1
|
Banerjee A, Babu R, Jayaraman D, Chilukuri S. Preoperative three-dimensional modelling and virtual reality planning aids nephron sparing surgery in a child with bilateral Wilms tumour. BMJ Case Rep 2024; 17:e260600. [PMID: 38642931 PMCID: PMC11033631 DOI: 10.1136/bcr-2024-260600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024] Open
Abstract
Bilateral Wilms tumour (BWT) is a surgically challenging condition. Virtual reality (VR) reconstruction aids surgeons to foresee the anatomy ahead of Nephron Sparing Surgery (NSS). Three-dimensional (3D) visualisation improves the anatomical orientation of surgeons performing NSS. We herewith report a case of BWT where VR planning and 3D printing were used to aid NSS. Conventional imaging is often found to be inadequate while assessing the tumour-organ-vascular anatomy. Advances like VR and 3D printing help surgeons plan better for complex surgeries like bilateral NSS. Next-generation extended reality tools will likely aid robotic-assisted precision NSS and improve patient outcomes.
Collapse
Affiliation(s)
- Avijit Banerjee
- Urology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Ramesh Babu
- Pediatric Urology, Sri Ramachandra University Medical College, Chennai, India
| | - Dhaarani Jayaraman
- Paediatric Hematology and Oncology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | | |
Collapse
|
2
|
3D-CRT, IMRT and VMAT for flank irradiation due to pediatric Wilms tumor: A comparative planning study with XCAT phantoms. Phys Med 2022; 103:89-97. [DOI: 10.1016/j.ejmp.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/02/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
|
3
|
Jazmati D, Hero B, Thole.-Kliesch TM, Merta J, Deubzer HE, Bäumer C, Heinzelmann F, Schleithoff SS, Koerber F, Eggert A, Schwarz R, Simon T, Timmermann B. Efficacy and Feasibility of Proton Beam Therapy in Relapsed High-Risk Neuroblastoma-Experiences from the Prospective KiProReg Registry. Curr Oncol 2022; 29:8222-8234. [PMID: 36354709 PMCID: PMC9689739 DOI: 10.3390/curroncol29110649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Despite an intensive multimodal treatment approach, approximately 50% of high-risk (HR) neuroblastoma (NB) patients experience progression. Despite the advances in targeted therapy, high-dose chemotherapy, and other systemic treatment options, radiation therapy (RT) to sites of relapsed disease can be an option to reduce tumor burden and improve chance for disease control. METHODS Patients who received salvage irradiation with proton beam therapy (PBT) for local or metastatic relapse of HR NB within the prospective registry trials KiProReg and ProReg were eligible for this retrospective analysis. Data on patient characteristics, multimodality therapy, adverse events, and oncologic endpoints were evaluated. Adverse events were assessed before, during, and after PBT according to common terminology criteria for adverse events (CTCAE) V4.0. RESULTS Between September 2013 and September 2020, twenty (11 male; 9 female) consecutive patients experiencing local (N = 9) or distant recurrence (N = 25) were identified for this analysis. Distant recurrences included osteomedullary (N = 11) or CNS lesions (N = 14). Salvage therapy consisted of re-induction chemo- or chemo-immuno-therapy (N = 19), surgery (N = 6), high-dose chemotherapy and stem cell transplantation (N = 13), radiation (N = 20), and concurrent systemic therapy. Systemic therapy concurrent to RT was given to six patients and included temozolomide (N = 4), carboplatine (N = 1), or anaplastic lymphoma kinase tyrosine kinase inhibitors (ALK-TKI) (N = 1). A median dose of 36 Gy was applied to the 34 recurrent sites. Local RT was applied to 15 patients, while five patients, received craniospinal irradiation for CNS relapse. After a median follow-up (FU) of 20 months (4-66), the estimated rate for local control, distant metastatic free survival, and overall survival at 3 years was 68.0%, 37.9%, and 61.6%, respectively. During RT, ten patients (50%) presented with a higher-grade acute hematologic adverse event. Late higher-grade sequelae included transient myelitis with transverse section (N = 2) and secondary malignancy outside of the RT field (N = 1). CONCLUSION Our study demonstrates the efficacy and safety of RT/PBT for recurrent HR NB in a multimodality second-line approach. To better define the role of RT for these patients, prospective studies would be desirable.
Collapse
Affiliation(s)
- Danny Jazmati
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), 45147 Essen, Germany
- Correspondence: ; Tel.: +49-201-723-6610
| | - Barbara Hero
- Children’s Hospital, University of Cologne, 50937 Cologne, Germany
| | | | - Julien Merta
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), 45147 Essen, Germany
| | - Hedwig E. Deubzer
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Christian Bäumer
- West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), 45147 Essen, Germany
- Department of Physics, TU Dortmund University, 44227 Dortmund, Germany
| | - Feline Heinzelmann
- West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), 45147 Essen, Germany
- Department of Physics, TU Dortmund University, 44227 Dortmund, Germany
| | - Stefanie Schulze Schleithoff
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), 45147 Essen, Germany
| | | | - Angelika Eggert
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Rudolf Schwarz
- Department of RT and Radiooncology, Outpatient Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, 20251 Hamburg, Germany
| | - Thorsten Simon
- Children’s Hospital, University of Cologne, 50937 Cologne, Germany
| | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), 45147 Essen, Germany
| |
Collapse
|
4
|
Pediatric radiotherapy for thoracic and abdominal targets: organ motion, reported margin sizes, and delineation variations – a systematic review. Radiother Oncol 2022; 173:134-145. [DOI: 10.1016/j.radonc.2022.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 11/21/2022]
|
5
|
J F, A S, V E, F P, P M, B T, Sw W. New aspects and innovations in the local treatment of renal and urogenital pediatric tumors. Semin Pediatr Surg 2021; 30:151081. [PMID: 34412882 DOI: 10.1016/j.sempedsurg.2021.151081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Local treatment plays a key role for patients' outcome in tumors of the urogenital tract in children. Despite a great variety of different etiologies, the specific localization of pediatric urogenital tumors renders several characteristic demands to the treating personnel. Surgery and radiotherapy are the main elements of local treatment in this group of neoplasms. Numerous new guidelines and innovative technical developments of surgery and radiotherapy have recently been integrated into treatment concepts for pediatric urogenital tumors. Due to the broadness of the field it is not possible to give a full overview over all aspects. Therefore, this article highlights the most important innovations and new guidelines of surgery and radiotherapy of pediatric urogenital tumors.
Collapse
Affiliation(s)
- Fuchs J
- Department of Pediatric Surgery and Pediatric Urology, University Children´s Hospital Tuebingen, Tuebingen, Germany.
| | - Schmidt A
- Department of Pediatric Surgery and Pediatric Urology, University Children´s Hospital Tuebingen, Tuebingen, Germany
| | - Ellerkamp V
- Department of Pediatric Surgery and Pediatric Urology, University Children´s Hospital Tuebingen, Tuebingen, Germany
| | - Paulsen F
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Melchior P
- Department of Radiotherapy and Radiation Oncology, University Hospital, Homburg, Germany
| | - Timmermann B
- Department of Particle Therapy, West German Proton Therapy Centre, University Hospital Essen, Essen, Germany
| | - Warmann Sw
- Department of Pediatric Surgery and Pediatric Urology, University Children´s Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
6
|
Taylor S, Lim P, Ahmad R, Alhadi A, Harris W, Rompokos V, D'Souza D, Gaze M, Gains J, Veiga C. Risk of radiation-induced second malignant neoplasms from photon and proton radiotherapy in paediatric abdominal neuroblastoma. Phys Imaging Radiat Oncol 2021; 19:45-52. [PMID: 34307918 PMCID: PMC8295851 DOI: 10.1016/j.phro.2021.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/28/2021] [Accepted: 06/18/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND AND PURPOSE State-of-the-art radiotherapy modalities have the potential of reducing late effects of treatment in childhood cancer survivors. Our aim was to investigate the carcinogenic risk associated with 3D conformal (photon) radiation (3D-CRT), intensity modulated arc therapy (IMAT) and pencil beam scanning proton therapy (PBS-PT) in the treatment of paediatric abdominal neuroblastoma. MATERIALS AND METHODS The risk of radiation-induced second malignant neoplasm (SMN) was estimated using the concept of organ equivalent dose (OED) for eleven organs (lungs, rectum, colon, stomach, small intestine, liver, bladder, skin, central nervous system (CNS), bone, and soft tissues). The risk ratio (RR) between radiotherapy modalities and lifetime absolute risks (LAR) were reported for twenty abdominal neuroblastoma patients (median, 4y; range, 1-9y) historically treated with 3D-CRT that were also retrospectively replanned for IMAT and PBS-PT. RESULTS The risk of SMN due to primary radiation was reduced in PBS-PT against 3D-CRT and IMAT for most patients and organs. The RR across all organs ranged from 0.38 ± 0.22 (bladder) to 0.98 ± 0.04 (CNS) between PBS-PT and IMAT, and 0.12 ± 0.06 (rectum and bladder) to 1.06 ± 0.43 (bone) between PBS-PT and 3D-CRT. The LAR for most organs was within 0.01-1% (except the colon) with a cumulative risk of 21 ± 13%, 35 ± 14% and 35 ± 16% for PBS-PT, IMAT and 3D-CRT, respectively. CONCLUSIONS PBS-PT was associated with the lowest risk of radiation-induced SMN compared to IMAT and 3D-CRT in abdominal neuroblastoma treatment. Other clinical endpoints and plan robustness should also be considered for optimal plan selection.
Collapse
Affiliation(s)
- Sophie Taylor
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Pei Lim
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Reem Ahmad
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Ammar Alhadi
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - William Harris
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Vasilis Rompokos
- Radiotherapy Physics Services, University College London Hospitals NHS Foundation Trust, London, UK
| | - Derek D'Souza
- Radiotherapy Physics Services, University College London Hospitals NHS Foundation Trust, London, UK
| | - Mark Gaze
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Jennifer Gains
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Catarina Veiga
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
7
|
Mul J, Seravalli E, Bosman ME, van de Ven CP, Littooij AS, van Grotel M, van den Heuvel-Eibrink MM, Janssens GO. Estimated clinical benefit of combining highly conformal target volumes with Volumetric-Modulated Arc Therapy (VMAT) versus conventional flank irradiation in pediatric renal tumors. Clin Transl Radiat Oncol 2021; 29:20-26. [PMID: 34027140 PMCID: PMC8134033 DOI: 10.1016/j.ctro.2021.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
Recently, flank target volumes adjusted for organ shift/motion have been defined. Highly conformal volumes with VMAT were compared to conventional volumes/beams. The new approach prevented a dose constraint violation of ≥ 1 OARs in 60% of cases. VMAT reduced the irradiated Total Body Volume receiving > 10% of the prescribed dose.
Background For decades, Anterior-Posterior/Posterior-Anterior (AP/PA) photon beams were standard-of-care for flank irradiation in children with renal cancer. Recently, highly conformal flank target volumes were defined correcting for postoperative organ shift and intra-fraction motion. By radiotherapy treatment plan comparison, this study aims to estimate the clinical benefits and potential risks of combining highly conformal target volumes with Volumetric-Modulated Arc Therapy (VMAT) versus conventional target volumes with AP/PA beams for flank irradiation. Materials and Methods Twenty consecutive renal tumor cases (left/right-sided:10/10; median age:3.2 years) were selected. Highly conformal flank target volumes were generated for VMAT, while conventional target volumes were used for AP/PA. For each case, the dose to the organs at risk (OARs) and Total Body Volume (TBV) was calculated to compare VMAT with AP/PA treatment plans for a prescribed dose (PD) of 14.4/1.8 Gy. Dose constraint violation of the tail of the pancreas and spleen (Dmean < 10 Gy), heart (D50 < 5 Gy) or mammary buds (Dmean < 10 Gy) were prioritized as potentially beneficial for clinics. Results Highly conformal Planning Target Volumes (PTV) were smaller than conventional volumes (mean ΔPTVAP/PA-PTVVMAT: 555 mL, Δ60%, p=<0.01). A mean dose reduction favoring VMAT was observed for almost all OARs. Dose constraints to the tail of the pancreas, spleen, heart and mammary buds were fulfilled in 8/20, 12/20, 16/20 and 19/20 cases with AP/PA, versus 14/20, 17/20, 20/20 and 20/20 cases with VMAT, respectively. In 12/20 cases, VMAT prevented the dose constraint violation of one or more OARs otherwise exceeded by AP/PA. VMAT increased the TBV receiving 10% of the PD, but reduced the amount of irradiated TBV for all higher doses. Conclusion Compared to 14.4 Gy flank irradiation using conventional AP/PA photon beams, an estimated clinical benefit by dose reduction to the OARs can be expected in 60% of the pediatric renal tumor cases using highly conformal flank target volumes combined with VMAT.
Collapse
Key Words
- 95% CI, 95% Confidence Interval
- AP/PA, Anterior-Posterior/Posterior-Anterior
- CT, Computed Tomography
- CTV, Clinical Target Volume
- Conformal radiotherapy
- GTV, Gross Tumor Volume
- ID, integral dose
- IMRT, Intensity-Modulated Radiotherapy
- ITV, Internal Target Volume
- MRI, Magnetic Resonance Imaging
- OARs, organs at risk
- Organs at risk
- PD, Prescribed Dose
- PTV, Planning Target Volume
- Pediatric renal tumors
- RT, radiotherapy
- SIOP-RTSG, International Society of Pediatric Oncology – Renal Tumor Study Group
- Side-effects
- TBV, Total Body Volume
- VMAT
- VMAT, Volumetric-Modulated Arc Therapy
- Wilms tumor
- vs, versus
Collapse
Affiliation(s)
- Joeri Mul
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands.,Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Enrica Seravalli
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Mirjam E Bosman
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Cornelis P van de Ven
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Annemieke S Littooij
- Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Martine van Grotel
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | | | - Geert O Janssens
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands.,Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| |
Collapse
|
8
|
Mizumoto M, Fuji H, Miyachi M, Soejima T, Yamamoto T, Aibe N, Demizu Y, Iwata H, Hashimoto T, Motegi A, Kawamura A, Terashima K, Fukushima T, Nakao T, Takada A, Sumi M, Oshima J, Moriwaki K, Nozaki M, Ishida Y, Kosaka Y, Ae K, Hosono A, Harada H, Ogo E, Akimoto T, Saito T, Fukushima H, Suzuki R, Takahashi M, Matsuo T, Matsumura A, Masaki H, Hosoi H, Shigematsu N, Sakurai H. Proton beam therapy for children and adolescents and young adults (AYAs): JASTRO and JSPHO Guidelines. Cancer Treat Rev 2021; 98:102209. [PMID: 33984606 DOI: 10.1016/j.ctrv.2021.102209] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/02/2021] [Accepted: 04/11/2021] [Indexed: 11/19/2022]
Abstract
Children and adolescents and young adults (AYAs) with cancer are often treated with a multidisciplinary approach. This includes use of radiotherapy, which is important for local control, but may also cause adverse events in the long term, including second cancer. The risks for limited growth and development, endocrine dysfunction, reduced fertility and second cancer in children and AYAs are reduced by proton beam therapy (PBT), which has a dose distribution that decreases irradiation of normal organs while still targeting the tumor. To define the outcomes and characteristics of PBT in cancer treatment in pediatric and AYA patients, this document was developed by the Japanese Society for Radiation Oncology (JASTRO) and the Japanese Society of Pediatric Hematology/Oncology (JSPHO).
Collapse
Affiliation(s)
- Masashi Mizumoto
- Departments of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Fuji
- Department of Radiology and National Center for Child Health and Development, Tokyo, Japan
| | - Mitsuru Miyachi
- Department of Pediatrics, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Toshinori Soejima
- Department of Radiation Oncology, Hyogo Ion Beam Medical Center Kobe Proton Center, Kobe, Hyogo, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Norihiro Aibe
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yusuke Demizu
- Department of Radiation Oncology, Hyogo Ion Beam Medical Center Kobe Proton Center, Kobe, Hyogo, Japan
| | - Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Nagoya, Aichi, Japan
| | - Takayuki Hashimoto
- Department of Radiation Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Atsushi Motegi
- Department of Radiation Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Atsufumi Kawamura
- Department of Neurosurgery, Hyogo Prefectural Kobe Children's Hospital, Kobe, Hyogo, Japan
| | - Keita Terashima
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Takashi Fukushima
- Department of Pediatric Hematology and Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Tomohei Nakao
- Department of Pediatrics, Dokkyo Medical University Saitama Medical Center, Koshigaya, Saitama, Japan
| | - Akinori Takada
- Department of Radiology, Mie University Hospital, Tsu-shi, Mie, Japan
| | - Minako Sumi
- Department of Radiation Oncology and Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Radiation Oncology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | | | - Kensuke Moriwaki
- Department of Medical Statistics, Kobe Pharmaceutical University, Kobe, Hyogo, Japan
| | - Miwako Nozaki
- Department of Radiology, Dokkyo Medical University Saitama Medical Center, Koshigaya, Saitama, Japan
| | - Yuji Ishida
- Department of Pediatrics, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka, Japan
| | - Yoshiyuki Kosaka
- Department of Hematology and Oncology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Hyogo, Japan
| | - Keisuke Ae
- Department of Orthopaedic Oncology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ako Hosono
- Department of Pediatric Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Hideyuki Harada
- Division of Radiation Therapy, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka, Japan
| | - Etsuyo Ogo
- Department of Radiology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Tetsuo Akimoto
- Department of Radiation Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Takashi Saito
- Departments of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroko Fukushima
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryoko Suzuki
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mitsuru Takahashi
- Department of Orthopaedic Oncology, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka, Japan
| | - Takayuki Matsuo
- Department of Neurosurgery, Nagasaki University Graduate School of Medicine, Nagasaki, Japan
| | - Akira Matsumura
- Departments of Neurosurgery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hidekazu Masaki
- Proton Therapy Center, Aizawa Hospital, Matsumoto, Nagano, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Naoyuki Shigematsu
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Sakurai
- Departments of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
9
|
Mul J, van Grotel M, Seravalli E, Bosman ME, van Tinteren H, Roy P, Dávila Fajardo R, Tytgat GAM, Mavinkurve-Groothuis AMC, van de Ven CP, Wijnen MHWA, de Krijger RR, Littooij AS, van den Heuvel-Eibrink MM, Janssens GO. Locoregional control using highly conformal flank target volumes and volumetric-modulated arc therapy in pediatric renal tumors: Results from the Dutch national cohort. Radiother Oncol 2021; 159:249-254. [PMID: 33845042 DOI: 10.1016/j.radonc.2021.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE In pediatric renal tumors, conventional two opposing photon beams have been used to cover the postoperative flank target volume for decades. This single center study describes the locoregional outcome using highly conformal flank target volumes adjusted for postoperative changes and intra-fraction motion combined with Volumetric-Modulated Arc Therapy (VMAT). MATERIALS AND METHODS Between 01-2015 and 12-2019, 36/161 newly diagnosed patients with renal tumors underwent flank only irradiation (n = 30) or flank + whole lung irradiation (n = 6) using highly conformal target volumes in line with the SIOP-RTSG consensus statement. VMAT consisted of full-arc 10MV photon beams optimized for constraints of the organs at risk. In case of locoregional relapses, image co-registration and dose reconstruction was performed. Each relapse was classified as either 'infield' (V95%relapse: ≥99.0%), 'marginal' (V95%relapse: 20.0-98.9%) or 'outfield' (V95%relapse: 0-19.9%). RESULTS At a median follow-up from diagnosis of 3.1 years (range:0.4-5.7), the estimated 2-year Locoregional Control Rate, Disease-Free Interval and Overall Survival were 94%, 91% and 94%, respectively. Locoregional relapse was observed in two patients. One patient had a combined tumor bed and regional recurrence, classified as infield (V95%relapse: 100%) and outfield (V95%relapse: 1.2%). The second patient had a regional relapse in the inferior vena cava classified as marginal recurrence (V95%relapse: 93%). Relapses would not have been adequately covered by conventional beams. CONCLUSIONS This single center analysis provides encouraging evidence that excellent locoregional control can be obtained by using highly conformal flank target volumes with VMAT in pediatric renal tumors. The safety of this approach will be validated in a prospective multicenter study.
Collapse
Affiliation(s)
- Joeri Mul
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Department of Radiation Oncology, University Medical Center Utrecht, The Netherlands
| | | | - Enrica Seravalli
- Department of Radiation Oncology, University Medical Center Utrecht, The Netherlands
| | - Mirjam E Bosman
- Department of Radiation Oncology, University Medical Center Utrecht, The Netherlands
| | - Harm van Tinteren
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Prakriti Roy
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Raquel Dávila Fajardo
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Department of Radiation Oncology, University Medical Center Utrecht, The Netherlands
| | | | | | | | - Marc H W A Wijnen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Department of Pathology, University Medical Center Utrecht, The Netherlands
| | - Annemieke S Littooij
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Department of Radiology, University Medical Center Utrecht, The Netherlands
| | | | - Geert O Janssens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Department of Radiation Oncology, University Medical Center Utrecht, The Netherlands.
| |
Collapse
|
10
|
Lim PS, Rompokos V, Bizzocchi N, Gillies C, Gosling A, Royle G, Chang YC, Gaze MN, Gains JE. Pencil Beam Scanning Proton Therapy Case Selection for Paediatric Abdominal Neuroblastoma: Effects of Tumour Location and Bowel Gas. Clin Oncol (R Coll Radiol) 2021; 33:e132-e142. [PMID: 32962907 DOI: 10.1016/j.clon.2020.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
AIMS Pencil beam scanning (PBS) proton therapy is an increasingly used radiation modality for childhood malignancies due to its ability to minimise dose to surrounding organs. However, the dosimetry is extremely sensitive to anatomical and density changes. The aims of this study were to investigate if there is a dosimetric benefit or detriment with PBS for paediatric abdominal neuroblastoma, assess gastrointestinal air variability and its dosimetric consequences, plus identify if there are factors that could assist case selection for PBS referral. MATERIALS AND METHODS Twenty neuroblastoma cases were double-planned with PBS and intensity-modulated arc therapy (IMAT). Cases were divided into unilateral, midline unilateral and midline bilateral locations in relation to the kidneys. Plans were recalculated after the gastrointestinal volume was simulated as air (Hounsfield Units -700) and water (Hounsfield Units 0), then compared with nominal plans (recalculated - nominal, ΔD). Forty-three weekly cone beam computed tomography scans were analysed to quantify gastrointestinal air variability during treatment. RESULTS PBS reduced the mean dose to normal tissues at all tumour locations, particularly unilateral tumours. However, 15% had better dosimetry with IMAT, all of which were midline tumours. Increased gastrointestinal air caused significant compromises to PBS versus IMAT plans for midline tumours [median/maximum ΔD95% clinical target volume (CTV) -2.4%/-15.7% PBS versus 1.4%/0% IMAT, P = 0.003], whereas minimal impact was observed for unilateral tumours (ΔD95% CTV -0.5%/-1.9% PBS versus 0.5%/-0.5% IMAT, P = 0.008). D95% CTV was significantly decreased in PBS plans if planning target volume (PTV) ≥400 cm3 (median -4.1%, P = 0.001) or PTV extension ≥60% anterior to vertebral body (-2.1%, P = 0.002). A larger variation in gastrointestinal air was observed in patients treated under general anaesthesia (median 38.4%) versus awake (11.5%); P = 0.004. CONCLUSION In this planning study, tumours at the unilateral location consistently showed improved dose reductions to normal tissue with minimal dose degradation from increased gastrointestinal air with PBS plans. Tumour location, PTV volume and anterior extension of PTV are useful characteristics in facilitating patient selection for PBS.
Collapse
Affiliation(s)
- P S Lim
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK; Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - V Rompokos
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK
| | - N Bizzocchi
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - C Gillies
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK
| | - A Gosling
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, UK
| | - G Royle
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK; Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Y-C Chang
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - M N Gaze
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - J E Gains
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
11
|
Sawada T, Mizumoto M, Oshiro Y, Numajiri H, Shimizu S, Hiroshima Y, Nakamura M, Iizumi T, Okumura T, Sakurai H. Long-term follow up of a patient with a recurrent desmoid tumor that was successfully treated with proton beam therapy: A case report and literature review. Clin Transl Radiat Oncol 2021; 27:32-35. [PMID: 33392400 PMCID: PMC7773558 DOI: 10.1016/j.ctro.2020.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Desmoid tumors are benign, but may have a locally invasive tendency that commonly results in local recurrence. Most occur on the body trunk or extremities, whereas a head and neck desmoid tumor is relatively rare. The efficacy of radiotherapy has been suggested and 50-60 Gy is used for unresectable or recurrent desmoid tumors, but there are few reports of use of particle beam therapy. However, since this tumor occurs more often in younger patients compared to malignant tumors and the prognosis is favorable, there may be an advantage of this therapy. We treated a male patient with a head and neck recurrent desmoid tumor with proton beam therapy (PBT) at a dose of 60 Gy (RBE). This patient underwent surgical resection as initial treatment, but the tumor recurred only six months after surgery, and resection was performed again. After PBT, the tumor gradually shrank and complete remission has been achieved for 10 years without any severe late toxicity. Here, we report the details of this case, with a review of the literature. We suggest that PBT may reduce the incidence of second malignant tumors by reducing the dose exposure around the planning target volume.
Collapse
Affiliation(s)
- Takuya Sawada
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan
| | - Masashi Mizumoto
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan
| | - Yoshiko Oshiro
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan
- Department of Radiation Oncology, Tsukuba Medical Center Hospital, Tsukuba, Ibaraki, Japan
| | - Haruko Numajiri
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan
| | - Shosei Shimizu
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan
| | - Yuichi Hiroshima
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan
| | - Masatoshi Nakamura
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan
| | - Takashi Iizumi
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan
| | - Toshiyuki Okumura
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan
| |
Collapse
|
12
|
Englbrecht FS, Trinkl S, Mares V, Rühm W, Wielunski M, Wilkens JJ, Hillbrand M, Parodi K. A comprehensive Monte Carlo study of out-of-field secondary neutron spectra in a scanned-beam proton therapy gantry room. Z Med Phys 2021; 31:215-228. [PMID: 33622567 DOI: 10.1016/j.zemedi.2021.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE To simulate secondary neutron radiation fields that had been measured at different relative positions during phantom irradiation inside a scanning proton therapy gantry treatment room. Further, to identify origin, energy distribution, and angular emission of the secondary neutrons as a function of proton beam energy. METHODS The FLUKA Monte Carlo code was used to model the relevant parts of the treatment room in a scanned pencil beam proton therapy gantry including shielding walls, floor, major metallic gantry-components, patient table, and a homogeneous PMMA target. The proton beams were modeled based on experimental beam ranges in water and spot shapes in air. Neutron energy spectra were simulated at 0°, 45°, 90° and 135° relative to the beam axis at 2m distance from isocenter for monoenergetic 11×11cm2 fields from 200MeV, 140MeV, 75MeV initial proton beams, as well as for 118MeV protons with a 5cm thick PMMA range shifter. The total neutron spectra were scored for these four positions and proton energies. FLUKA neutron spectra simulations were crosschecked with Geant4 simulations using initial proton beam properties from FLUKA-generated phase spaces. Additionally, the room-components generating secondary neutrons in the room and their contributions to the total spectrum were identified and quantified. RESULTS FLUKA and Geant4 simulated neutron spectra showed good general agreement with published measurements in the whole simulated neutron energy range of 10-10 to 103MeV. As in previous studies, high-energy (E≥19.6MeV) neutrons from the phantom are most prevalent along 0°, while thermalized (1meV≤E<0.4eV) and fast (100keV≤E<19.4MeV) neutrons dominate the spectra in the lateral and backscatter direction. The iron of the large bending magnet and its counterweight mounted on the gantry were identified as the most determinant sources of secondary fast-neutrons, which have been lacking in simplified room simulations. CONCLUSIONS The results helped disentangle the origin of secondary neutrons and their dominant contributions and were strengthened by the fact that a cross comparison was made using two independent Monte Carlo codes. The complexity of such room model can in future be limited using the result. They may further be generalized in that they can be used for an assessment of neutron fields, possibly even at facilities where detailed neutron measurements and simulations cannot be performed. They may also help to design future proton therapy facilities and to reduce unwanted radiation doses from secondary neutrons to patients.
Collapse
Affiliation(s)
- Franz S Englbrecht
- LMU Munich, Faculty of Physics, Department of Medical Physics, Am Coulombwall 1, 85748 Garching bei München, Germany.
| | - Sebastian Trinkl
- Helmholtz Zentrum München, Institute of Radiation Medicine, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Technical University of Munich, Physics Department, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Vladimír Mares
- Helmholtz Zentrum München, Institute of Radiation Medicine, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Werner Rühm
- Helmholtz Zentrum München, Institute of Radiation Medicine, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Marek Wielunski
- Helmholtz Zentrum München, Institute of Radiation Medicine, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Jan J Wilkens
- Technical University of Munich, Physics Department, James-Franck-Straße 1, 85748 Garching bei München, Germany; Technical University of Munich, Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Ismaninger Str. 22, 81675 München, Germany
| | - Martin Hillbrand
- Rinecker Proton Therapy Center, Schäftlarnstraße 133, 81371 München, Germany
| | - Katia Parodi
- LMU Munich, Faculty of Physics, Department of Medical Physics, Am Coulombwall 1, 85748 Garching bei München, Germany
| |
Collapse
|
13
|
Jazmati D, Butzer S, Hero B, Ahmad Khalil D, Merta J, Bäumer C, Plum G, Fuchs J, Koerber F, Steinmeier T, Peters S, Doyen J, Thole T, Schmidt M, Blase C, Tippelt S, Eggert A, Schwarz R, Simon T, Timmermann B. Proton Beam Therapy for Children With Neuroblastoma: Experiences From the Prospective KiProReg Registry. Front Oncol 2021; 10:617506. [PMID: 33552991 PMCID: PMC7855697 DOI: 10.3389/fonc.2020.617506] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Objective Radiotherapy (RT) is an integral part of the interdisciplinary treatment of patients with high-risk neuroblastoma (NB). With the continuous improvements of outcome, the interest in local treatment strategies that reduce treatment-related side effects while achieving optimal oncological results is growing. Proton beam therapy (PBT) represents a promising alternative to conventional photon irradiation with regard to the reduction of treatment burden. Method Retrospective analysis of children with high or intermediate risk NB receiving PBT of the primary tumor site during first-line therapy between 2015 and 2020 was performed. Data from the prospective in-house registry Standard Protonentherapie WPE - Kinder- (KiProReg) with respect to tumor control and treatment toxicity were analyzed. Adverse events were classified according to CTCAE Version 4 (V4.0) before, during, and after PBT. Results In total, 44 patients (24 male, 20 female) with high (n = 39) or intermediate risk NB (n = 5) were included in the analysis. Median age was 3.4 years (range, 1.4-9.9 years). PBT doses ranged from 21.0 to 39.6 Gray (Gy) (median 36.0 Gy). Five patients received PBT to the MIBG-avid residual at the primary tumor site at time of PBT according to the NB-2004 protocol. In 39 patients radiation was given to the pre-operative tumor bed with or without an additional boost in case of residual tumor. After a median follow-up (FU) of 27.6 months, eight patients developed progression, either local recurrence (n = 1) or distant metastases (n = 7). Four patients died due to tumor progression. At three years, the estimated local control, distant metastatic free survival, progression free survival, and overall survival was 97.7, 84.1, 81.8, and 90.9%, respectively. During radiation, seven patients experienced higher-grade (CTCAE ≥ °3) hematologic toxicity. No other higher grade acute toxicity occurred. After PBT, one patient developed transient myelitis while receiving immunotherapy. No higher grade long-term toxicity was observed up to date. Conclusion PBT was a well tolerated and effective local treatment in children with high and intermediate risk NB. The role of RT in an intensive multidisciplinary treatment regimen remains to be studied in the future in order to better define timing, doses, target volumes, and general need for RT in a particularly sensitive cohort of patients.
Collapse
Affiliation(s)
- Danny Jazmati
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), Essen, Germany
| | - Sarina Butzer
- Children's Hospital, University of Cologne, Cologne, Germany
| | - Barbara Hero
- Children's Hospital, University of Cologne, Cologne, Germany
| | - Dalia Ahmad Khalil
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), Essen, Germany
| | - Julien Merta
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), Essen, Germany
| | - Christian Bäumer
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), Essen, Germany.,Faculty of Physics, TU Dortmund University, Dortmund, Germany.,Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), German Cancer Consortium (DKTK), Essen, Germany
| | - Gina Plum
- Children's Hospital, University of Cologne, Cologne, Germany
| | - Jörg Fuchs
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tuebingen, Tübingen, Germany
| | | | - Theresa Steinmeier
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), Essen, Germany
| | - Sarah Peters
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), Essen, Germany
| | - Jerome Doyen
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), Essen, Germany
| | - Theresa Thole
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Schmidt
- Department of Nuclear Medicine, University Hospital of Cologne, Cologne, Germany
| | | | - Stephan Tippelt
- University Hospital of Essen, Paediatrics III, Paediatric Haematology and Oncology, Essen, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Rudolf Schwarz
- Department of Radiotherapy and Radiooncology, Outpatient Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Simon
- Children's Hospital, University of Cologne, Cologne, Germany
| | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), Essen, Germany.,Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), German Cancer Consortium (DKTK), Essen, Germany
| |
Collapse
|
14
|
Mul J, van de Ven CP, Seravalli E, Littooij AS, Wijnen MHWA, van Grotel M, van den Heuvel-Eibrink MM, Janssens GO. The contribution of surgical clips for optimizing highly-conformal image-guided flank irradiation in pediatric renal tumors: A single center experience. Radiother Oncol 2020; 156:62-68. [PMID: 33310005 DOI: 10.1016/j.radonc.2020.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIMS Two-opposing photon beams are considered standard of care for flank irradiation in pediatric patients with renal tumors. Nowadays, Image-Guided Radiotherapy (IGRT) techniques allow high-precision dose delivery to complex flank target volumes taking into account postoperative organ shifts and tumor bed motion. This study examines the contribution of a lateral and superior surgical clip on flank target volume delineation intended for IGRT. METHODS Between 01-2015 and 09-2019, 30/162 newly-diagnosed pediatric patients with renal tumors, lateral/superior surgical clips (n = 30/30) and available 4D-CT-scans (n = 27/30), underwent postoperative flank irradiation. The lateral and superior clip, as respective markers for the lateral tumor extension and intrafraction motion, were analyzed. The positive and negative values depict the lateral/dorsal/cranial or the medial/ventral/caudal direction, respectively. Planning target volumes (PTV) were generated based on lateral clips (PTVlatclip), superior clips with 4D-CT technology (PTVsupclip), and both clips combined (PTVcombined), and compared to an approach without clips (PTVnoclip). RESULTS Indicated by clips, the mean lateral tumor bed extension along the posterior wall was 74° (range: 50°-93°), while mean intrafraction motion was +1.2 mm (range: -1.8/+4.8 mm), +0.6 mm (range: +0.6/+4.9 mm), -0.3 mm (range: -3.8/+0.7 mm) in craniocaudal, ventrodorsal, mediolateral direction, respectively. The median PTVnoclip (556 mL) was statistically different from the median PTVlatclip (454 mL, p = <0.01), median PTVsupclip (373 mL, p = <0.01) and median PTVcombined (348 mL p = <0.01). CONCLUSION In pediatric patients with renal tumors, surgical clips at the lateral and superior border of the tumor bed can optimize flank target volume delineation and, consequently, reduce the normal tissue volume receiving high-dose irradiation when IGRT techniques are applied.
Collapse
Affiliation(s)
- Joeri Mul
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | - Enrica Seravalli
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annemieke S Littooij
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marc H W A Wijnen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | | | - Geert O Janssens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
15
|
Sardaro A, Carbonara R, Petruzzelli MF, Turi B, Moschetta M, Scardapane A, Stabile Ianora AA. Proton therapy in the most common pediatric non-central nervous system malignancies: an overview of clinical and dosimetric outcomes. Ital J Pediatr 2019; 45:170. [PMID: 31881905 PMCID: PMC6935184 DOI: 10.1186/s13052-019-0763-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/17/2019] [Indexed: 11/20/2022] Open
Abstract
Radiation therapy represents an important approach in the therapeutic management of children and adolescents with malignant tumors and its application with modern techniques – including Proton Beam Therapy (PBT) – is of great interest. In particular, potential radiation-induced injuries and secondary malignancies – also associated to the prolonged life expectancy of patients – are still questions of concern that increase the debate on the usefulness of PBT in pediatric treatments. This paper presents a literary review of current applications of PBT in non-Central Nervous System pediatric tumors (such as retinoblastoma, Hodgkin Lymphoma, Wilms tumor, bone and soft tissues sarcomas). We specifically reported clinical results achieved with PBT and dosimetric comparisons between PBT and the most common photon-therapy techniques. The analysis emphasizes that PBT minimizes radiation doses to healthy growing organs, suggesting for reduced risks of late side-effects and radiation-induced secondary malignancies. Extended follow up and confirms by prospective clinical trials should support the effectiveness and long-term tolerance of PBT in the considered setting.
Collapse
Affiliation(s)
- Angela Sardaro
- Interdisciplinary Department of Medicine, Section of Radiology and Radiation Oncology, University of Bari, p.zza Giulio Cesare nr.11, 70124, Bari, Italy
| | - Roberta Carbonara
- Interdisciplinary Department of Medicine, Section of Radiology and Radiation Oncology, University of Bari, p.zza Giulio Cesare nr.11, 70124, Bari, Italy.
| | - Maria Fonte Petruzzelli
- Interdisciplinary Department of Medicine, Section of Radiology and Radiation Oncology, University of Bari, p.zza Giulio Cesare nr.11, 70124, Bari, Italy
| | - Barbara Turi
- Interdisciplinary Department of Medicine, Section of Radiology and Radiation Oncology, University of Bari, p.zza Giulio Cesare nr.11, 70124, Bari, Italy
| | - Marco Moschetta
- Interdisciplinary Department of Medicine, Section of Radiology and Radiation Oncology, University of Bari, p.zza Giulio Cesare nr.11, 70124, Bari, Italy
| | - Arnaldo Scardapane
- Interdisciplinary Department of Medicine, Section of Radiology and Radiation Oncology, University of Bari, p.zza Giulio Cesare nr.11, 70124, Bari, Italy
| | - Amato Antonio Stabile Ianora
- Interdisciplinary Department of Medicine, Section of Radiology and Radiation Oncology, University of Bari, p.zza Giulio Cesare nr.11, 70124, Bari, Italy
| |
Collapse
|
16
|
Guerreiro F, Zachiu C, Seravalli E, Ribeiro CO, Janssens GO, Ries M, de Senneville BD, Maduro JH, Brouwer CL, Korevaar EW, Knopf AC, Raaymakers BW. Evaluating the benefit of PBS vs. VMAT dose distributions in terms of dosimetric sparing and robustness against inter-fraction anatomical changes for pediatric abdominal tumors. Radiother Oncol 2019; 138:158-165. [DOI: 10.1016/j.radonc.2019.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/27/2019] [Accepted: 06/17/2019] [Indexed: 11/16/2022]
|
17
|
Guerreiro F, Seravalli E, Janssens GO, van den Heuvel-Eibrink MM, Lagendijk JJW, Raaymakers BW. Potential benefit of MRI-guided IMRT for flank irradiation in pediatric patients with Wilms' tumor. Acta Oncol 2019; 58:243-250. [PMID: 30523729 DOI: 10.1080/0284186x.2018.1537507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE/OBJECTIVE Flank irradiation for Wilms' tumor (WT) is currently performed at our institute using a cone-beam computed tomography-guided volumetric modulated arc (VMATCBCT) workflow. By adding real-time magnetic resonance imaging (MRI) guidance to the treatment, safety margins could be reduced. The study purpose was to quantify the potential reduction of the planning target volume (PTV) margin and its dosimetric impact when using an MRI-guided intensity modulated radiation therapy (IMRTMRI) workflow compared to the VMATCBCT workflow. MATERIAL/METHODS 4D-CT, MRI and CBCT scans acquired during preparation and treatment of 15 patients, were used to estimate both geometric, motion and patient set-up systematic (∑) and random (σ) errors for VMATCBCT and IMRTMRI workflows. The mean PTV (PTVmean) expansion was calculated using the van Herk formula. Treatment plans were generated using five margin scenarios (PTVmean ± 0, 1 and 2 mm). Furthermore, the IMRTMRI plans were optimized with a 1.5T transverse magnetic field turned-on to realistically model an MRI-guided treatment. Plans were evaluated using dose-volume statistics (p<.01, Wilcoxon). RESULTS Analysis of ∑ and σ errors resulted in a PTVmean of 5 mm for the VMATCBCT and 3 mm for the IMRTMRI workflows in each orthogonal direction. Target coverage was unaffected by the margin decrease with a mean V95%=100% for all margin scenarios. For the PTVmean, an average reduction of the mean dose to the organs at risk (OARs) was achieved with IMRTMRI compared to VMATCBCT: 3.4 ± 2.4% (p<.01) for the kidney, 3.4 ± 2.1% (p<.01) for the liver, 2.8 ± 3.0% (p<.01) for the spleen and 4.9 ± 3.8% (p<.01) for the pancreas, respectively. CONCLUSIONS Imaging data in children with WT demonstrated that the PTV margin could be reduced isotropically down to 2 mm when using the IMRTMRI compared to the VMATCBCT workflow. The former results in a dose reduction to the OARs while maintaining target coverage.
Collapse
Affiliation(s)
- F. Guerreiro
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E. Seravalli
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - G. O. Janssens
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
- Princess Máxima Center for Paediatric Oncology, Utrecht, The Netherlands
| | | | - J. J. W Lagendijk
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - B. W. Raaymakers
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
18
|
Arumugam S, Manning-Cork NJ, Gains JE, Boterberg T, Gaze MN. The Evidence for External Beam Radiotherapy in High-Risk Neuroblastoma of Childhood: A Systematic Review. Clin Oncol (R Coll Radiol) 2018; 31:182-190. [PMID: 30509728 DOI: 10.1016/j.clon.2018.11.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/27/2018] [Indexed: 12/15/2022]
Abstract
AIMS External beam radiotherapy is widely used in various ways in the management of neuroblastoma. Despite extensive clinical experience, the precise role of radiotherapy in neuroblastoma remains unclear. The purpose of this systematic review was to survey the published literature to identify, without bias, the evidence for the clinical effectiveness of external beam radiotherapy as part of the initial multimodality treatment of high-risk neuroblastoma. We considered four areas: treatment of the tumour bed and residual primary tumour, identification of any dose-response relationship, treatment of metastatic sites, identification of any technical advances that may be beneficial. We also aimed to define uncertainties, which may be clarified in future clinical trials. MATERIALS AND METHODS Bibliographic databases were searched for neuroblastoma and radiotherapy. Reviewers assessed 1283 papers for inclusion by title and abstract, with consensus achieved through discussion. Data extraction on 57 included papers was carried out by one reviewer and checked by another. Studies were assessed for their level of evidence and risk of bias, and a descriptive analysis of data was carried out. RESULTS Fifteen papers provided some evidence that radiotherapy to the tumour bed and residual tumour may possibly be of value. However, there is a significant risk of bias and no evidence that all subgroups will benefit. There is some suggestion from six papers that dose may be important, but no hard evidence. It remains unclear whether irradiation of metastatic sites is helpful. Technical advances may be of value in radiotherapy of high-risk neuroblastoma. CONCLUSIONS There are data that show that radiotherapy is of some efficacy in the management of high-risk neuroblastoma, but there is no level one evidence that shows that it is being used in the best possible way. Prospective randomised trials are necessary to provide more evidence to guide development of optimal radiotherapy treatment schedules.
Collapse
Affiliation(s)
- S Arumugam
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - N J Manning-Cork
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - J E Gains
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - T Boterberg
- Department of Radiation Oncology, Ghent University Hospital, Gent, Belgium
| | - M N Gaze
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
19
|
Proton therapy for pediatric malignancies: Fact, figures and costs. A joint consensus statement from the pediatric subcommittee of PTCOG, PROS and EPTN. Radiother Oncol 2018; 128:44-55. [PMID: 29937209 DOI: 10.1016/j.radonc.2018.05.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022]
Abstract
Radiotherapy plays an important role in the management of childhood cancer, with the primary aim of achieving the highest likelihood of cure with the lowest risk of radiation-induced morbidity. Proton therapy (PT) provides an undisputable advantage by reducing the radiation 'bath' dose delivered to non-target structures/volume while optimally covering the tumor with tumoricidal dose. This treatment modality comes, however, with an additional costs compared to conventional radiotherapy that could put substantial financial pressure to the health care systems with societal implications. In this review we assess the data available to the oncology community of PT delivered to children with cancer, discuss on the urgency to develop high-quality data. Additionally, we look at the advantage of combining systemic agents with protons and look at the cost-effectiveness data published so far.
Collapse
|
20
|
Dasu A, Toma-Dasu I. Models for the risk of secondary cancers from radiation therapy. Phys Med 2017; 42:232-238. [DOI: 10.1016/j.ejmp.2017.02.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 11/25/2022] Open
|
21
|
Jouglar E, Wagner A, Delpon G, Campion L, Meingan P, Bernier V, Demoor-Goldschmidt C, Mahé MA, Lacornerie T, Supiot S. Can We Spare the Pancreas and Other Abdominal Organs at Risk? A Comparison of Conformal Radiotherapy, Helical Tomotherapy and Proton Beam Therapy in Pediatric Irradiation. PLoS One 2016; 11:e0164643. [PMID: 27764132 PMCID: PMC5072698 DOI: 10.1371/journal.pone.0164643] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/28/2016] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Late abdominal irradiation toxicity during childhood included renal damage, hepatic toxicity and secondary diabetes mellitus. We compared the potential of conformal radiotherapy (CRT), helical tomotherapy (HT) and proton beam therapy (PBT) to spare the abdominal organs at risk (pancreas, kidneys and liver- OAR) in children undergoing abdominal irradiation. METHODS We selected children with abdominal tumors who received more than 10 Gy to the abdomen. Treatment plans were calculated in order to keep the dose to abdominal OAR as low as possible while maintaining the same planned target volume (PTV) coverage. Dosimetric values were compared using the Wilcoxon signed-rank test. RESULTS The dose distribution of 20 clinical cases with a median age of 8 years (range 1-14) were calculated with different doses to the PTV: 5 medulloblastomas (36 Gy), 3 left-sided and 2 right-sided nephroblastomas (14.4 Gy to the tumor + 10.8 Gy boost to para-aortic lymphnodes), 1 left-sided and 4 right-sided or midline neuroblastomas (21 Gy) and 5 Hodgkin lymphomas (19.8 Gy to the para-aortic lymphnodes and spleen). HT significantly reduced the mean dose to the whole pancreas (WP), the pancreatic tail (PT) and to the ipsilateral kidney compared to CRT. PBT reduced the mean dose to the WP and PT compared to both CRT and HT especially in midline and right-sided tumors. PBT decreased the mean dose to the ispilateral kidney but also to the contralateral kidney and the liver compared to CRT. Low dose to normal tissue was similar or increased with HT whereas integral dose and the volume of normal tissue receiving at least 5 and 10 Gy were reduced with PBT compared to CRT and HT. CONCLUSION In children undergoing abdominal irradiation therapy, proton beam therapy reduces the dose to abdominal OAR while sparing normal tissue by limiting low dose irradiation.
Collapse
Affiliation(s)
- Emmanuel Jouglar
- Department of Radiation Oncology, Institut de Cancérologie de l’Ouest, boulevard Jacques Monod, Saint Herblain, 44800 France
| | - Antoine Wagner
- Department of Medical Physics, Centre Oscar Lambret, 3 rue Frédéric Combemale, Lille, 59000 France
| | - Grégory Delpon
- Department of Medical Physics, Institut de Cancérologie de l’Ouest, boulevard Jacques Monod, Saint Herblain, 44800 France
| | - Loïc Campion
- Department of Statistics, Institut de Cancérologie de l’Ouest, boulevard Jacques Monod, Saint-Herblain, 44800 France
| | - Philippe Meingan
- Department of Radiology, Institut de Cancérologie de l’Ouest, boulevard Jacques Monod, Saint-Herblain, 44800 France
| | - Valérie Bernier
- Department of Radiation Oncology, Institut de Cancérologie de Lorraine, 6 Avenue de Bourgogne, Vandœuvre-lès-Nancy, 54519 France
| | - Charlotte Demoor-Goldschmidt
- Department of Radiation Oncology, Institut de Cancérologie de l’Ouest, boulevard Jacques Monod, Saint Herblain, 44800 France
| | - Marc-André Mahé
- Department of Radiation Oncology, Institut de Cancérologie de l’Ouest, boulevard Jacques Monod, Saint Herblain, 44800 France
| | - Thomas Lacornerie
- Department of Medical Physics, Centre Oscar Lambret, 3 rue Frédéric Combemale, Lille, 59000 France
| | - Stéphane Supiot
- Department of Radiation Oncology, Institut de Cancérologie de l’Ouest, boulevard Jacques Monod, Saint Herblain, 44800 France
- * E-mail:
| |
Collapse
|
22
|
Kristensen I, Nilsson K, Nilsson P. Comparative Proton and Photon Treatment Planning in Pediatric Patients with Various Diagnoses. Int J Part Ther 2015. [DOI: 10.14338/ijpt-14-00026.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
Long-term side effects of radiotherapy for pediatric localized neuroblastoma : results from clinical trials NB90 and NB94. Strahlenther Onkol 2015; 191:604-12. [PMID: 25896312 DOI: 10.1007/s00066-015-0837-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/25/2015] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Neuroblastoma (NB) is the most frequent indication for extracranial pediatric radiotherapy. As long-term survival of high-risk localized NB has greatly improved, we reviewed treatment-related late toxicities in pediatric patients who received postoperative radiotherapy (RT) for localized NB within two French prospective clinical trials: NB90 and NB94. PATIENTS AND METHODS From 1990-2000, 610 children were enrolled. Among these, 35 were treated with induction chemotherapy, surgery, and RT. The recommended RT dose was 24 Gy at ≤ 2 years, 34 Gy at > 2 years, ± a 5 Gy boost in both age groups. RESULTS The 22 patients still alive after 5 years were analyzed. The median follow-up time was 14 years (range 5-21 years). Late effects after therapy occurred in 73 % of patients (16/22), within the RT field for 50 % (11/22). The most frequent in-field effects were musculoskeletal abnormalities (n = 7) that occurred only with doses > 31 Gy/1.5 Gy fraction (p = 0.037). Other effects were endocrine in 3 patients and second malignancies in 2 patients. Four patients presented with multiple in-field late effects only with doses > 31 Gy. CONCLUSION After a median follow-up of 14 years, late effects with multimodality treatment were frequent. The most frequent effects were musculoskeletal abnormalities and the threshold for their occurrence was 31 Gy.
Collapse
|
24
|
Kornerup JS, Brodin NP, Björk-Eriksson T, Birk Christensen C, Kiil-Berthelsen A, Aznar MC, Hollensen C, Markova E, Munck Af Rosenschöld P. PET/CT-guided treatment planning for paediatric cancer patients: a simulation study of proton and conventional photon therapy. Br J Radiol 2014; 88:20140586. [PMID: 25494657 DOI: 10.1259/bjr.20140586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To investigate the impact of including fluorine-18 fludeoxyglucose ((18)F-FDG) positron emission tomography (PET) scanning in the planning of paediatric radiotherapy (RT). METHODS Target volumes were first delineated without and subsequently re-delineated with access to (18)F-FDG PET scan information, on duplicate CT sets. RT plans were generated for three-dimensional conformal photon RT (3DCRT) and intensity-modulated proton therapy (IMPT). The results were evaluated by comparison of target volumes, target dose coverage parameters, normal tissue complication probability (NTCP) and estimated risk of secondary cancer (SC). RESULTS Considerable deviations between CT- and PET/CT-guided target volumes were seen in 3 out of the 11 patients studied. However, averaging over the whole cohort, CT or PET/CT guidance introduced no significant difference in the shape or size of the target volumes, target dose coverage, irradiated volumes, estimated NTCP or SC risk, neither for IMPT nor 3DCRT. CONCLUSION Our results imply that the inclusion of PET/CT scans in the RT planning process could have considerable impact for individual patients. There were no general trends of increasing or decreasing irradiated volumes, suggesting that the long-term morbidity of RT in childhood would on average remain largely unaffected. ADVANCES IN KNOWLEDGE (18)F-FDG PET-based RT planning does not systematically change NTCP or SC risk for paediatric cancer patients compared with CT only. 3 out of 11 patients had a distinct change of target volumes when PET-guided planning was introduced. Dice and mismatch metrics are not sufficient to assess the consequences of target volume differences in the context of RT.
Collapse
Affiliation(s)
- J S Kornerup
- 1 Section of Radiotherapy, Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang R, Howell RM, Taddei PJ, Giebeler A, Mahajan A, Newhauser WD. A comparative study on the risks of radiogenic second cancers and cardiac mortality in a set of pediatric medulloblastoma patients treated with photon or proton craniospinal irradiation. Radiother Oncol 2014; 113:84-8. [PMID: 25128084 PMCID: PMC4256116 DOI: 10.1016/j.radonc.2014.07.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 12/30/2022]
Abstract
PURPOSE To compare the risks of radiogenic second cancers and cardiac mortality in 17 pediatric medulloblastoma patients treated with passively scattered proton or field-in-field photon craniospinal irradiation (CSI). MATERIAL/METHODS Standard of care photon or proton CSI treatment plans were created for all 17 patients in a commercial treatment planning system (TPS) (Eclipse version 8.9; Varian Medical Systems, Palo Alto, CA) and prescription dose was 23.4 or 23.4 Gy (RBE) to the age specific target volume at 1.8 Gy/fraction. The therapeutic doses from proton and photon CSI plans were estimated from TPS. Stray radiation doses were determined from Monte Carlo simulations for proton CSI and from measurements and TPS for photon CSI. The Biological Effects of Ionization Radiation VII report and a linear model based on childhood cancer survivor data were used for risk predictions of second cancer and cardiac mortality, respectively. RESULTS The ratios of lifetime attributable risk (RLARs) (proton/photon) ranged from 0.10 to 0.22 for second cancer incidence and ranged from 0.20 to 0.53 for second cancer mortality, respectively. The ratio of relative risk (RRR) (proton/photon) of cardiac mortality ranged from 0.12 to 0.24. The RLARs of both cancer incidence and mortality decreased with patient's age at exposure (e), while the RRRs of cardiac mortality increased with e. Girls had a significantly higher RLAR of cancer mortality than boys. CONCLUSION Passively scattered proton CSI provides superior predicted outcomes by conferring lower predicted risks of second cancer and cardiac mortality than field-in-field photon CSI for all medulloblastoma patients in a large clinically representative sample in the United States, but the magnitude of superiority depends strongly on the patients' anatomical development status.
Collapse
Affiliation(s)
- Rui Zhang
- The University of Texas Graduate School of Biomedical Sciences at Houston, USA; Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Rebecca M Howell
- The University of Texas Graduate School of Biomedical Sciences at Houston, USA; Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Phillip J Taddei
- The University of Texas Graduate School of Biomedical Sciences at Houston, USA; Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, USA; Department of Radiation Oncology, American University of Beirut Medical Center, Lebanon
| | - Annelise Giebeler
- The University of Texas Graduate School of Biomedical Sciences at Houston, USA; Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, USA; Current address is: Scripps Proton Therapy Center, San Diego, CA, USA
| | - Anita Mahajan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Wayne D Newhauser
- The University of Texas Graduate School of Biomedical Sciences at Houston, USA; Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, USA; Medical Physics Program, Department of Physics and Astronomy, Louisiana State University, Baton Rouge, USA.
| |
Collapse
|
26
|
Oshiro Y, Mizumoto M, Okumura T, Sugahara S, Fukushima T, Ishikawa H, Nakao T, Hashimoto T, Tsuboi K, Ohkawa H, Kaneko M, Sakurai H. Clinical results of proton beam therapy for advanced neuroblastoma. Radiat Oncol 2013; 8:142. [PMID: 23758770 PMCID: PMC3693889 DOI: 10.1186/1748-717x-8-142] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 06/01/2013] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To evaluate the efficacy of proton beam therapy (PBT) for pediatric patients with advanced neuroblastoma. METHODS PBT was conducted at 21 sites in 14 patients with neuroblastoma from 1984 to 2010. Most patients were difficult to treat with photon radiotherapy. Two and 6 patients were classified into stages 3 and 4, respectively, and 6 patients had recurrent disease. Seven of the 8 patients who received PBT as the initial treatment were classified as the high risk group. Twelve patients had gross residual disease before PBT and 2 had undergone intraoperative radiotherapy before PBT. Five patients received PBT for multiple sites, including remote metastases. Photon radiotherapy was used in combination with PBT for 3 patients. The PBT doses ranged from 19.8 to 45.5 GyE (median: 30.6 GyE). RESULTS Seven patients are alive with no evidence of disease, 1 is alive with disease progression, and 6 died due to the tumor. Recurrence in the treatment field was not observed and the 3-year locoregional control rate was 82%. Severe acute radiotoxicity was not observed, but 1 patient had narrowing of the aorta and asymptomatic vertebral compression fracture at 28 years after PBT, and hair loss was prolonged in one patient. CONCLUSION PBT may be a better alternative to photon radiotherapy for children with advanced neuroblastoma, and may be conducted safely for patients with neuroblastoma that is difficult to manage using photon beams.
Collapse
|
27
|
Abstract
Despite the claim in the published literature, the introduction of proton therapy for children is not analogous to the evolution of conformal photon irradiation relying on the understanding of the impact of altered dose distributions. The differences in radiobiological effect when comparing photons with protons mean that we are comparing a known entity with an unknown entity: the dose-volume histogram for proton therapy might mean something substantially different from the dose-volume histogram for photon therapy. The multifaceted difference between the 2 modalities supports the argument for careful evaluation, follow-up, and clinical trials with adverse event monitoring when using proton therapy in children. We review the current data on the outcome of proton therapy in a range of pediatric tumors and compare them with the often excellent results of photon therapy in the setting of multidisciplinary management of childhood cancer. It is hoped that the apparent dosimetric advantage of proton therapy over photons will lead to improved indications for therapy, disease control, and functional outcomes. Although physical dose distribution is of clear importance, the multimodality management of children by an expert pediatric oncology team and the availability of ancillary measures that improve the quality of treatment delivery may be more important than the actual beam. In addition, current estimates of the benefit of proton therapy over photon therapy based on toxicity reduction will only be realized when survivorship has been achieved. Once substantive proton therapy data become available, it will be necessary to demonstrate benefit in clinically relevant outcome measures in comparison with best existing photon outcome data. Such an effort will require improved funding and appreciation for late effects research. Only real clinical outcome data combined with better understanding of the radiobiological differences between protons and photons will help us to further reduce side effects in children and exploit the full curative potential of this relatively new modality.
Collapse
Affiliation(s)
- Thomas E Merchant
- Division of Radiation Oncology, Department of Radiologic Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA.
| |
Collapse
|
28
|
Gains JE, Stacey C, Rosenberg I, Mandeville HC, Chang YC, D'Souza D, Moroz V, Wheatley K, Gaze MN. Intensity-modulated arc therapy to improve radiation dose delivery in the treatment of abdominal neuroblastoma. Future Oncol 2013; 9:439-49. [PMID: 23469979 DOI: 10.2217/fon.12.199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The standard European radiotherapy technique for children with neuroblastoma is a conventional parallel opposed pair. This frequently results in compromise on planning target volume coverage to stay within normal tissue tolerances. This study investigates the use of an intensity-modulated arc therapy (IMAT) technique to improve dose distribution and allow better protocol compliance. Among 20 previously treated patients, ten had received the full prescribed dose with conventional planning (protocol compliant) and ten had a compromise on planning target volume coverage (protocol noncompliant). All patients were replanned with IMAT. Dosimetric parameters of the conventional radiotherapy and IMAT were compared. The dose received by 98% of the planning target volume, homogeneity and conformity indices were all improved with IMAT (p < 0.001). IMAT would have enabled delivery of the full protocol dose in eight out of ten protocol-noncompliant patients. IMAT may improve outcomes through improved protocol compliance and better dose distributions.
Collapse
Affiliation(s)
- Jennifer E Gains
- Department of Oncology, University College London Hospitals NHS Foundation Trust, First Floor Central, 250 Euston Road, London NW1 2PG, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zaghloul MS. Intensity modulated radiotherapy (IMRT) for pediatric cancer patients: the advantage and fear of second malignant neoplasm. J Egypt Natl Canc Inst 2012; 25:1-3. [PMID: 23499200 DOI: 10.1016/j.jnci.2012.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 11/19/2012] [Indexed: 10/27/2022] Open
Abstract
Intensity-modulated radiotherapy is used for delivering more efficient homogenous dose to the target and lowering of dose to the surrounding normal tissues. However, a second malignant neoplasm may develop after prolonged latent period. The use of modern precise radiotherapy techniques in the pediatric age group has many controversial issues in spite of its proven dosimetric distribution advantages and the considerable decrease of normal tissue complication probability (NTCP). This concern is due to many factors; mainly the exposure of a larger volume of normal tissues to low dose radiotherapy. Children have more proliferating tissues compared to the adults. However, the epidemiological data did not detect an increase in the incidence of radiation-induced second malignancy. This issue is still controversial as IMRT and other precise radiotherapy techniques were not widely used except recently. This may entail a thorough careful follow up for children treated with these techniques to detect any incidence increase.
Collapse
|
30
|
Knäusl B, Lütgendorf-Caucig C, Hopfgartner J, Dieckmann K, Kurch L, Pelz T, Pötter R, Georg D. Can treatment of pediatric Hodgkin’s lymphoma be improved by PET imaging and proton therapy? Strahlenther Onkol 2012; 189:54-61. [DOI: 10.1007/s00066-012-0235-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 09/17/2012] [Indexed: 01/16/2023]
|
31
|
Hattangadi JA, Rombi B, Yock TI, Broussard G, Friedmann AM, Huang M, Chen YLE, Lu HM, Kooy H, MacDonald SM. Proton Radiotherapy for High-Risk Pediatric Neuroblastoma: Early Outcomes and Dose Comparison. Int J Radiat Oncol Biol Phys 2012; 83:1015-22. [DOI: 10.1016/j.ijrobp.2011.08.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/24/2011] [Accepted: 08/08/2011] [Indexed: 10/14/2022]
|
32
|
La Tessa C, Berger T, Kaderka R, Schardt D, Körner C, Ramm U, Licher J, Matsufuji N, Vallhagen Dahlgren C, Lomax T, Reitz G, Durante M. Out-of-field dose studies with an anthropomorphic phantom: comparison of X-rays and particle therapy treatments. Radiother Oncol 2012; 105:133-8. [PMID: 22575675 DOI: 10.1016/j.radonc.2012.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 03/26/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND AND PURPOSE Characterization of the out-of-field dose profile following irradiation of the target with a 3D treatment plan delivered with modern techniques. METHODS An anthropomorphic RANDO phantom was irradiated with a treatment plan designed for a simulated 5 × 2 × 5 cm(3) tumor volume located in the center of the head. The experiment was repeated with all most common radiation treatment types (photons, protons and carbon ions) and delivery techniques (Intensity Modulated Radiation Therapy, passive modulation and spot scanning). The measurements were performed with active diamond detector and passive thermoluminescence (TLD) detectors to investigate the out-of-field dose both inside and outside the phantom. RESULTS The highest out-of-field dose values both on the surface and inside the phantom were measured during the treatment with 25 MV photons. In the proximity of the Planned Target Volume (PTV), the lowest lateral dose profile was observed for passively modulated protons mainly because of the presence of the collimator in combination with the chosen volume shape. In the far out-of-field region (above 100mm from the PTV), passively modulated ions were characterized by a less pronounced dose fall-off in comparison with scanned beams. Overall, the treatment with scanned carbon ions delivered the lowest dose outside the target volume. CONCLUSIONS For the selected PTV, the use of the collimator in proton therapy drastically reduced the dose deposited by ions or photons nearby the tumor. Scanning modulation represents the optimal technique for achieving the highest dose reduction far-out-of-field.
Collapse
Affiliation(s)
- Chiara La Tessa
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kanemoto A, Oshiro Y, Sugahara S, Kamagata S, Hirobe S, Toma M, Okumura T, Sakurai H. Proton Beam Therapy for Inoperable Recurrence of Bronchial High-grade Mucoepidermoid Carcinoma. Jpn J Clin Oncol 2012; 42:552-5. [DOI: 10.1093/jjco/hys047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
34
|
Abstract
The increasing efficacy of pediatric cancer therapy over the past four decades has produced many long-term survivors that now struggle with serious treatment related morbidities affecting their quality of life. Radiation therapy is responsible for a significant proportion of these late effects, but a relatively new and emerging modality, proton radiotherapy hold great promise to drastically reduce these treatment related late effects in long term survivors by sparing dose to normal tissues. Dosimetric studies of proton radiotherapy compared with best available photon based treatment show significant dose sparing to developing normal tissues. Furthermore, clinical data are now emerging that begin to quantify the benefit in decreased late treatment effects while maintaining excellent cancer control rates.
Collapse
Affiliation(s)
- Shane E Cotter
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | | | | |
Collapse
|
35
|
|
36
|
Daşu A, Toma-Daşu I, Franzén L, Widmark A, Nilsson P. Secondary Malignancies From Prostate Cancer Radiation Treatment: A Risk Analysis of the Influence of Target Margins and Fractionation Patterns. Int J Radiat Oncol Biol Phys 2011; 79:738-46. [DOI: 10.1016/j.ijrobp.2009.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 11/27/2009] [Accepted: 12/01/2009] [Indexed: 12/31/2022]
|
37
|
Abstract
Proton beam therapy provides the opportunity for more localized delivery of ionizing radiation with the potential for improved normal tissue avoidance to reduce treatment related morbidity and to allow for dose escalation to improve disease control and survival without increased toxicity. However, a systematic review of published peer-reviewed literature reported previously and updated here is devoid of any clinical data demonstrating benefit in terms of survival, tumor control, or toxicity in comparison with best conventional treatment for any of the tumors so far treated including skull base and ocular tumors, prostate cancer and childhood malignancies. The current lack of evidence for benefit of protons should provide a stimulus for continued research. Well designed in silico clinical trials using validated normal tissue complication probability-models are important to predict the magnitude of benefit for individual tumor sites but the future use of protons should be guided by clear evidence of benefit demonstrated in well-designed prospective studies, away from commercial influence, and this is likely to require international collaboration. Any complex and expensive technology, including proton therapy, should not be employed on the basis of belief alone and requires testing to avoid inappropriate use of potential detriment to future patients.
Collapse
|
38
|
Hillbrand M, Georg D. Assessing a set of optimal user interface parameters for intensity-modulated proton therapy planning. J Appl Clin Med Phys 2010; 11:3219. [PMID: 21081877 PMCID: PMC5720409 DOI: 10.1120/jacmp.v11i4.3219] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 05/27/2010] [Accepted: 07/03/2010] [Indexed: 12/05/2022] Open
Abstract
The purpose was to identify an optimal set of treatment planning parameters and a minimal necessary dose matrix resolution for treatment planning with spot‐scanned protons. Treatment plans based on different combinations of planning parameters and dose grid resolutions (DG) were calculated in a homogeneous geometric phantom for three cubic targets of different size: 8, 64 and 244cm3. The proton dose was delivered by one single beam. Treatment plans were compared in terms of dose profiles parallel to and perpendicular to the central beam axis, as well as by dose homogeneity and conformity measures. Irrespective of target size, the dose homogeneity and conformity were comparable if the distance between spot layers was in the order of the width of a single Bragg peak, and the lateral distance between spots did not exceed two times the spot sigma. If the distance between spot layers was considerably larger than the width of the Bragg peak, the homogeneity index increased. For the small target, this index escalated from values around 5% to 12% in extreme, and to more than 20% for the two larger targets. Furthermore, the width of the 95% isodose increased. Similar results were found for the variation of the parameter determining the lateral spacing between proton dose spots. The average difference of dose profiles with respect to the profile for a DG of 1 mm was below 3% for all considered settings up to a DG of 6 mm. However, a DG of less than 2–3 mm is required to keep the maximum deviation below this limit. The tests performed in this study are necessary to prevent systematic errors from spot‐scanning proton therapy planning. A separation of dose spots in the dimensions of the Bragg peak in the longitudinal direction and no more than two times the spot sigma in the lateral direction were found to be adequate for IMPT treatment planning in a homogeneous phantom. A DG of 2–3 mm is necessary to accurately resolve the steep dose gradients of proton beams. PACS number: 87.55.D‐; 7.55.de
Collapse
Affiliation(s)
- Martin Hillbrand
- Department for Radiotherapy, Division of Medical Radiation Physics, Medical University of Vienna, Vienna, Austria.
| | | |
Collapse
|
39
|
Olsen DR, Overgaard J. Leveraging clinical performance by technological excellence – The case of particle therapy. Radiother Oncol 2010; 95:1-2. [DOI: 10.1016/j.radonc.2010.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 03/22/2010] [Indexed: 11/25/2022]
|
40
|
Thwaites DI, Verellen D. Vorsprung durch Technik: evolution, implementation, QA and safety of new technology in radiotherapy. Radiother Oncol 2010; 94:125-8. [PMID: 20170973 DOI: 10.1016/j.radonc.2010.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 02/09/2010] [Indexed: 11/18/2022]
|