the entire vertebra. Dose was prescribed according to simultaneous integrated boost strategy with BTV and PTV irradiated simultaneously over 3 fractions with a dose of 30 and 21 Gy, respectively. Dose-volume histogram (DVH) metrics and conformance indices were used to compare clinically accepted manual plans (MP) with automated plans developed using both Autoplanning (AP) and Personalized engines (Pers). All plans were evaluated for planning efficiency and dose delivery accuracy. Results For similar spinal cord sparing, automated plans reported a significant improvement of target coverage and dose conformity. On average, Pers plans increased near-minimal dose D98% by 10.4% and 8.9% and target coverage D95% by 8.0% and by 4.6% for BTV and PTV, respectively. Automated plans provided significantly superior dose conformity and dose contrast by 37%–47% and by 4.6%–5.7% compared with manual plans. Overall planning times were dramatically reduced to about 15 and 23 min for Pers and AP plans, respectively. The average beam-on times were found to be within 3 min for all plans. Despite the increased complexity, all plans passed the 2%/2 mm γ-analysis for dose verification. Conclusion Automated planning for spine SBRT through the new Pinnacle3 Personalized engine provided an overall increase of plan quality in terms of dose conformity and a major increase in efficiency. In this complex anatomical site, Personalized strongly reduce the tradeoff between optimal accurate dosimetry and planning time.
Collapse
Affiliation(s)
- Savino Cilla
- Medical Physics Unit, Gemelli Molise Hospital - Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Francesco Cellini
- Radiation Oncology Department, Fondazione Policlinico Universitario A. Gemelli - Università Cattolica del Sacro Cuore, Roma, Italy
| | - Carmela Romano
- Medical Physics Unit, Gemelli Molise Hospital - Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Gabriella Macchia
- Radiation Oncology Unit, Gemelli Molise Hospital - Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Donato Pezzulla
- Radiation Oncology Unit, Gemelli Molise Hospital - Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Pietro Viola
- Medical Physics Unit, Gemelli Molise Hospital - Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Milly Buwenge
- Radiation Oncology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Luca Indovina
- Medical Physics Unit, Fondazione Policlinico Universitario A. Gemelli - Università Cattolica del Sacro Cuore, Roma, Italy
| | - Vincenzo Valentini
- Radiation Oncology Department, Fondazione Policlinico Universitario A. Gemelli - Università Cattolica del Sacro Cuore, Roma, Italy.,Istituto di Radiologia, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Alessio G Morganti
- Radiation Oncology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Francesco Deodato
- Radiation Oncology Unit, Gemelli Molise Hospital - Università Cattolica del Sacro Cuore, Campobasso, Italy.,Istituto di Radiologia, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
5
|
Richard SA, Sackey M. Elucidating the Pivotal Neuroimmunomodulation of Stem Cells in Spinal Cord Injury Repair. Stem Cells Int 2021; 2021:9230866. [PMID: 34341666 PMCID: PMC8325586 DOI: 10.1155/2021/9230866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/03/2021] [Accepted: 07/17/2021] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is a distressing incident with abrupt onset of the motor as well as sensory dysfunction, and most often, the injury occurs as result of high-energy or velocity accidents as well as contact sports and falls in the elderly. The key challenges associated with nerve repair are the lack of self-repair as well as neurotrophic factors and primary and secondary neuronal apoptosis, as well as factors that prevent the regeneration of axons locally. Neurons that survive the initial traumatic damage may be lost due to pathogenic activities like neuroinflammation and apoptosis. Implanted stem cells are capable of differentiating into neural cells that replace injured cells as well as offer local neurotrophic factors that aid neuroprotection, immunomodulation, axonal sprouting, axonal regeneration, and remyelination. At the microenvironment of SCI, stem cells are capable of producing growth factors like brain-derived neurotrophic factor and nerve growth factor which triggers neuronal survival as well as axonal regrowth. Although stem cells have proven to be of therapeutic value in SCI, the major disadvantage of some of the cell types is the risk for tumorigenicity due to the contamination of undifferentiated cells prior to transplantation. Local administration of stem cells via either direct cellular injection into the spinal cord parenchyma or intrathecal administration into the subarachnoid space is currently the best transplantation modality for stem cells during SCI.
Collapse
Affiliation(s)
- Seidu A. Richard
- Department of Medicine, Princefield University, P.O. Box MA128, Ho, Ghana
| | - Marian Sackey
- Department of Pharmacy, Ho Teaching Hospital, P.O. Box MA-374, Ho, Ghana
| |
Collapse
|
6
|
Hupp M, Pfender N, Vallotton K, Rosner J, Friedl S, Zipser CM, Sutter R, Klarhöfer M, Spirig JM, Betz M, Schubert M, Freund P, Farshad M, Curt A. The Restless Spinal Cord in Degenerative Cervical Myelopathy. AJNR Am J Neuroradiol 2021; 42:597-609. [PMID: 33541903 DOI: 10.3174/ajnr.a6958] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/12/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The spinal cord is subject to a periodic, cardiac-related movement, which is increased at the level of a cervical stenosis. Increased oscillations may exert mechanical stress on spinal cord tissue causing intramedullary damage. Motion analysis thus holds promise as a biomarker related to disease progression in degenerative cervical myelopathy. Our aim was characterization of the cervical spinal cord motion in patients with degenerative cervical myelopathy. MATERIALS AND METHODS Phase-contrast MR imaging data were analyzed in 55 patients (37 men; mean age, 56.2 [SD,12.0] years; 36 multisegmental stenoses) and 18 controls (9 men, P = .368; mean age, 62.2 [SD, 6.5] years; P = .024). Parameters of interest included the displacement and motion pattern. Motion data were pooled on the segmental level for comparison between groups. RESULTS In patients, mean craniocaudal oscillations were increased manifold at any level of a cervical stenosis (eg, C5 displacement: controls [n = 18], 0.54 [SD, 0.16] mm; patients [n = 29], monosegmental stenosis [n = 10], 1.86 [SD, 0.92] mm; P < .001) and even in segments remote from the level of the stenosis (eg, C2 displacement: controls [n = 18], 0.36 [SD, 0.09] mm; patients [n = 52]; stenosis: C3, n = 21; C4, n = 11; C5, n = 18; C6, n = 2; 0.85 [SD, 0.46] mm; P < .001). Motion at C2 differed with the distance to the next stenotic segment and the number of stenotic segments. The motion pattern in most patients showed continuous spinal cord motion throughout the cardiac cycle. CONCLUSIONS Patients with degenerative cervical myelopathy show altered spinal cord motion with increased and ongoing oscillations at and also beyond the focal level of stenosis. Phase-contrast MR imaging has promise as a biomarker to reveal mechanical stress to the cord and may be applicable to predict disease progression and the impact of surgical interventions.
Collapse
Affiliation(s)
- M Hupp
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - N Pfender
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - K Vallotton
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - J Rosner
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.).,Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - S Friedl
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - C M Zipser
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | | | - M Klarhöfer
- Siemens Healthcare AG (M.K.), Zurich, Switzerland
| | - J M Spirig
- University Spine Center Zurich (J.M.S., M.B., M.F., A.C.), Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - M Betz
- University Spine Center Zurich (J.M.S., M.B., M.F., A.C.), Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - M Schubert
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - P Freund
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.)
| | - M Farshad
- University Spine Center Zurich (J.M.S., M.B., M.F., A.C.), Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - A Curt
- From the Spinal Cord Injury Center (M.H., N.P., K.V., J.R., S.F., C.M.Z., M.S., P.F., A.C.).,University Spine Center Zurich (J.M.S., M.B., M.F., A.C.), Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Oztek MA, Mayr NA, Mossa-Basha M, Nyflot M, Sponseller PA, Wu W, Hofstetter CP, Saigal R, Bowen SR, Hippe DS, Yuh WTC, Stewart RD, Lo SS. The Dancing Cord: Inherent Spinal Cord Motion and Its Effect on Cord Dose in Spine Stereotactic Body Radiation Therapy. Neurosurgery 2020; 87:1157-1166. [PMID: 32497210 PMCID: PMC8184298 DOI: 10.1093/neuros/nyaa202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/19/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Spinal cord dose limits are critically important for the safe practice of spine stereotactic body radiotherapy (SBRT). However, the effect of inherent spinal cord motion on cord dose in SBRT is unknown. OBJECTIVE To assess the effects of cord motion on spinal cord dose in SBRT. METHODS Dynamic balanced fast field echo (BFFE) magnetic resonance imaging (MRI) was obtained in 21 spine metastasis patients treated with SBRT. Planning computed tomography (CT), conventional static T2-weighted MRI, BFFE MRI, and dose planning data were coregistered. Spinal cord from the dynamic BFFE images (corddyn) was compared with the T2-weighted MRI (cordstat) to analyze motion of corddyn beyond the cordstat (Dice coefficient, Jaccard index), and beyond cordstat with added planning organ at risk volume (PRV) margins. Cord dose was compared between cordstat, and corddyn (Wilcoxon signed-rank test). RESULTS Dice coefficient (0.70-0.95, median 0.87) and Jaccard index (0.54-0.90, median 0.77) demonstrated motion of corddyn beyond cordstat. In 62% of the patients (13/21), the dose to corddyn exceeded that of cordstat by 0.6% to 13.8% (median 4.3%). The corddyn spatially excursed outside the 1-mm PRV margin of cordstat in 9 patients (43%); among these dose to corddyn exceeded dose to cordstat >+ 1-mm PRV margin in 78% of the patients (7/9). Corddyn did not excurse outside the 1.5-mm or 2-mm PRV cord cordstat margin. CONCLUSION Spinal cord motion may contribute to increases in radiation dose to the cord from SBRT for spine metastasis. A PRV margin of at least 1.5 to 2 mm surrounding the cord should be strongly considered to account for inherent spinal cord motion.
Collapse
Affiliation(s)
- Murat Alp Oztek
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington
| | - Nina A Mayr
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Mahmud Mossa-Basha
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington
| | - Matthew Nyflot
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington.,Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Patricia A Sponseller
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Wei Wu
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington
| | - Christoph P Hofstetter
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington
| | - Rajiv Saigal
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington
| | - Stephen R Bowen
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington.,Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Daniel S Hippe
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington
| | - William T C Yuh
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington
| | - Robert D Stewart
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
8
|
Rijken J, Crowe S, Trapp J, Kairn T. A review of stereotactic body radiotherapy for the spine. Phys Eng Sci Med 2020; 43:799-824. [DOI: 10.1007/s13246-020-00889-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
|
9
|
Seaman SC, Zanaty M, Holland MT, Gillies GT, Howard MA, Yamaguchi S. Intervertebral Displacement of the Thoracic Spine with and without Loading: Radiographic and in Vitro Measurements. World Neurosurg 2020; 138:e557-e563. [PMID: 32156590 DOI: 10.1016/j.wneu.2020.02.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND We are developing an intradural approach to spinal cord stimulation, where the thin electrode array is affixed stably to the underside of the thoracic spinal dura mater without leakage of cerebrospinal fluid. As part of the design and testing process, we sought to evaluate the potential risk of inadvertent contact of the array with the pial surface of the spinal cord during variations in spinal loading. METHODS As part of the risk assessment process, a 2-part study was undertaken. First, a retrospective review of the imaging studies of 25 patients was done in the supine, 45- and 90-degree positions to measure the positional shift between the T9 and T10 vertebral bodies as a function of spinal angulation. Second, similar measurements were made on a cadaveric model, with and without a prototype intradural stimulator implanted at the T9-T10 position and with and without 13.8 kg (30 lb) of axial spinal loading at the 90-degree orientation. RESULTS In all cases, the measured relative displacement of the dura mater towards the spinal cord in both the imaging and the cadaveric arms of the study was less than 1 mm. CONCLUSIONS The implantation method for the thin intradural array of the prototype device will ensure that the anatomic separation between it and the pial surface of the spinal cord will be the same as that of the dura mater. Therefore the risk of inadvertent contact will be no greater than that due to the mass effects of standard epidural stimulator implants.
Collapse
Affiliation(s)
- Scott C Seaman
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA.
| | - Mario Zanaty
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Marshall T Holland
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - George T Gillies
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Satoshi Yamaguchi
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
10
|
Abstract
Improvements in clinical care and therapy mean that more patients are diagnosed and living longer with vertebral metastases. Thus, they are at risk of the development of recurrence that requires re-irradiation. Normal tissues often recover some of the damage caused by the primary radiotherapy with time and specific normal tissues can tolerate a considerable retreatment radiation dose. However, the risk of normal tissue damage and the impact on the quality of life must be considered and should be done with maximum care and accuracy especially in the vertebral area. For many years conventional external beam radiation therapy was the standard treatment modality. Fortunately, with crucial technological progress in the field of radiation oncology we are able to integrate body imaging with accurate treatment delivery methods as stereotactic body radiotherapy to improve the efficacy, shorten the overall treatment time and potentially reduce treatment-related toxicities. A short description of re-irradiation strategy covering diagnostic procedures, volume delineation, dose reconstructions, treatment planning, and guidelines are outlined. Moreover, publications on vertebral bodies re-irradiation summarizing available knowledge about toxicity, dose-volume constraints, local control, and pain response are followed. Although the knowledge is limited to a series of a single institution, it shows that re-irradiation is an effective treatment for local control and pain response. Furthermore, treatment was also shown to be safe with low risk of spinal cord damage which is one of the most worrisome toxicity.
Collapse
|
11
|
Xiang M, Chan C, Wang L, Jani K, Holdsworth SJ, Iv M, Pollom EL, Soltys SG. Physiological motion of the optic chiasm and its impact on stereotactic radiosurgery dose. Br J Radiol 2019; 92:20190170. [PMID: 31067077 DOI: 10.1259/bjr.20190170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Avoidance of radiation-induced optic neuropathy (RION) from stereotactic radiosurgery (SRS) requires precise anatomical localization; however, no prior studies have characterized the physiologic motion of the optic chiasm. We measured the extent of chiasm motion and its impact on SRS dose. METHODS In this cross-sectional study, serial MRI was performed in multiple planes in 11 human subjects without optic pathway abnormalities to determine chiasm motion across time. Subsequently, the measured displacement was applied to the hypothetical chiasm dose received in 11 patients treated with SRS to a perichiasmatic lesion. RESULTS On sagittal images, the average anteroposterior chiasm displacement was 0.51 mm [95% confidence interval (CI) 0.27 - 0.75 mm], and the average superior-inferior displacement was 0.48 mm (95% CI 0.22 - 0.74 mm). On coronal images, the average superior-inferior displacement was 0.42 mm (95% CI 0.13 - 0.71 mm), and the average lateral displacement was 0.75 mm (95% CI 0.42 - 1.08 mm). In 11 patients who underwent SRS to a perichiasmatic lesion, the average displacements increased the maximum chiasm dose (Dmax) by a mean of 14 % (range 6-23 %; p < 0.001). CONCLUSION Average motion of the optic chiasm was approximately 0.50-0.75 mm, which increased chiasm Dmax by a mean of 14%. In the occasional patient with higher-than-average chiasm motion in a region of steep dose gradient, the increase in chiasm Dmax and risk of RION could be even larger. Similarly, previously reported chiasm dose constraints may underestimate the true dose received during radiosurgery. ADVANCES IN KNOWLEDGE To limit the risk of RION, clinicians may consider adding a 0.50-0.75 mm expansion to the chiasm avoidance structure.
Collapse
Affiliation(s)
- Michael Xiang
- 1 Department of Radiation Oncology, Stanford University , Stanford, CA , United States of America
| | - Cynthia Chan
- 2 Department of Radiology, Division of Neuroradiology, Stanford University , Stanford, CA , United States of America
| | - Lei Wang
- 1 Department of Radiation Oncology, Stanford University , Stanford, CA , United States of America
| | - Khushboo Jani
- 1 Department of Radiation Oncology, Stanford University , Stanford, CA , United States of America
| | - Samantha J Holdsworth
- 2 Department of Radiology, Division of Neuroradiology, Stanford University , Stanford, CA , United States of America
| | - Michael Iv
- 2 Department of Radiology, Division of Neuroradiology, Stanford University , Stanford, CA , United States of America
| | - Erqi L Pollom
- 1 Department of Radiation Oncology, Stanford University , Stanford, CA , United States of America
| | - Scott G Soltys
- 1 Department of Radiation Oncology, Stanford University , Stanford, CA , United States of America
| |
Collapse
|
12
|
Versteeg AL, Hes J, van der Velden JM, Eppinga W, Kasperts N, Verkooijen HM, van Vulpen M, Oner FC, Seravalli E, Verlaan JJ. Sparing the surgical area with stereotactic body radiotherapy for combined treatment of spinal metastases: a treatment planning study. Acta Oncol 2019; 58:251-256. [PMID: 30513233 DOI: 10.1080/0284186x.2018.1539240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Decreasing the radiation dose in the surgical area is important to lower the risk of wound complications when surgery and radiotherapy are combined for the treatment of spinal metastases. The purpose of this study was to compare the radiation dose in the surgical area for spinal metastases between single fraction external beam radiotherapy (EBRT), single fraction stereotactic body radiotherapy (SBRT) and single fraction SBRT with active sparing (SBRT-AS) of the posterior surgical area. METHODS Radiotherapy treatment plans for EBRT, SBRT and SBRT-AS of the posterior surgical area were created for 13 patients with spinal metastases. A single fraction of 8Gy was prescribed to the spinal metastasis in the EBRT plan. For the SBRT treatment plans, a single fraction of 18Gy was prescribed to the metastasis and 8Gy to the rest of the vertebral body. For the SBRT plan with active sparing the dose in the designated surgical area was minimized without compromising the dose to the organs at risk. RESULTS The median dose in the surgical area was 2.6Gy (1.6-5.3Gy) in the SBRT plan with active sparing of the surgical area compared to a median dose of 3.7Gy (1.6-6.3Gy) in the SBRT plan without sparing and 6.5Gy (3.5-9.1Gy) in the EBRT plans (p < .001). The radiation doses to the spinal metastases and organs at risk were not significantly different between the SBRT plan with and without sparing the surgical area. CONCLUSIONS The radiation dose to the surgical area is significantly decreased with the use of SBRT compared to EBRT. Active sparing of the surgical area further decreased the mean radiation dose in the surgical area without compromising the dose to the spinal metastasis and the organs at risk.
Collapse
Affiliation(s)
- A. L. Versteeg
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J. Hes
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J. M. van der Velden
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - W. Eppinga
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - N. Kasperts
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H. M. Verkooijen
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M. van Vulpen
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - F. C. Oner
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E. Seravalli
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J. J. Verlaan
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
13
|
Effect of cardiac-related translational motion in diffusion MRI of the spinal cord. Magn Reson Imaging 2018; 50:119-124. [PMID: 29626518 DOI: 10.1016/j.mri.2018.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 11/22/2022]
Abstract
Cardiac-related spinal cord motion affects diffusion-weighted (DWI) signal. The goal of this study was to further quantify the specific detrimental effect of cord translational motion on the DWI signal in order to make better informed decisions about the cost-benefit of cardiac gating. We designed an MRI-compatible phantom mimicking the spinal cord translational motion. Cardiac-gated DWI data were acquired by varying the trigger delay and the b-values. Evaluation of the effect of motion on the DWI signal was done by computing the apparent diffusion coefficient (ADC) along (z-direction) and orthogonal (y- and x-directions) to the phantom. The computed ADCs of the phantom moving along Z were similar for the three orthogonal diffusion-encoding directions, with an average value of 1.65·10-9 , 1.66·10-9 and 1.65·10-9 m2/s along X, Y and Z respectively. DW phase images on the other hand showed the expected linear relationship with phantom velocity. Pure translational motion has minor effect on the diffusion-weighted magnitude signal. The sudden signal drop typically observed in in vivo spinal cord DWI is likely not caused by translational motion of the spinal cord, and possibly originates from non-rigid compression/stretching of the cord and/or from intra-voxel incoherent motion (IVIM).
Collapse
|
14
|
Kim MJ, Lee SR, Lee MY, Sohn JW, Yun HG, Choi JY, Jeon SW, Suh TS. Characterization of 3D printing techniques: Toward patient specific quality assurance spine-shaped phantom for stereotactic body radiation therapy. PLoS One 2017; 12:e0176227. [PMID: 28472175 PMCID: PMC5417437 DOI: 10.1371/journal.pone.0176227] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/08/2017] [Indexed: 12/31/2022] Open
Abstract
Development and comparison of spine-shaped phantoms generated by two different 3D-printing technologies, digital light processing (DLP) and Polyjet has been purposed to utilize in patient-specific quality assurance (QA) of stereotactic body radiation treatment. The developed 3D-printed spine QA phantom consisted of an acrylic body phantom and a 3D-printed spine shaped object. DLP and Polyjet 3D printers using a high-density acrylic polymer were employed to produce spine-shaped phantoms based on CT images. Image fusion was performed to evaluate the reproducibility of our phantom, and the Hounsfield units (HUs) were measured based on each CT image. Two different intensity-modulated radiotherapy plans based on both CT phantom image sets from the two printed spine-shaped phantoms with acrylic body phantoms were designed to deliver 16 Gy dose to the planning target volume (PTV) and were compared for target coverage and normal organ-sparing. Image fusion demonstrated good reproducibility of the developed phantom. The HU values of the DLP- and Polyjet-printed spine vertebrae differed by 54.3 on average. The PTV Dmax dose for the DLP-generated phantom was about 1.488 Gy higher than that for the Polyjet-generated phantom. The organs at risk received a lower dose for the 3D printed spine-shaped phantom image using the DLP technique than for the phantom image using the Polyjet technique. Despite using the same material for printing the spine-shaped phantom, these phantoms generated by different 3D printing techniques, DLP and Polyjet, showed different HU values and these differently appearing HU values according to the printing technique could be an extra consideration for developing the 3D printed spine-shaped phantom depending on the patient’s age and the density of the spinal bone. Therefore, the 3D printing technique and materials should be carefully chosen by taking into account the condition of the patient in order to accurately produce 3D printed patient-specific QA phantom.
Collapse
Affiliation(s)
- Min-Joo Kim
- Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Seu-Ran Lee
- Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Min-Young Lee
- Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jason W. Sohn
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Hyong Geon Yun
- Department of Radiation Oncology, College of Medicine, DongGuk University Hospital, Goyang, Korea
| | - Joon Yong Choi
- Department of Radiation Oncology, College of Medicine, DongGuk University Hospital, Goyang, Korea
| | - Sang Won Jeon
- Department of Radiation Oncology, College of Medicine, DongGuk University Hospital, Goyang, Korea
| | - Tae Suk Suh
- Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Korea
- * E-mail:
| |
Collapse
|
15
|
Method of evaluating respiratory induced organ motion by vector volume histogram. Phys Med 2016; 32:1570-1574. [DOI: 10.1016/j.ejmp.2016.11.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/15/2016] [Accepted: 11/15/2016] [Indexed: 12/25/2022] Open
|
16
|
Postoperative Stereotactic Body Radiation Therapy (SBRT) for Spine Metastases: A Critical Review to Guide Practice. Int J Radiat Oncol Biol Phys 2016; 95:1414-1428. [DOI: 10.1016/j.ijrobp.2016.03.027] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 01/08/2016] [Accepted: 03/21/2016] [Indexed: 11/18/2022]
|
17
|
Cobben DCP, de Boer HCJ, Tijssen RH, Rutten EGGM, van Vulpen M, Peerlings J, Troost EGC, Hoffmann AL, van Lier ALHMW. Emerging Role of MRI for Radiation Treatment Planning in Lung Cancer. Technol Cancer Res Treat 2015; 15:NP47-NP60. [PMID: 26589726 DOI: 10.1177/1533034615615249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/01/2015] [Indexed: 12/25/2022] Open
Abstract
Magnetic resonance imaging (MRI) provides excellent soft-tissue contrast and allows for specific scanning sequences to optimize differentiation between various tissue types and properties. Moreover, it offers the potential for real-time motion imaging. This makes magnetic resonance imaging an ideal candidate imaging modality for radiation treatment planning in lung cancer. Although the number of clinical research protocols for the application of magnetic resonance imaging for lung cancer treatment is increasing (www.clinicaltrials.gov) and the magnetic resonance imaging sequences are becoming faster, there are still some technical challenges. This review describes the opportunities and challenges of magnetic resonance imaging for radiation treatment planning in lung cancer.
Collapse
Affiliation(s)
- David C P Cobben
- Department of Radiation Oncology, University Medical Center, Utrecht, the Netherlands
| | - Hans C J de Boer
- Department of Radiation Oncology, University Medical Center, Utrecht, the Netherlands
| | - Rob H Tijssen
- Department of Radiation Oncology, University Medical Center, Utrecht, the Netherlands
| | - Emma G G M Rutten
- Department of Radiation Oncology, University Medical Center, Utrecht, the Netherlands
| | - Marco van Vulpen
- Department of Radiation Oncology, University Medical Center, Utrecht, the Netherlands
| | - Jurgen Peerlings
- Department of Radiation Oncology, MAASTRO Clinic, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Esther G C Troost
- Department of Radiation Oncology, MAASTRO Clinic, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands.,Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,OncoRay, National Center for Radiation Research in Oncology, Dresden, Germany.,Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Aswin L Hoffmann
- Department of Radiation Oncology, MAASTRO Clinic, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands.,Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,OncoRay, National Center for Radiation Research in Oncology, Dresden, Germany.,Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | |
Collapse
|
18
|
Rief H, Chaudhri N, Tonndorf-Martini E, Bruckner T, Rieken S, Bostel T, Förster R, Schlampp I, Debus J, Sterzing F. Intensity-modulated radiotherapy versus proton radiotherapy versus carbon ion radiotherapy for spinal bone metastases: a treatment planning study. J Appl Clin Med Phys 2015; 16:186–194. [PMID: 26699573 PMCID: PMC5690994 DOI: 10.1120/jacmp.v16i6.5618] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/10/2015] [Accepted: 06/19/2015] [Indexed: 11/23/2022] Open
Abstract
Outcomes for selected patients with spinal metastases may be improved by dose escalation using stereotactic body radiotherapy (SBRT). As target geometry is complex, we compared SBRT plans using step‐and‐shoot intensity‐modulated radiotherapy (IMRT), carbon ion RT, and proton RT. We prepared plans treating cervical, thoracic, and lumbar metastases for three different techniques — IMRT, carbon ion, and proton plans — to deliver a median single 24 Gy fraction such that at least 90% of the planning target volume (PTV) received more than 18 Gy and were compared for PTV coverage, normal organ sparing, and estimated delivery time. PTV coverage did not show significant differences for the techniques, spinal cord dose sparing was lowered with the particle techniques. For the cervical lesion spinal cord maximum dose, dose of 1% (D1), and percent volume receiving 10 Gy (V10Gy) were 11.9 Gy, 9.1 Gy, and 0.5% in IMRT. This could be lowered to 4.3 Gy, 2.5 Gy, and 0% in carbon ion planning and to 8.1 Gy, 6.1 Gy, and 0% in proton planning. Regarding the thoracic lesion no difference was found for the spinal cord. For the lumbar lesion maximum dose, D1 and percent volume receiving 5 Gy (V5Gy) were 13.4 Gy, 8.9 Gy, and 8.9% for IMRT; 1.8 Gy, 0.7 Gy, and 0% for carbon ions; and 0 Gy,<0.01 Gy, and 0% for protons. Estimated mean treatment times were shorter in particle techniques (6–7 min vs. 12–14 min with IMRT). This planning study indicates that carbon ion and proton RT can deliver high‐quality PTV coverage for complex treatment volumes that surround the spinal cord. PACS number: 87.55.dk
Collapse
|
19
|
Støverud KH, Alnæs M, Langtangen HP, Haughton V, Mardal KA. Poro-elastic modeling of Syringomyelia - a systematic study of the effects of pia mater, central canal, median fissure, white and gray matter on pressure wave propagation and fluid movement within the cervical spinal cord. Comput Methods Biomech Biomed Engin 2015; 19:686-98. [PMID: 26176823 DOI: 10.1080/10255842.2015.1058927] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Syringomyelia, fluid-filled cavities within the spinal cord, occurs frequently in association with a Chiari I malformation and produces some of its most severe neurological symptoms. The exact mechanism causing syringomyelia remains unknown. Since syringomyelia occurs frequently in association with obstructed cerebrospinal fluid (CSF) flow, it has been hypothesized that syrinx formation is mechanically driven. In this study we model the spinal cord tissue either as a poro-elastic medium or as a solid linear elastic medium, and simulate the propagation of pressure waves through an anatomically plausible 3D geometry, with boundary conditions based on in vivo CSF pressure measurements. Then various anatomic and tissue properties are modified, resulting in a total of 11 variations of the model that are compared. The results show that an open segment of the central canal and a stiff pia (relative to the cord) both increase the radial pressure gradients and enhance interstitial fluid flow in the central canal. The anterior median fissure, anisotropic permeability of the white matter, and Poisson ratio play minor roles.
Collapse
Affiliation(s)
- Karen H Støverud
- a Simula Research Laboratory , P.O. Box 134, 1325 Lysaker , Norway.,b Department of Informatics , University of Oslo , P.O. Box 1080 Blindern, 0316 Oslo , Norway
| | - Martin Alnæs
- a Simula Research Laboratory , P.O. Box 134, 1325 Lysaker , Norway
| | - Hans Petter Langtangen
- a Simula Research Laboratory , P.O. Box 134, 1325 Lysaker , Norway.,b Department of Informatics , University of Oslo , P.O. Box 1080 Blindern, 0316 Oslo , Norway
| | - Victor Haughton
- a Simula Research Laboratory , P.O. Box 134, 1325 Lysaker , Norway.,c Wisconsin Institutes of Medical Research , 1111 Highland Ave., Madison , WI 53705 , USA
| | - Kent-André Mardal
- a Simula Research Laboratory , P.O. Box 134, 1325 Lysaker , Norway.,d Department of Mathematics , University of Oslo , P.O. Box 1080 Blindern, 0316 Oslo , Norway
| |
Collapse
|
20
|
Liu Y, Yin FF, Chang Z, Czito BG, Palta M, Bashir MR, Qin Y, Cai J. Investigation of sagittal image acquisition for 4D-MRI with body area as respiratory surrogate. Med Phys 2015; 41:101902. [PMID: 25281954 DOI: 10.1118/1.4894726] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The authors have recently developed a novel 4D-MRI technique for imaging organ respiratory motion employing cine acquisition in the axial plane and using body area (BA) as a respiratory surrogate. A potential disadvantage associated with axial image acquisition is the space-dependent phase shift in the superior-inferior (SI) direction, i.e., different axial slice positions reach the respiratory peak at different respiratory phases. Since respiratory motion occurs mostly in the SI and anterior-posterior (AP) directions, sagittal image acquisition, which embeds motion information in these two directions, is expected to be more robust and less affected by phase-shift than axial image acquisition. This study aims to develop and evaluate a 4D-MRI technique using sagittal image acquisition. METHODS The authors evaluated axial BA and sagittal BA using both 4D-CT images (11 cancer patients) and cine MR images (6 healthy volunteers and 1 cancer patient) by comparing their corresponding space-dependent phase-shift in the SI direction (δSPS (SI)) and in the lateral direction (δSPS (LAT)), respectively. To evaluate sagittal BA 4D-MRI method, a motion phantom study and a digital phantom study were performed. Additionally, six patients who had cancer(s) in the liver were prospectively enrolled in this study. For each patient, multislice sagittal MR images were acquired for 4D-MRI reconstruction. 4D retrospective sorting was performed based on respiratory phases. Single-slice cine MRI was also acquired in the axial, coronal, and sagittal planes across the tumor center from which tumor motion trajectories in the SI, AP, and medial-lateral (ML) directions were extracted and used as references from comparison. All MR images were acquired in a 1.5 T scanner using a steady-state precession sequence (frame rate ∼ 3 frames/s). RESULTS 4D-CT scans showed that δSPS (SI) was significantly greater than δSPS (LAT) (p-value: 0.012); the median phase-shift was 16.9% and 7.7%, respectively. Body surface motion measurement from axial and sagittal MR cines also showed δSPS (SI) was significantly greater than δSPS (LAT). The median δSPS (SI) and δSPS (LAT) was 11.0% and 9.2% (p-value = 0.008), respectively. Tumor motion trajectories from 4D-MRI matched with those from single-slice cine MRI: the mean (±SD) absolute differences in tumor motion amplitude between the two were 1.5 ± 1.6 mm, 2.1 ± 1.9 mm, and 1.1 ± 1.0 mm in the SI, ML, and AP directions from this patient study. CONCLUSIONS Space-dependent phase shift is less problematic for sagittal acquisition than for axial acquisition. 4D-MRI using sagittal acquisition was successfully carried out in patients with hepatic tumors.
Collapse
Affiliation(s)
- Yilin Liu
- Medical Physics Graduate Program, Duke University, Durham, North Carolina, 27710 and Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, 27710
| | - Fang-Fang Yin
- Medical Physics Graduate Program, Duke University, Durham, North Carolina, 27710 and Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, 27710
| | - Zheng Chang
- Medical Physics Graduate Program, Duke University, Durham, North Carolina, 27710 and Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, 27710
| | - Brian G Czito
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, 27710
| | - Manisha Palta
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, 27710
| | - Mustafa R Bashir
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, 27710
| | - Yujiao Qin
- Radiation Oncology, Henry Ford Hospital, Detroit, Michigan
| | - Jing Cai
- Medical Physics Graduate Program, Duke University, Durham, North Carolina, 27710 and Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, 27710
| |
Collapse
|
21
|
Tseng CL, Sussman MS, Atenafu EG, Letourneau D, Ma L, Soliman H, Thibault I, Cho BCJ, Simeonov A, Yu E, Fehlings MG, Sahgal A. Magnetic resonance imaging assessment of spinal cord and cauda equina motion in supine patients with spinal metastases planned for spine stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 2015; 91:995-1002. [PMID: 25832691 DOI: 10.1016/j.ijrobp.2014.12.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 12/14/2014] [Accepted: 12/17/2014] [Indexed: 10/23/2022]
Abstract
PURPOSE To assess motion of the spinal cord and cauda equina, which are critical neural tissues (CNT), which is important when evaluating the planning organ-at-risk margin required for stereotactic body radiation therapy. METHODS AND MATERIALS We analyzed CNT motion in 65 patients with spinal metastases (11 cervical, 39 thoracic, and 24 lumbar spinal segments) in the supine position using dynamic axial and sagittal magnetic resonance imaging (dMRI, 3T Verio, Siemens) over a 137-second interval. Motion was segregated according to physiologic cardiorespiratory oscillatory motion (characterized by the average root mean square deviation) and random bulk shifts associated with gross patient motion (characterized by the range). Displacement was evaluated in the anteroposterior (AP), lateral (LR), and superior-inferior (SI) directions by use of a correlation coefficient template matching algorithm, with quantification of random motion measure error over 3 separate trials. Statistical significance was defined according to P<.05. RESULTS In the AP, LR, and SI directions, significant oscillatory motion was observed in 39.2%, 35.1%, and 10.8% of spinal segments, respectively, and significant bulk motions in all cases. The median oscillatory CNT motions in the AP, LR, and SI directions were 0.16 mm, 0.17 mm, and 0.44 mm, respectively, and the maximal statistically significant oscillatory motions were 0.39 mm, 0.41 mm, and 0.77 mm, respectively. The median bulk displacements in the AP, LR, and SI directions were 0.51 mm, 0.59 mm, and 0.66 mm, and the maximal statistically significant displacements were 2.21 mm, 2.87 mm, and 3.90 mm, respectively. In the AP, LR, and SI directions, bulk displacements were greater than 1.5 mm in 5.4%, 9.0%, and 14.9% of spinal segments, respectively. No significant differences in axial motion were observed according to cord level or cauda equina. CONCLUSIONS Oscillatory CNT motion was observed to be relatively minor. Our results support the importance of controlling bulk patient motion and the practice of applying a planning organ-at-risk margin.
Collapse
Affiliation(s)
- Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Marshall S Sussman
- Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Eshetu G Atenafu
- Department of Biostatistics, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Letourneau
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lijun Ma
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Hany Soliman
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Isabelle Thibault
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - B C John Cho
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Anna Simeonov
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Eugene Yu
- Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Michael G Fehlings
- Department of Neurosurgery and Spine Program, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Yang J, Wang H, Yin Y, Li D. Retracted: Reducing motion artifacts in 4D MR images using principal component analysis (PCA) combined with linear polynomial fitting model. J Appl Clin Med Phys 2015; 16:5165. [PMID: 26103185 PMCID: PMC5690092 DOI: 10.1120/jacmp.v16i2.5165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/25/2014] [Accepted: 10/24/2014] [Indexed: 11/23/2022] Open
Abstract
We have previously developed a retrospective 4D-MRI technique using body area as the respiratory surrogate, but generally, the reconstructed 4D MR images suffer from severe or mild artifacts mainly caused by irregular motion during image acquisition. Those image artifacts may potentially affect the accuracy of tumor target delineation or the shape representation of surrounding nontarget tissues and organs. So the purpose of this study is to propose an approach employing principal component analysis (PCA), combined with a linear polynomial fitting model, to remodel the displacement vector fields (DVFs) obtained from deformable image registration (DIR), with the main goal of reducing the motion artifacts in 4D MR images. Seven patients with hepatocellular carcinoma (2/7) or liver metastases (5/7) in the liver, as well as a patient with non-small cell lung cancer (NSCLC), were enrolled in an IRB-approved prospective study. Both CT and MR simulations were performed for each patient for treatment planning. Multiple-slice, multiple-phase, cine-MRI images were acquired in the axial plane for 4D-MRI reconstruction. Single-slice 2D cine-MR images were acquired across the center of the tumor in axial, coronal, and sagittal planes. For a 4D MR image dataset, the DVFs in three orthogonal direction (inferior–superior (SI), anterior–posterior (AP), and medial–lateral (ML)) relative to a specific reference phase were calculated using an in-house DIR algorithm. The DVFs were preprocessed in three temporal and spatial dimensions using a polynomial fitting model, with the goal of correcting the potential registration errors introduced by three-dimensional DIR. Then PCA was used to decompose each fitted DVF into a linear combination of three principal motion bases whose spanned subspaces combined with their projections had been validated to be sufficient to represent the regular respiratory motion. By wrapping the reference MR image using the remodeled DVFs, 'synthetic' MR images with reduced motion artifacts were generated at selected phase. Tumor motion trajectories derived from cine-MRI, 4D CT, original 4D MRI, and 'synthetic' 4D MRI were analyzed in the SI, AP, and ML directions, respectively. Their correlation coefficient (CC) and difference (D) in motion amplitude were calculated for comparison. Of all the patients, the means and standard deviations (SDs) of CC comparing 'synthetic' 4D MRI and cine-MRI were 0.98 ± 0.01, 0.98 ± 0.01, and 0.99 ± 0.01 in SI, AP, and ML directions, respectively. The mean ± SD Ds were 0.59 ± 0.09 mm, 0.29± 0.10 mm, and 0.15 ± 0.05 mm in SI, AP and ML directions, respectively. The means and SDs of CC comparing 'synthetic' 4D MRI and 4D CT were 0.96 ± 0.01, 0.95± 0.01, and 0.95 ± 0.01 in SI, AP, and ML directions, respectively. The mean ± SD Ds were 0.76 ± 0.20 mm, 0.33 ± 0.14 mm, and 0.19± 0.07 mm in SI, AP, and ML directions, respectively. The means and SDs of CC comparing 'synthetic' 4D MRI and original 4D MRI were 0.98 ± 0.01, 0.98± 0.01, and 0.97± 0.01 in SI, AP, and ML directions, respectively. The mean ± SD Ds were 0.58 ± 0.10 mm, 0.30 ± 0.09mm, and 0.17 ± 0.04 mm in SI, AP, and ML directions, respectively. In this study we have proposed an approach employing PCA combined with a linear polynomial fitting model to capture the regular respiratory motion from a 4D MR image dataset. And its potential usefulness in reducing motion artifacts and improving image quality has been demonstrated by the preliminary results in oncological patients.
Collapse
|
23
|
Reproducibility of the MRI-defined spinal cord position in stereotactic radiotherapy for spinal oligometastases. Radiother Oncol 2014; 113:230-4. [DOI: 10.1016/j.radonc.2014.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/30/2014] [Accepted: 11/01/2014] [Indexed: 12/25/2022]
|
24
|
Gou S, Wu J, Liu F, Lee P, Rapacchi S, Hu P, Sheng K. Feasibility of automated pancreas segmentation based on dynamic MRI. Br J Radiol 2014; 87:20140248. [PMID: 25270713 DOI: 10.1259/bjr.20140248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE MRI-guided radiotherapy is particularly attractive for abdominal targets with low CT contrast. To fully utilize this modality for pancreas tracking, automated segmentation tools are needed. A hybrid gradient, region growth and shape constraint (hGReS) method to segment two-dimensional (2D) upper abdominal dynamic MRI (dMRI) is developed for this purpose. METHODS 2D coronal dynamic MR images of two healthy volunteers were acquired with a frame rate of 5 frames per second. The regions of interest (ROIs) included the liver, pancreas and stomach. The first frame was used as the source where the centres of the ROIs were manually annotated. These centre locations were propagated to the next dMRI frame. Four-neighborhood region transfer growth was performed from these initial seeds before refinement using shape constraints. RESULTS from hGReS and two other automated segmentation methods using integrated edge detection and region growth (IER) and level set, respectively, were compared with manual contours using Dice's index (DI). RESULTS For the first patient, the hGReS resulted in the organ segmentation accuracy as a measure by the DI (0.77) for the pancreas, superior to the level set method (0.72) and IER (0.71). The hGReS was shown to be reproducible on the second subject, achieving a DI of 0.82, 0.92 and 0.93 for the pancreas, stomach and liver, respectively. Motion trajectories derived from the hGReS were highly correlated to respiratory motion. CONCLUSION We have shown the feasibility of automated segmentation of the pancreas anatomy on dMRI. ADVANCES IN KNOWLEDGE Using the hybrid method improves segmentation robustness of low-contrast images.
Collapse
Affiliation(s)
- S Gou
- 1 Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, the School of Electronic Engineering, Xidian University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Yang J, Cai J, Wang H, Chang Z, Czito BG, Bashir MR, Palta M, Yin FF. Is diaphragm motion a good surrogate for liver tumor motion? Int J Radiat Oncol Biol Phys 2014; 90:952-8. [PMID: 25223297 DOI: 10.1016/j.ijrobp.2014.07.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 07/17/2014] [Accepted: 07/19/2014] [Indexed: 12/25/2022]
Abstract
PURPOSE To evaluate the relationship between liver tumor motion and diaphragm motion. METHODS AND MATERIALS Fourteen patients with hepatocellular carcinoma (10 of 14) or liver metastases (4 of 14) undergoing radiation therapy were included in this study. All patients underwent single-slice cine-magnetic resonance imaging simulations across the center of the tumor in 3 orthogonal planes. Tumor and diaphragm motion trajectories in the superior-inferior (SI), anterior-posterior (AP), and medial-lateral (ML) directions were obtained using an in-house-developed normalized cross-correlation-based tracking technique. Agreement between the tumor and diaphragm motion was assessed by calculating phase difference percentage, intraclass correlation coefficient, and Bland-Altman analysis (Diff). The distance between the tumor and tracked diaphragm area was analyzed to understand its impact on the correlation between the 2 motions. RESULTS Of all patients, the mean (±standard deviation) phase difference percentage values were 7.1% ± 1.1%, 4.5% ± 0.5%, and 17.5% ± 4.5% in the SI, AP, and ML directions, respectively. The mean intraclass correlation coefficient values were 0.98 ± 0.02, 0.97 ± 0.02, and 0.08 ± 0.06 in the SI, AP, and ML directions, respectively. The mean Diff values were 2.8 ± 1.4 mm, 2.4 ± 1.1 mm, and 2.2 ± 0.5 mm in the SI, AP, and ML directions, respectively. Tumor and diaphragm motions had high concordance when the distance between the tumor and tracked diaphragm area was small. CONCLUSIONS This study showed that liver tumor motion had good correlation with diaphragm motion in the SI and AP directions, indicating diaphragm motion in the SI and AP directions could potentially be used as a reliable surrogate for liver tumor motion.
Collapse
Affiliation(s)
- Juan Yang
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina; School of Information Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Jing Cai
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Hongjun Wang
- School of Information Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Zheng Chang
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Brian G Czito
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Mustafa R Bashir
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Manisha Palta
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Fang-Fang Yin
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
26
|
Cheng S, Fletcher D, Hemley S, Stoodley M, Bilston L. Effects of fluid structure interaction in a three dimensional model of the spinal subarachnoid space. J Biomech 2014; 47:2826-30. [DOI: 10.1016/j.jbiomech.2014.04.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 02/11/2014] [Accepted: 04/17/2014] [Indexed: 11/24/2022]
|
27
|
Masucci GL, Yu E, Ma L, Chang EL, Letourneau D, Lo S, Leung E, Chao S, Hyde D, Gorgulho A, Muacevic A, Larson DA, Fehlings MG, Sahgal A. Stereotactic body radiotherapy is an effective treatment in reirradiating spinal metastases: current status and practical considerations for safe practice. Expert Rev Anticancer Ther 2014; 11:1923-33. [DOI: 10.1586/era.11.169] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Balagamwala EH, Cherian S, Angelov L, Suh JH, Djemil T, Lo SS, Sahgal A, Chang E, Teh BS, Chao ST. Stereotactic body radiotherapy for the treatment of spinal metastases. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s13566-012-0047-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Sahgal A, Weinberg V, Ma L, Chang E, Chao S, Muacevic A, Gorgulho A, Soltys S, Gerszten PC, Ryu S, Angelov L, Gibbs I, Wong CS, Larson DA. Probabilities of radiation myelopathy specific to stereotactic body radiation therapy to guide safe practice. Int J Radiat Oncol Biol Phys 2012; 85:341-7. [PMID: 22713832 DOI: 10.1016/j.ijrobp.2012.05.007] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/27/2012] [Accepted: 05/03/2012] [Indexed: 11/28/2022]
Abstract
PURPOSE Dose-volume histogram (DVH) results for 9 cases of post spine stereotactic body radiation therapy (SBRT) radiation myelopathy (RM) are reported and compared with a cohort of 66 spine SBRT patients without RM. METHODS AND MATERIALS DVH data were centrally analyzed according to the thecal sac point maximum (Pmax) volume, 0.1- to 1-cc volumes in increments of 0.1 cc, and to the 2 cc volume. 2-Gy biologically equivalent doses (nBED) were calculated using an α/β = 2 Gy (units = Gy(2/2)). For the 2 cohorts, the nBED means and distributions were compared using the t test and Mann-Whitney test, respectively. Significance (P<.05) was defined as concordance of both tests at each specified volume. A logistic regression model was developed to estimate the probability of RM using the dose distribution for a given volume. RESULTS Significant differences in both the means and distributions at the Pmax and up to the 0.8-cc volume were observed. Concordant significance was greatest for the Pmax volume. At the Pmax volume the fit of the logistic regression model, summarized by the area under the curve, was 0.87. A risk of RM of 5% or less was observed when limiting the thecal sac Pmax volume doses to 12.4 Gy in a single fraction, 17.0 Gy in 2 fractions, 20.3 Gy in 3 fractions, 23.0 Gy in 4 fractions, and 25.3 Gy in 5 fractions. CONCLUSION We report the first logistic regression model yielding estimates for the probability of human RM specific to SBRT.
Collapse
Affiliation(s)
- Arjun Sahgal
- Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ong CL, Verbakel WF, Dahele M, Cuijpers JP, Slotman BJ, Senan S. Fast Arc Delivery for Stereotactic Body Radiotherapy of Vertebral and Lung Tumors. Int J Radiat Oncol Biol Phys 2012; 83:e137-43. [DOI: 10.1016/j.ijrobp.2011.12.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/21/2011] [Accepted: 12/01/2011] [Indexed: 11/29/2022]
|
31
|
Hyde D, Lochray F, Korol R, Davidson M, Wong CS, Ma L, Sahgal A. Spine stereotactic body radiotherapy utilizing cone-beam CT image-guidance with a robotic couch: intrafraction motion analysis accounting for all six degrees of freedom. Int J Radiat Oncol Biol Phys 2012; 82:e555-62. [PMID: 22284042 DOI: 10.1016/j.ijrobp.2011.06.1980] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 06/20/2011] [Accepted: 06/24/2011] [Indexed: 10/14/2022]
Abstract
PURPOSE To evaluate the residual setup error and intrafraction motion following kilovoltage cone-beam CT (CBCT) image guidance, for immobilized spine stereotactic body radiotherapy (SBRT) patients, with positioning corrected for in all six degrees of freedom. METHODS AND MATERIALS Analysis is based on 42 consecutive patients (48 thoracic and/or lumbar metastases) treated with a total of 106 fractions and 307 image registrations. Following initial setup, a CBCT was acquired for patient alignment and a pretreatment CBCT taken to verify shifts and determine the residual setup error, followed by a midtreatment and posttreatment CBCT image. For 13 single-fraction SBRT patients, two midtreatment CBCT images were obtained. Initially, a 1.5-mm and 1° tolerance was used to reposition the patient following couch shifts which was subsequently reduced to 1 mm and 1° degree after the first 10 patients. RESULTS Small positioning errors after the initial CBCT setup were observed, with 90% occurring within 1 mm and 97% within 1°. In analyzing the impact of the time interval for verification imaging (10 ± 3 min) and subsequent image acquisitions (17 ± 4 min), the residual setup error was not significantly different (p > 0.05). A significant difference (p = 0.04) in the average three-dimensional intrafraction positional deviations favoring a more strict tolerance in translation (1 mm vs. 1.5 mm) was observed. The absolute intrafraction motion averaged over all patients and all directions along x, y, and z axis (± SD) were 0.7 ± 0.5 mm and 0.5 ± 0.4 mm for the 1.5 mm and 1 mm tolerance, respectively. Based on a 1-mm and 1° correction threshold, the target was localized to within 1.2 mm and 0.9° with 95% confidence. CONCLUSION Near-rigid body immobilization, intrafraction CBCT imaging approximately every 15-20 min, and strict repositioning thresholds in six degrees of freedom yields minimal intrafraction motion allowing for safe spine SBRT delivery.
Collapse
Affiliation(s)
- Derek Hyde
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Sahgal A, Ma L, Weinberg V, Gibbs IC, Chao S, Chang UK, Werner-Wasik M, Angelov L, Chang EL, Sohn MJ, Soltys SG, Létourneau D, Ryu S, Gerszten PC, Fowler J, Wong CS, Larson DA. Reirradiation Human Spinal Cord Tolerance for Stereotactic Body Radiotherapy. Int J Radiat Oncol Biol Phys 2012; 82:107-16. [PMID: 20951503 DOI: 10.1016/j.ijrobp.2010.08.021] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 06/22/2010] [Accepted: 08/12/2010] [Indexed: 10/18/2022]
|
33
|
Dahele M, Zindler JD, Sanchez E, Verbakel WF, Kuijer JPA, Slotman BJ, Senan S. Imaging for Stereotactic Spine Radiotherapy: Clinical Considerations. Int J Radiat Oncol Biol Phys 2011; 81:321-30. [PMID: 21664062 DOI: 10.1016/j.ijrobp.2011.04.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 04/03/2011] [Accepted: 04/19/2011] [Indexed: 11/16/2022]
Affiliation(s)
- Max Dahele
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
34
|
Guest J, Benavides F, Padgett K, Mendez E, Tovar D. Technical aspects of spinal cord injections for cell transplantation. Clinical and translational considerations. Brain Res Bull 2011; 84:267-79. [DOI: 10.1016/j.brainresbull.2010.11.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 09/20/2010] [Accepted: 11/08/2010] [Indexed: 12/13/2022]
|
35
|
Sahgal A, Bilsky M, Chang EL, Ma L, Yamada Y, Rhines LD, Létourneau D, Foote M, Yu E, Larson DA, Fehlings MG. Stereotactic body radiotherapy for spinal metastases: current status, with a focus on its application in the postoperative patient. J Neurosurg Spine 2010; 14:151-66. [PMID: 21184635 DOI: 10.3171/2010.9.spine091005] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Stereotactic body radiotherapy (SBRT) for spinal metastases is an emerging therapeutic option aimed at delivering high biologically effective doses to metastases while sparing the adjacent normal tissues. This technique has emerged following advances in radiation delivery that include sophisticated radiation treatment planning software, body immobilization devices, and capabilities of detecting and correcting patient positional deviations with image-guided radiotherapy. There are limited clinical data specifically supporting the role of SBRT as a superior alternative to conventional radiation in the postoperative patient. The focus of this review was to examine the evidence pertaining to spine SBRT in the treatment of spinal metastases and to provide a comprehensive analysis of published patterns of failure, with emphasis on the postoperative patient.
Collapse
Affiliation(s)
- Arjun Sahgal
- Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, 610 University Avenue, Toronto, Ontario M5G2M9, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Foote M, Letourneau D, Hyde D, Massicotte E, Rampersaud R, Fehlings M, Fisher C, Lewis S, Macchia NL, Yu E, Laperriere NJ, Sahgal A. Technique for stereotactic body radiotherapy for spinal metastases. J Clin Neurosci 2010; 18:276-9. [PMID: 21147535 DOI: 10.1016/j.jocn.2010.04.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/07/2010] [Accepted: 04/08/2010] [Indexed: 11/25/2022]
Abstract
Stereotactic body radiotherapy (SBRT) is an emerging technique for spinal tumours that is a natural succession to brain radiosurgery. The spine is an ideal site for SBRT due to its relative immobility and the potential clinical benefits of high dose delivery, particularly to optimise local control and avoid disease progression that can result in spinal cord compression. However, the proximity of the tumour to the spinal cord, with the potential for radiation myelopathy if the dose is delivered inaccurately or if the spinal cord dose limit is set too high, demands technical accuracy with radiation myelopathy a feared complication. Spine SBRT has been delivered with either a robotic-based linac system such as the Cyberknife, or with linac-based systems equipped with a multileaf collimator and image guidance system. Regardless of the technology, spine SBRT demands sophisticated treatment planning and delivery. This case-based technical review outlines the SBRT apparatus, planning and treatment delivery in use at the University of Toronto, Toronto, Canada.
Collapse
Affiliation(s)
- Matthew Foote
- Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sahgal A, Larson DA. In Reply to Dr. Lo et al. Int J Radiat Oncol Biol Phys 2010. [DOI: 10.1016/j.ijrobp.2010.02.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Sheehan JP, Shaffrey CI, Schlesinger D, Williams BJ, Arlet V, Larner J. Radiosurgery in the treatment of spinal metastases: tumor control, survival, and quality of life after helical tomotherapy. Neurosurgery 2010; 65:1052-61; discussion 1061-2. [PMID: 19934964 DOI: 10.1227/01.neu.0000359315.20268.73] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The effectiveness and limitations of spinal radiosurgery using a helical TomoTherapy system for the treatment of spinal metastases are reviewed in this article. METHODS This is a retrospective review of patients who underwent stereotactic radiosurgery for spinal metastases between July 2004 and December 2007. Radiographic follow-up consisted of magnetic resonance imaging to assess tumor growth control as well as pre- and posttreatment x-rays, which were used to measure changes in segmental angulation and deformity. Clinical performance was assessed using the Karnofsky Performance Scale, Oswestry Disability Index, and visual analog scale. RESULTS Forty patients were treated for 110 metastatic tumors (range, 1-6 tumors per patient). The mean age at the time of radiosurgical treatment was 67 years (age range, 35-81 years). Twenty-three patients (57.5%) had undergone previous surgical resection. Pain was the most common presenting symptom, seen in 32 patients (80%). The mean Oswestry Disability Index score at presentation was 43 (range, 20-90), and the mean visual analog scale score was 6.2 (range, 0-10). The mean radiosurgical dose to the tumor was 17.3 Gy (range, 10-24 Gy). At a mean follow-up duration of 12.7 months (range, 4-32 months), decreased or stable tumor volume was seen in 90 (82%) of the tumors treated. There was improvement in pain in 34 patients (85%). The mean postradiosurgical Oswestry Disability Index score was 25 (range, 10-90), whereas the postradiosurgical visual analog scale score was 3.2 (range, 0-9). Progression of kyphosis was the most common radiographic sequela, experienced by 73% of patients alive at 12 months, with a mean change in angulation of 7.3 +/- 4.5 degrees. CONCLUSION Radiosurgery is effective as either primary or adjunctive treatment of metastatic tumors of the spine.
Collapse
Affiliation(s)
- Jason P Sheehan
- Departments of Neurological Surgery and Radiation Oncology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Kuijper IT, Dahele M, Senan S, Verbakel WF. Volumetric modulated arc therapy versus conventional intensity modulated radiation therapy for stereotactic spine radiotherapy: A planning study and early clinical data. Radiother Oncol 2010; 94:224-8. [DOI: 10.1016/j.radonc.2009.12.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 12/22/2009] [Accepted: 12/22/2009] [Indexed: 11/16/2022]
|
40
|
Mancosu P, Navarria P, Bignardi M, Cozzi L, Fogliata A, Lattuada P, Santoro A, Urso G, Vigorito S, Scorsetti M. Re-irradiation of metastatic spinal cord compression: A feasibility study by volumetric-modulated arc radiotherapy for in-field recurrence creating a dosimetric hole on the central canal. Radiother Oncol 2010; 94:67-70. [DOI: 10.1016/j.radonc.2009.11.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 11/13/2009] [Accepted: 11/29/2009] [Indexed: 11/24/2022]
|
41
|
Sheehan JP, Jagannathan J. Review of spinal radiosurgery: a minimally invasive approach for the treatment of spinal and paraspinal metastases. Neurosurg Focus 2008; 25:E18. [DOI: 10.3171/foc/2008/25/8/e18] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Intracranial radiosurgery has been proved effective for the treatment of brain metastasis. The treatment of paraspinal and spinal metastasis with spinal radiosurgery represents a natural extension of the principles of intracranial radiosurgery. However, spinal radiosurgery is a far more complicated process than intracranial radiosurgery. Larger treatment volumes, numerous organs at risk, and the inability to utilize rigid, frame-based immobilization all contribute to the substantially more complex process of spinal radiosurgery.
Beyond the convenience of a shorter duration of treatment for the patient, spinal radiosurgery affords a greater biological equivalent dose to a metastatic lesion than conventional radiotherapy fractionation schemes. This appears to translate into a high rate of tumor control and fast pain relief for patients. The minimally invasive nature of this approach is consistent with trends in open spinal surgery and helps to maintain or improve a patient's quality of life. Spinal radiosurgery has expanded the neurosurgical treatment armamentarium for patients with spinal and paraspinal metastasis.
Collapse
|
42
|
Sahgal A, Larson DA, Chang EL. Stereotactic body radiosurgery for spinal metastases: a critical review. Int J Radiat Oncol Biol Phys 2008; 71:652-65. [PMID: 18514775 DOI: 10.1016/j.ijrobp.2008.02.060] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 02/06/2008] [Accepted: 02/13/2008] [Indexed: 12/13/2022]
Affiliation(s)
- Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Odette Cancer Center, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
43
|
Gong Y, Wang J, Bai S, Jiang X, Xu F. Conventionally-fractionated image-guided intensity modulated radiotherapy (IG-IMRT): a safe and effective treatment for cancer spinal metastasis. Radiat Oncol 2008; 3:11. [PMID: 18426607 PMCID: PMC2373792 DOI: 10.1186/1748-717x-3-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 04/22/2008] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Treatments for cancer spinal metastasis were always palliative. This study was conducted to investigate the safety and effectiveness of IG-IMRT for these patients. METHODS 10 metastatic lesions were treated with conventionally-fractionated IG-IMRT. Daily kilovoltage cone-beam computed tomography (kV-CBCT) scan was applied to ensure accurate positioning. Plans were evaluated by the dose-volume histogram (DVH) analysis. RESULTS Before set-up correction, the positioning errors in the left-right (LR), superior-inferior (SI) and anterior-posterior (AP) axes were 0.3 +/- 3.2, 0.4 +/- 4.5 and -0.2 +/- 3.9 mm, respectively. After repositioning, those errors were 0.1 +/- 0.7, 0 +/- 0.8 and 0 +/- 0.7 mm, respectively. The systematic/random uncertainties ranged 1.4-2.3/3.0-4.1 before and 0.1-0.2/0.7-0.8 mm after online set-up correction. In the original IMRT plans, the average dose of the planning target volume (PTV) was 61.9 Gy, with the spinal cord dose less than 49 Gy. Compared to the simulated PTVs based on the pre-correction CBCT, the average volume reduction of PTVs was 42.3% after online correction. Also, organ at risk (OAR) all benefited from CBCT-based set-up correction and had significant dose reduction with IGRT technique. Clinically, most patients had prompt pain relief within one month of treatment. There was no radiation-induced toxicity detected clinically during a median follow-up of 15.6 months. CONCLUSION IG-IMRT provides a new approach to treat cancer spinal metastasis. The precise positioning ensures the implementation of optimal IMRT plan, satisfying both the dose escalation of tumor targets and the radiation tolerance of spinal cord. It might benefit the cancer patient with spinal metastasis.
Collapse
Affiliation(s)
- Youling Gong
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR. China.
| | | | | | | | | |
Collapse
|
44
|
Weiss E, Wijesooriya K, Keall P. Esophagus and spinal cord motion relative to GTV motion in four-dimensional CTs of lung cancer patients. Radiother Oncol 2008; 87:44-8. [PMID: 18206258 PMCID: PMC2401522 DOI: 10.1016/j.radonc.2007.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 11/27/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
Abstract
Respiration-related variations in the distance between the center of mass of gross tumor volume and both esophagus and spinal cord in the transversal plane were on average 3mm (range 1-10mm) and 2mm (range 1-5mm), respectively. Depending on the tumor location and treatment technique, variations might become important for treatment planning.
Collapse
Affiliation(s)
- Elisabeth Weiss
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | | | |
Collapse
|