1
|
Chen X, Tan Q, Lyu Q, Yu C, Jiang N, Li J, Luo L. Unmarked Gene Editing in Clavibacter michiganensis Using CRISPR/Cas9 and 5-Fluorocytosine Counterselection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:4-14. [PMID: 34543054 DOI: 10.1094/mpmi-07-21-0179-ta] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant-pathogenic bacteria in the genus Clavibacter are important quarantine species that cause considerable economic loss worldwide. The development of effective gene editing techniques and additional selectable markers is essential to expedite gene functional analysis in this important Gram-positive genus. The current study details a highly efficient unmarked CRISPR/Cas9-mediated gene editing system in Clavibacter michiganensis, which couples the expression of cas9 and single-guide RNA with homology-directed repair templates and the negative selectable marker codA::upp within a single plasmid. Initial experiments indicated that CRISPR/Cas9-mediated transformation could be utilized for both site-directed mutagenesis, in which an A to G point mutation was introduced at the 128th nucleotide of the C. michiganensis rpsL gene to generate a streptomycin-resistant mutant, and complete gene knockout, in which the deletion of the C. michiganensis celA or katA genes resulted in transformants that lacked cellulase and catalase activity, respectively. In subsequent experiments, the introduction of the codA::upp cassette into the transformation vector facilitated the counterselection of unmarked transformants by incubation in the absence of the selective antibiotic, followed by plating on M9 agar containing 5-fluorocytosine at 100 μg/ml, in which an unmarked katA mutant lacking the transformation vector was recovered. Compared with conventional homologous recombination, the unmarked CRISPR/Cas9-mediated system was more useful and convenient because it allowed the template plasmid to be reused repeatedly to facilitate the editing of multiple genes, which constitutes a major advancement that could revolutionize research into C. michiganensis and other Clavibacter spp.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Xing Chen
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University; Beijing, P. R. China
| | - Qing Tan
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University; Beijing, P. R. China
| | - Qingyang Lyu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University; Beijing, P. R. China
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China
| | - Chengxuan Yu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University; Beijing, P. R. China
| | - Na Jiang
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University; Beijing, P. R. China
| | - Jianqiang Li
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University; Beijing, P. R. China
| | - Laixin Luo
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University; Beijing, P. R. China
| |
Collapse
|
2
|
A highly efficient non-viral process for programming mesenchymal stem cells for gene directed enzyme prodrug cancer therapy. Sci Rep 2020; 10:14257. [PMID: 32868813 PMCID: PMC7458920 DOI: 10.1038/s41598-020-71224-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) driven gene-directed enzyme prodrug therapy has emerged as a potential strategy for cancer treatment. The tumour-nesting properties of MSCs enable these vehicles to target tumours and metastases with effective therapies. A crucial step in engineering MSCs is the delivery of genetic material with low toxicity and high efficiency. Due to the low efficiency of current transfection methods, viral vectors are used widely to modify MSCs in preclinical and clinical studies. We show, for the first time, the high transfection efficiency (> 80%) of human adipose tissue derived-MSCs (AT-MSCs) using a cost-effective and off-the-shelf Polyethylenimine, in the presence of histone deacetylase 6 inhibitor and fusogenic lipids. Notably, the phenotypes of MSCs remained unchanged post-modification. AT-MSCs engineered with a fused transgene, yeast cytosine deaminase::uracil phosphoribosyltransferase (CDy::UPRT) displayed potent cytotoxic effects against breast, glioma, gastric cancer cells in vitro. The efficiency of eliminating gastric cell lines were effective even when using 7-day post-transfected AT-MSCs, indicative of the sustained expression and function of the therapeutic gene. In addition, significant inhibition of temozolomide resistant glioma tumour growth in vivo was observed with a single dose of therapeutic MSC. This study demonstrated an efficient non-viral modification process for MSC-based prodrug therapy.
Collapse
|
3
|
Liu Y, Zhu P, Huang Z, Zhou L, Shi P. Simultaneous detection of 5-fluorocytosine and 5-fluorouracil in human cells carrying CD/5-FC suicide gene system by using capillary zone electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1076:1-7. [DOI: 10.1016/j.jchromb.2018.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/04/2018] [Accepted: 01/06/2018] [Indexed: 01/14/2023]
|
4
|
Hsiao HT, Xing L, Deng X, Sun X, Ling CC, Li GC. Hypoxia-targeted triple suicide gene therapy radiosensitizes human colorectal cancer cells. Oncol Rep 2014; 32:723-9. [PMID: 24912473 PMCID: PMC4091884 DOI: 10.3892/or.2014.3238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/25/2014] [Indexed: 12/21/2022] Open
Abstract
The hypoxic microenvironment, an important feature of human solid tumors but absent in normal tissue, may provide an opportunity for cancer-specific gene therapy. The purpose of the present study was to investigate whether hypoxia-driven triple suicide gene TK/CD/UPRT expression enhances cytotoxicity to ganciclovir (GCV) and 5-fluorocytosine (5-FC), and sensitizes human colorectal cancer to radiation in vitro and in vivo. Stable transfectant of human colorectal HCT8 cells was established which expressed hypoxia-inducible vectors (HRE-TK/eGFP and HRE-CD/UPRT/mDsRed). Hypoxia-induced expression/function of TK, CD and UPRT was verified by western blot analysis, flow cytometry, fluorescent microscopy and cytotoxicity assay of GCV and 5-FC. Significant radiosensitization effects were detected after 5-FC and GCV treatments under hypoxic conditions. In the tumor xenografts, the distribution of TK/eGFP and CD/UPRT/mDsRed expression visualized with fluorescence microscopy was co-localized with the hypoxia marker pimonidazole positive staining cells. Furthermore, administration of 5-FC and GCV in mice in combination with local irradiation resulted in tumor regression, as compared with prodrug or radiation treatments alone. Our data suggest that the hypoxia-inducible TK/GCV+CDUPRT/5-FC triple suicide gene therapy may have the ability to specifically target hypoxic cancer cells and significantly improve the tumor control in combination with radiotherapy.
Collapse
Affiliation(s)
- Hung Tsung Hsiao
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Ligang Xing
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Xuelong Deng
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Xiaorong Sun
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - C Clifton Ling
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Gloria C Li
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
5
|
Xing L, Sun X, Deng X, Kotedia K, Zanzonico PB, Ackerstaff E, Koutcher JA, Ling CC, Li GC. A triple suicide gene strategy that improves therapeutic effects and incorporates multimodality molecular imaging for monitoring gene functions. Cancer Gene Ther 2013; 20:358-65. [PMID: 23722591 PMCID: PMC3696018 DOI: 10.1038/cgt.2013.28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Gene-directed enzyme prodrug therapy (GDEPT), or suicide gene therapy, has shown promise in clinical trials. In this preclinical study using stable cell lines and xenograft tumor models, we show that a triple-suicide-gene GDEPT approach produce enhanced therapeutic efficacy over previous methods. Importantly, all the three genes (thymidine kinase, cytosine deaminase and uracil phosphoribosyltransferase) function simultaneously as effectors for GDEPT and markers for multimodality molecular imaging (MMI), using positron emission tomography, magnetic resonance spectroscopy and optical (fluorescent and bioluminescent) techniques. It was demonstrated that MMI can evaluate the distribution and function/activity of the triple suicide gene. The concomitant expression of these genes significantly enhances prodrug cytotoxicity and radiosensitivity in vitro and in vivo.
Collapse
Affiliation(s)
- L Xing
- Department of Radiation Oncology, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Sun X, Xing L, Deng X, Hsiao HT, Manami A, Koutcher JA, Clifton Ling C, Li GC. Hypoxia targeted bifunctional suicide gene expression enhances radiotherapy in vitro and in vivo. Radiother Oncol 2012; 105:57-63. [PMID: 22938726 DOI: 10.1016/j.radonc.2012.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 06/22/2012] [Accepted: 07/17/2012] [Indexed: 12/26/2022]
Abstract
PURPOSE To investigate whether hypoxia targeted bifunctional suicide gene expression-cytosine deaminase (CD) and uracil phosphoribosyltransferase (UPRT) with 5-FC treatments can enhance radiotherapy. MATERIALS AND METHODS Stable transfectants of R3327-AT cells were established which express a triple-fusion-gene: CD, UPRT and monomoric DsRed (mDsRed) controlled by a hypoxia inducible promoter. Hypoxia-induced expression/function of CDUPRTmDsRed was verified by western blot, flow cytometry, fluorescent microscopy, and cytotoxicity assay of 5-FU and 5-FC. Tumor-bearing mice were treated with 5-FC and local radiation. Tumor volume was monitored and compared with those treated with 5-FC or radiation alone. In addition, the CDUPRTmDsRed distribution in hypoxic regions of tumor sections was visualized with fluorescent microscopy. RESULTS Hypoxic induction of CDUPRTmDsRed protein correlated with increased sensitivity to 5-FC and 5-FU. Significant radiosensitization effects were detected after 5-FC treatments under hypoxic conditions. In the tumor xenografts, the distribution of CDUPRTmDsRed expression visualized with fluorescence microscopy was co-localized with the hypoxia marker pimonidazole positive staining cells. Furthermore, administration of 5-FC to mice in combination with local irradiation resulted in significant tumor regression, as in comparison with 5-FC or radiation treatments alone. CONCLUSIONS Our data suggest that the hypoxia-inducible CDUPRT/5-FC gene therapy strategy has the ability to specifically target hypoxic cancer cells and significantly improve the tumor control in combination with radiotherapy.
Collapse
Affiliation(s)
- Xiaorong Sun
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Claridge Mackonis E, Suchowerska N, Naseri P, McKenzie DR. Optimisation of exposure conditions for in vitro radiobiology experiments. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2012; 35:151-7. [PMID: 22454298 DOI: 10.1007/s13246-012-0132-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 02/28/2012] [Indexed: 11/27/2022]
Abstract
Despite the long history of using cell cultures in vitro for radiobiological studies, there is to date no study specifically addressing the dosimetric implications of flask selection and exposure environment in clonogenic assays. The consequent variability in dosimetry between laboratories impedes the comparison of results. In this study we compare the dose to cells adherent to the base of three types of commonly used culture flasks or plates. The cells are exposed to a 6MV clinical photon beam using either an open or a half blocked field. The depth of medium in each flask is varied with the medium surrounding the flask either water or air. The results show that the dose to the cells is more affected by the scattering conditions surrounding the flasks than by the level of filling within the flask. It is recommended that water or a water equivalent phantom material is used to surround the flasks or plates to approximate full scatter conditions at the cell layer. However for modulated fields, surrounding the 24 well plates with water-equivalent material is inadequate because of the large volume of air surrounding individual wells. Our results stress the importance of measuring the dose for new experimental configurations.
Collapse
|
8
|
Rodemann HP, Wouters BG. Frontiers in molecular radiation biology/oncology. Radiother Oncol 2011; 101:1-6. [DOI: 10.1016/j.radonc.2011.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 12/15/2022]
|
9
|
Overgaard J. Advancing radiation oncology through scientific publication – 100 volumes of Radiotherapy and Oncology. Radiother Oncol 2011; 100:1-6. [DOI: 10.1016/j.radonc.2011.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Deng LY, Wang JP, Gui ZF, Shen LZ. Antitumor activity of mutant bacterial cytosine deaminase gene for colon cancer. World J Gastroenterol 2011; 17:2958-64. [PMID: 21734808 PMCID: PMC3129511 DOI: 10.3748/wjg.v17.i24.2958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 03/11/2011] [Accepted: 03/18/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate bacterial cytosine deaminase (bCD) mutant D314A and 5-fluorocytosine (5-FC) for treatment of colon cancer in a mouse model.
METHODS: Recombinant lentivirus vectors that contained wild-type bCD gene (bCDwt), and bCD mutant D314A gene (bCD-D314A) with green fluorescence protein gene were constructed and used to infect human colon carcinoma LoVo cells, to generate stable transfected cells, LoVo/null, LoVo/bCDwt or LoVo/bCD-D314A. These were injected subcutaneously into Balb/c nude mice to establish xenograft models. Two weeks post-LoVo cell inoculation, PBS or 5-FC (500 mg/kg) was administered by intraperitoneal (i.p.) injection once daily for 14 d. On the day after LoVo cell injection, mice were monitored daily for tumor volume and survival.
RESULTS: Sequence analyses confirmed the construction of recombinant lentiviral plasmids that contained bCDwt or bCD-D314A. The lentiviral vector had high efficacy for gene delivery, and RT-PCR showed that bCDwt or bCD-D314A gene was transferred to LoVo cells. Among these treatment groups, gene delivery or 5-FC administration alone had no effect on tumor growth. However, bCDwt/5-FC or bCD-D314A/5-FC treatment inhibited tumor growth and prolonged survival of mice significantly (P < 0.05). Importantly, the tumor volume in the bCD-D314A/5-FC-treated group was lower than that in the bCDwt/5-FC group (P < 0.05), and bCD-D314A plus 5-FC significantly prolonged survival of mice in comparison with bCDwt plus 5-FC (P < 0.05).
CONCLUSION: The bCD mutant D314A enhanced significantly antitumor activity in human colon cancer xenograft models, which provides a promising approach for human colon carcinoma therapy.
Collapse
|
11
|
Morii A, Ogawa R, Watanabe A, Kakutani S, Zhao QL, Kume K, Kondo T, Fuse H. Regulation of gene expression in prostate cancer cells with an artificially constructed promoter responsive to radiation. Gene Ther 2011; 19:219-27. [DOI: 10.1038/gt.2011.89] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Molecular and translational radiation biology/oncology: What’s up? Radiother Oncol 2011; 99:257-61. [DOI: 10.1016/j.radonc.2011.06.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 06/14/2011] [Indexed: 01/02/2023]
|
13
|
Johnson AJ, Ardiani A, Sanchez-Bonilla M, Black ME. Comparative analysis of enzyme and pathway engineering strategies for 5FC-mediated suicide gene therapy applications. Cancer Gene Ther 2011; 18:533-42. [PMID: 21394105 PMCID: PMC3139007 DOI: 10.1038/cgt.2011.6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bacterial- and yeast- encoded cytosine deaminases (bCD and yCD, respectively) are widely investigated suicide enzymes used in combination with the prodrug 5-fluorocytosine (5FC) to achieve localized cytotoxicity. Yet characteristics such as poor turnover rates of 5FC (bCD) and enzyme thermolability (yCD) preclude their full therapeutic potential. We previously applied regio-specific random mutagenesis and computational design to create novel bCD and yCD variants with altered substrate preference (bCD(1525)) or increased thermostability (yCD(double), yCD(triple)) to aid in overcoming these limitations. Others have utilized pathway engineering in which the microbial enzyme uracil phosphoribosyltransferase (UPRT) is fused with its respective CD, creating bCD/bUPRT or yCD/yUPRT. In this study, we evaluated whether the overlay of CD mutants onto their respective CD/UPRT fusion construct would further enhance 5FC activation, cancer cell prodrug sensitivity and bystander activity in vitro and in vivo. We show that all mutant fusion enzymes allowed for significant reductions in IC(50) values relative to their mutant CD counterparts. However, in vivo the CD mutants displayed enhanced tumor growth inhibition capacity relative to the mutant fusions, with bCD(1525) displaying the greatest tumor growth inhibition and bystander activity. In summary, mutant bCD(1525) appears to be the most effective of all bacterial or yeast CD or CD/UPRT enzymes examined and as such is likely to be the best choice to significantly improve the clinical outcome of CD/5FC suicide gene therapy applications.
Collapse
Affiliation(s)
- A J Johnson
- College of Veterinary Medicine, School of Molecular Biosciences, Washington State University, Pullman, USA
| | | | | | | |
Collapse
|
14
|
Dias JD, Liikanen I, Guse K, Foloppe J, Sloniecka M, Diaconu I, Rantanen V, Eriksson M, Hakkarainen T, Lusky M, Erbs P, Escutenaire S, Kanerva A, Pesonen S, Cerullo V, Hemminki A. Targeted Chemotherapy for Head and Neck Cancer with a Chimeric Oncolytic Adenovirus Coding for Bifunctional Suicide Protein FCU1. Clin Cancer Res 2010; 16:2540-9. [DOI: 10.1158/1078-0432.ccr-09-2974] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth. Mol Ther 2009; 18:223-31. [PMID: 19844197 DOI: 10.1038/mt.2009.237] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ability of human adipose tissue-derived mesenchymal stem cells (AT-MSCs), engineered to express the suicide gene cytosine deaminase::uracil phosphoribosyltransferase (CD::UPRT), to convert the relatively nontoxic 5-fluorocytosine (5-FC) into the highly toxic antitumor 5-fluorouracil (5-FU) together with their ability to track and engraft into tumors and micrometastases makes these cells an attractive tool to activate prodrugs directly within the tumor mass. In this study, we tested the feasibility and efficacy of these therapeutic cells to function as cellular vehicles of prodrug-activating enzymes in prostate cancer (PC) therapy. In in vitro migration experiments we have shown that therapeutic AT-MSCs migrated to all the prostate cell lines tested. In a pilot preclinical study, we observed that coinjections of human bone metastatic PC cells along with the transduced AT-MSCs into nude mice treated with 5-FC induced a complete tumor regression in a dose dependent manner or did not even allow the establishment of the tumor. More importantly, we also demonstrated that the therapeutic cells were effective in significantly inhibiting PC tumor growth after intravenous administration that is a key requisite for any clinical application of gene-directed enzyme prodrug therapies.
Collapse
|