1
|
Weller J, Unterrainer M, Sonderer M, Katzendobler S, Holzgreve A, Biczok A, Harter PN, Tonn JC, Albert NL, Suchorska B. Patterns of intersectional tumor volumes in T2-weighted MRI and [ 18F]FET PET in adult glioma: a prospective, observational study. Sci Rep 2024; 14:23071. [PMID: 39367019 PMCID: PMC11452397 DOI: 10.1038/s41598-024-73681-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
Brain tumor volumes as assessed by magnetic resonance imaging (MRI) do not always spatially overlap with biological tumor volumes (BTV) measured by [18F]Fluoroethyltyrosine positron emission tomography ([18F]FET PET). We prospectively investigated volumetric patterns based on the extent of tumor volume overlap between the two modalities. Eighty-six patients with newly diagnosed glioma who had undergone MRI and [18F]FET PET between 2007 and 2009 were included in this prospective study and (re-)classified according to CNS WHO 2021 (Classification of Tumors of the Central Nervous System by the World Health Organization). Four different patterns of volume overlap were defined mathematically according to the extent of overlap between MRI-based T2 tumor volume (non-enhancing tumor volume, nCEV) and BTVs. Progression-free (PFS) and overall survival (OS) were determined. Seventy patients were diagnosed with isocitrate dehydrogenase wildtype (IDHwt) glioblastoma and 16 with IDH-mutant glioma, respectively. The most common pattern was characterized by a larger non-contrast-enhancing tumor volume (nCEV) that enclosed all or most of the BTV and was observed in 46 patients (54%) (pattern 1). This pattern was more frequent in IDH-mutant gliomas than in IDH-wildtype glioblastoma (81% versus 47%, p = 0.02). In multivariate analyses, pattern 1 was associated with prolonged PFS (HR 0.59; 95 CI 0.34-1.0; p = 0.05), but not OS (HR 0.66; 95 CI 0.4-1.08; p = 0.1). For OS, presence of an IDH mutation (p = 0.05) and lower age (p = 0.03) were associated with prolonged OS. The spatial relation between nCEV and BTV varies within and between glioma entities. Most frequently, a larger nCEV encases the BTV. Some patients show spatially dissociated nCEVs and BTVs. Not accounting for this phenomenon in surgery or radiotherapy planning might lead to undertreatment.
Collapse
Affiliation(s)
- Jonathan Weller
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Marcus Unterrainer
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Markéta Sonderer
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sophie Katzendobler
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Annamaria Biczok
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Patrick N Harter
- Center for Neuropathology and Prion Research, LMU University Hospital, LMU Munich, Munich, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner site Munich, Heidelberg, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Bogdana Suchorska
- German Consortium for Translational Cancer Research (DKTK), Partner site Munich, Heidelberg, Germany.
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
2
|
Yilmaz MT, Kahvecioglu A, Yedekci FY, Yigit E, Ciftci GC, Kertmen N, Zorlu F, Yazici G. Comparison of different target volume delineation strategies based on recurrence patterns in adjuvant radiotherapy for glioblastoma. Neurooncol Pract 2024; 11:275-283. [PMID: 38737611 PMCID: PMC11085836 DOI: 10.1093/nop/npae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Background Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC) recommendations are commonly used guidelines for adjuvant radiotherapy in glioblastoma. In our institutional protocol, we delineate T2-FLAIR alterations as gross target volume (GTV) with reduced clinical target volume (CTV) margins. We aimed to present our oncologic outcomes and compare the recurrence patterns and planning parameters with EORTC and RTOG delineation strategies. Methods Eighty-one patients who received CRT between 2014 and 2021 were evaluated retrospectively. EORTC and RTOG delineations performed on the simulation computed tomography and recurrence patterns and planning parameters were compared between delineation strategies. Statistical Package for the Social Sciences (SPSS) version 23.0 (IBM, Armonk, NY, USA) was utilized for statistical analyses. Results Median overall survival and progression-free survival were 21 months and 11 months, respectively. At a median 18 month follow-up, of the 48 patients for whom recurrence pattern analysis was performed, recurrence was encompassed by only our institutional protocol's CTV in 13 (27%) of them. For the remaining 35 (73%) patients, recurrence was encompassed by all separate CTVs. In addition to the 100% rate of in-field recurrence, the smallest CTV and lower OAR doses were obtained by our protocol. Conclusions The current study provides promising results for including the T2-FLAIR alterations to the GTV with smaller CTV margins with impressive survival outcomes without any marginal recurrence. The fact that our protocol did not result in larger irradiated brain volume is further encouraging in terms of toxicity.
Collapse
Affiliation(s)
- Melek Tugce Yilmaz
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Alper Kahvecioglu
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Fazli Yagiz Yedekci
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ecem Yigit
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gokcen Coban Ciftci
- Radiology Department, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Neyran Kertmen
- Department of Medical Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Faruk Zorlu
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gozde Yazici
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Barry N, Koh ES, Ebert MA, Moore A, Francis RJ, Rowshanfarzad P, Hassan GM, Ng SP, Back M, Chua B, Pinkham MB, Pullar A, Phillips C, Sia J, Gorayski P, Le H, Gill S, Croker J, Bucknell N, Bettington C, Syed F, Jung K, Chang J, Bece A, Clark C, Wada M, Cook O, Whitehead A, Rossi A, Grose A, Scott AM. [18]F-fluoroethyl-l-tyrosine positron emission tomography for radiotherapy target delineation: Results from a Radiation Oncology credentialing program. Phys Imaging Radiat Oncol 2024; 30:100568. [PMID: 38585372 PMCID: PMC10998205 DOI: 10.1016/j.phro.2024.100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Background and purpose The [18]F-fluoroethyl-l-tyrosine (FET) PET in Glioblastoma (FIG) study is an Australian prospective, multi-centre trial evaluating FET PET for newly diagnosed glioblastoma management. The Radiation Oncology credentialing program aimed to assess the feasibility in Radiation Oncologist (RO) derivation of standard-of-care target volumes (TVMR) and hybrid target volumes (TVMR+FET) incorporating pre-defined FET PET biological tumour volumes (BTVs). Materials and methods Central review and analysis of TVMR and TVMR+FET was undertaken across three benchmarking cases. BTVs were pre-defined by a sole nuclear medicine expert. Intraclass correlation coefficient (ICC) confidence intervals (CIs) evaluated volume agreement. RO contour spatial and boundary agreement were evaluated (Dice similarity coefficient [DSC], Jaccard index [JAC], overlap volume [OV], Hausdorff distance [HD] and mean absolute surface distance [MASD]). Dose plan generation (one case per site) was assessed. Results Data from 19 ROs across 10 trial sites (54 initial submissions, 8 resubmissions requested, 4 conditional passes) was assessed with an initial pass rate of 77.8 %; all resubmissions passed. TVMR+FET were significantly larger than TVMR (p < 0.001) for all cases. RO gross tumour volume (GTV) agreement was moderate-to-excellent for GTVMR (ICC = 0.910; 95 % CI, 0.708-0.997) and good-to-excellent for GTVMR+FET (ICC = 0.965; 95 % CI, 0.871-0.999). GTVMR+FET showed greater spatial overlap and boundary agreement compared to GTVMR. For the clinical target volume (CTV), CTVMR+FET showed lower average boundary agreement versus CTVMR (MASD: 1.73 mm vs. 1.61 mm, p = 0.042). All sites passed the planning exercise. Conclusions The credentialing program demonstrated feasibility in successful credentialing of 19 ROs across 10 sites, increasing national expertise in TVMR+FET delineation.
Collapse
Affiliation(s)
- Nathaniel Barry
- School of Physics, Mathematics and Computing, University of Western Australia, Crawley, WA, Australia
- Centre for Advanced Technologies in Cancer Research (CATCR), Perth, WA, Australia
| | - Eng-Siew Koh
- South Western Sydney Clinical School, University of New South Wales, Australia
| | - Martin A. Ebert
- School of Physics, Mathematics and Computing, University of Western Australia, Crawley, WA, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Australian Centre for Quantitative Imaging, Medical School, University of Western Australia, Crawley, WA, Australia
- Centre for Advanced Technologies in Cancer Research (CATCR), Perth, WA, Australia
| | - Alisha Moore
- Trans Tasman Radiation Oncology Group (TROG) Cancer Research, Newcastle, NSW Australia
| | - Roslyn J. Francis
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Australian Centre for Quantitative Imaging, Medical School, University of Western Australia, Crawley, WA, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, University of Western Australia, Crawley, WA, Australia
- Centre for Advanced Technologies in Cancer Research (CATCR), Perth, WA, Australia
| | - Ghulam Mubashar Hassan
- School of Physics, Mathematics and Computing, University of Western Australia, Crawley, WA, Australia
| | - Sweet P. Ng
- Department of Radiation Oncology, Austin Health, Heidelberg, VIC, Australia
| | - Michael Back
- Department of Radiation Oncology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Benjamin Chua
- Department of Radiation Oncology, Royal Brisbane Womens Hospital, Brisbane, QLD, Australia
| | - Mark B. Pinkham
- Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Andrew Pullar
- Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Claire Phillips
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, VIC, Australia
| | - Joseph Sia
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, VIC, Australia
| | - Peter Gorayski
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Suki Gill
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Jeremy Croker
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Nicholas Bucknell
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Catherine Bettington
- Department of Radiation Oncology, Royal Brisbane Womens Hospital, Brisbane, QLD, Australia
| | - Farhan Syed
- Department of Radiation Oncology, The Canberra Hospital, Canberra, ACT, Australia
| | - Kylie Jung
- Department of Radiation Oncology, The Canberra Hospital, Canberra, ACT, Australia
| | - Joe Chang
- South Western Sydney Clinical School, University of New South Wales, Australia
| | - Andrej Bece
- Department of Radiation Oncology, St George Hospital, Kogarah, NSW, Australia
| | - Catherine Clark
- Department of Radiation Oncology, St George Hospital, Kogarah, NSW, Australia
| | - Mori Wada
- Department of Radiation Oncology, Austin Health, Heidelberg, VIC, Australia
| | - Olivia Cook
- Trans Tasman Radiation Oncology Group (TROG) Cancer Research, Newcastle, NSW Australia
| | - Angela Whitehead
- Trans Tasman Radiation Oncology Group (TROG) Cancer Research, Newcastle, NSW Australia
| | - Alana Rossi
- Trans Tasman Radiation Oncology Group (TROG) Cancer Research, Newcastle, NSW Australia
| | - Andrew Grose
- Trans Tasman Radiation Oncology Group (TROG) Cancer Research, Newcastle, NSW Australia
| | - Andrew M. Scott
- Department of Molecular Imaging and Therapy, Austin Health, and University of Melbourne, Melbourne, VIC, Australia
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Heidari M, Shokrani P. Imaging Role in Diagnosis, Prognosis, and Treatment Response Prediction Associated with High-grade Glioma. JOURNAL OF MEDICAL SIGNALS & SENSORS 2024; 14:7. [PMID: 38993200 PMCID: PMC11111132 DOI: 10.4103/jmss.jmss_30_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/31/2022] [Accepted: 03/14/2023] [Indexed: 07/13/2024]
Abstract
Background Glioma is one of the most drug and radiation-resistant tumors. Gliomas suffer from inter- and intratumor heterogeneity which makes the outcome of similar treatment protocols vary from patient to patient. This article is aimed to overview the potential imaging markers for individual diagnosis, prognosis, and treatment response prediction in malignant glioma. Furthermore, the correlation between imaging findings and biological and clinical information of glioma patients is reviewed. Materials and Methods The search strategy in this study is to select related studies from scientific websites such as PubMed, Scopus, Google Scholar, and Web of Science published until 2022. It comprised a combination of keywords such as Biomarkers, Diagnosis, Prognosis, Imaging techniques, and malignant glioma, according to Medical Subject Headings. Results Some imaging parameters that are effective in glioma management include: ADC, FA, Ktrans, regional cerebral blood volume (rCBV), cerebral blood flow (CBF), ve, Cho/NAA and lactate/lipid ratios, intratumoral uptake of 18F-FET (for diagnostic application), RD, ADC, ve, vp, Ktrans, CBFT1, rCBV, tumor blood flow, Cho/NAA, lactate/lipid, MI/Cho, uptakes of 18F-FET, 11C-MET, and 18F-FLT (for prognostic and predictive application). Cerebral blood volume and Ktrans are related to molecular markers such as vascular endothelial growth factor (VEGF). Preoperative ADCmin value of GBM tumors is associated with O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status. 2-hydroxyglutarate metabolite and dynamic 18F-FDOPA positron emission tomography uptake are related to isocitrate dehydrogenase (IDH) mutations. Conclusion Parameters including ADC, RD, FA, rCBV, Ktrans, vp, and uptake of 18F-FET are useful for diagnosis, prognosis, and treatment response prediction in glioma. A significant correlation between molecular markers such as VEGF, MGMT, and IDH mutations with some diffusion and perfusion imaging parameters has been identified.
Collapse
Affiliation(s)
- Maryam Heidari
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Shokrani
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Ryan J, Hardcastle N, Francis R, Ferjančič P, Ng SP, Koh ES, Geso M, Kelly J, Ebert MA. The impact of fluorine-18-fluoroethyltyrosine positron emission tomography scan timing on radiotherapy planning in newly diagnosed patients with glioblastoma. Phys Imaging Radiat Oncol 2024; 29:100536. [PMID: 38303922 PMCID: PMC10831153 DOI: 10.1016/j.phro.2024.100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/01/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
Background and purpose Glioblastoma is one of the most common and aggressive primary brain tumours in adults. Though radiation therapy (RT) techniques have progressed significantly in recent decades, patient survival has seen little improvement. However, an area of promise is the use of fluorine-18-fluoroethyltyrosine positron-emission-tomography (18F-FET PET) imaging to assist in RT target delineation. This retrospective study aims to assess the impact of 18F-FET PET scan timing on the resultant RT target volumes and subsequent RT plans in post-operative glioblastoma patients. Materials and Methods The imaging and RT treatment data of eight patients diagnosed with glioblastoma and treated at a single institution were analysed. Before starting RT, each patient had two 18F-FET-PET scans acquired within seven days of each other. The information from these 18F-FET-PET scans aided in the creation of two novel target volume sets. The new volumes and plans were compared with each other and the originals. Results The median clinical target volume (CTV) 1 was statistically smaller than CTV 2. The median Dice score for the CTV1/CTV2 was 0.98 and, of the voxels that differ (median 6.5 cc), 99.7% were covered with a 5 mm expansion. Overall organs at risk (OAR) and target dosimetry were similar in the PTV1 and PTV2 plans. Conclusion Provided the 18F-FET PET scan is acquired within two weeks of the RT planning and a comprehensive approach is taken to CTV delineation, the timing of scan acquisition has minimal impact on the resulting RT plan.
Collapse
Affiliation(s)
- John Ryan
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Melbourne 3800, Victoria, Australia
- Medical Radiations Department, RMIT University, Bundoora, Melbourne 3083, Melbourne, Australia
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Grattan St, Melbourne 3000, Victoria, Australia
| | - Roslyn Francis
- Medical School, The University of Western Australia, 35 Stirling Highway, Perth 6009, Western Australia, Australia
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Nedlands, Perth 6009, Western Australia, Australia
| | - Peter Ferjančič
- Department of Medical Physics, Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison 53705, Wisconsin, United States
| | - Sweet Ping Ng
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Heidelberg, Melbourne 3084, Victoria, Australia
| | - Eng-Siew Koh
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, Sydney 2170, New South Wales, Australia
- South West Clinical School, UNSW Medicine, University of New South Wales, Liverpool, Sydney 2170, New South Wales, Australia
| | - Moshi Geso
- Medical Radiations Department, RMIT University, Bundoora, Melbourne 3083, Melbourne, Australia
| | - Jennifer Kelly
- Medical Radiations Department, RMIT University, Bundoora, Melbourne 3083, Melbourne, Australia
| | - Martin A Ebert
- Department of Medical Physics, Sir Charles Gairdner Hospital, Nedlands, Perth, 6009, Western Australia, Australia
- School of Physics, Mathematics and Computing, and Australian Centre for Quantitative Imaging, University of Western Australia, Crawley, Perth 6009, Western Australia, Australia
- School of Medicine and Population Health, University of Wisconsin, Madison, Wisconsin 53705, Wisconsin, USA
| |
Collapse
|
6
|
Barry N, Francis RJ, Ebert MA, Koh ES, Rowshanfarzad P, Hassan GM, Kendrick J, Gan HK, Lee ST, Lau E, Moffat BA, Fitt G, Moore A, Thomas P, Pattison DA, Akhurst T, Alipour R, Thomas EL, Hsiao E, Schembri GP, Lin P, Ly T, Yap J, Kirkwood I, Vallat W, Khan S, Krishna D, Ngai S, Yu C, Beuzeville S, Yeow TC, Bailey D, Cook O, Whitehead A, Dykyj R, Rossi A, Grose A, Scott AM. Delineation and agreement of FET PET biological volumes in glioblastoma: results of the nuclear medicine credentialing program from the prospective, multi-centre trial evaluating FET PET In Glioblastoma (FIG) study-TROG 18.06. Eur J Nucl Med Mol Imaging 2023; 50:3970-3981. [PMID: 37563351 PMCID: PMC10611835 DOI: 10.1007/s00259-023-06371-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
PURPOSE The O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) PET in Glioblastoma (FIG) trial is an Australian prospective, multi-centre study evaluating FET PET for glioblastoma patient management. FET PET imaging timepoints are pre-chemoradiotherapy (FET1), 1-month post-chemoradiotherapy (FET2), and at suspected progression (FET3). Before participant recruitment, site nuclear medicine physicians (NMPs) underwent credentialing of FET PET delineation and image interpretation. METHODS Sites were required to complete contouring and dynamic analysis by ≥ 2 NMPs on benchmarking cases (n = 6) assessing biological tumour volume (BTV) delineation (3 × FET1) and image interpretation (3 × FET3). Data was reviewed by experts and violations noted. BTV definition includes tumour-to-background ratio (TBR) threshold of 1.6 with crescent-shaped background contour in the contralateral normal brain. Recurrence/pseudoprogression interpretation (FET3) required assessment of maximum TBR (TBRmax), dynamic analysis (time activity curve [TAC] type, time to peak), and qualitative assessment. Intraclass correlation coefficient (ICC) assessed volume agreement, coefficient of variation (CoV) compared maximum/mean TBR (TBRmax/TBRmean) across cases, and pairwise analysis assessed spatial (Dice similarity coefficient [DSC]) and boundary agreement (Hausdorff distance [HD], mean absolute surface distance [MASD]). RESULTS Data was accrued from 21 NMPs (10 centres, n ≥ 2 each) and 20 underwent review. The initial pass rate was 93/119 (78.2%) and 27/30 requested resubmissions were completed. Violations were found in 25/72 (34.7%; 13/12 minor/major) of FET1 and 22/74 (29.7%; 14/8 minor/major) of FET3 reports. The primary reasons for resubmission were as follows: BTV over-contour (15/30, 50.0%), background placement (8/30, 26.7%), TAC classification (9/30, 30.0%), and image interpretation (7/30, 23.3%). CoV median and range for BTV, TBRmax, and TBRmean were 21.53% (12.00-30.10%), 5.89% (5.01-6.68%), and 5.01% (3.37-6.34%), respectively. BTV agreement was moderate to excellent (ICC = 0.82; 95% CI, 0.63-0.97) with good spatial (DSC = 0.84 ± 0.09) and boundary (HD = 15.78 ± 8.30 mm; MASD = 1.47 ± 1.36 mm) agreement. CONCLUSION The FIG study credentialing program has increased expertise across study sites. TBRmax and TBRmean were robust, with considerable variability in BTV delineation and image interpretation observed.
Collapse
Affiliation(s)
- Nathaniel Barry
- School of Physics, Mathematics and Computing, University of Western Australia, WA, Crawley, Australia.
- Centre for Advanced Technologies in Cancer Research (CATCR), WA, Perth, Australia.
| | - Roslyn J Francis
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Australian Centre for Quantitative Imaging, Medical School, University of Western Australia, Crawley, WA, Australia
| | - Martin A Ebert
- School of Physics, Mathematics and Computing, University of Western Australia, WA, Crawley, Australia
- Centre for Advanced Technologies in Cancer Research (CATCR), WA, Perth, Australia
- Australian Centre for Quantitative Imaging, Medical School, University of Western Australia, Crawley, WA, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Eng-Siew Koh
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres, Liverpool, NSW, Australia
- South Western Sydney Clinical School, UNSW Medicine, University of New South Wales, Liverpool, NSW, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, University of Western Australia, WA, Crawley, Australia
- Centre for Advanced Technologies in Cancer Research (CATCR), WA, Perth, Australia
| | - Ghulam Mubashar Hassan
- School of Physics, Mathematics and Computing, University of Western Australia, WA, Crawley, Australia
| | - Jake Kendrick
- School of Physics, Mathematics and Computing, University of Western Australia, WA, Crawley, Australia
- Centre for Advanced Technologies in Cancer Research (CATCR), WA, Perth, Australia
| | - Hui K Gan
- Department of Medical Oncology, Austin Hospital, Melbourne, VIC, Australia
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Sze T Lee
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia
| | - Eddie Lau
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia
- Department of Radiology, Austin Health, Melbourne, VIC, Australia
- Department of Radiology, University of Melbourne, Melbourne, VIC, Australia
| | - Bradford A Moffat
- Department of Radiology, University of Melbourne, Melbourne, VIC, Australia
| | - Greg Fitt
- Department of Radiology, Austin Health, Melbourne, VIC, Australia
| | - Alisha Moore
- Trans Tasman Radiation Oncology Group (TROG Cancer Research), University of Newcastle, Callaghan, NSW, Australia
| | - Paul Thomas
- Department of Nuclear Medicine, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - David A Pattison
- Department of Nuclear Medicine, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - Tim Akhurst
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, Melbourne, VIC, Australia
| | - Ramin Alipour
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, Melbourne, VIC, Australia
| | - Elizabeth L Thomas
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Edward Hsiao
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Geoffrey P Schembri
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Peter Lin
- South Western Sydney Clinical School, UNSW Medicine, University of New South Wales, Liverpool, NSW, Australia
- Department of Nuclear Medicine, Liverpool Hospital, Liverpool, NSW, Australia
| | - Tam Ly
- Department of Nuclear Medicine, Liverpool Hospital, Liverpool, NSW, Australia
| | - June Yap
- Department of Nuclear Medicine, Liverpool Hospital, Liverpool, NSW, Australia
| | - Ian Kirkwood
- Department of Nuclear Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Wilson Vallat
- Department of Nuclear Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Shahroz Khan
- Department of Nuclear Medicine, Canberra Hospital, Woden, ACT, Australia
| | - Dayanethee Krishna
- Department of Nuclear Medicine, Canberra Hospital, Woden, ACT, Australia
| | - Stanley Ngai
- Department of Nuclear Medicine, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Chris Yu
- Department of Nuclear Medicine, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Scott Beuzeville
- Department of Nuclear Medicine, St George Hospital, Kogarah, NSW, Australia
| | - Tow C Yeow
- Department of Nuclear Medicine, St George Hospital, Kogarah, NSW, Australia
| | - Dale Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia
- Faculty of Medicine 7 Health, University of Sydney, Sydney, NSW, Australia
| | - Olivia Cook
- Trans Tasman Radiation Oncology Group (TROG Cancer Research), University of Newcastle, Callaghan, NSW, Australia
| | - Angela Whitehead
- Trans Tasman Radiation Oncology Group (TROG Cancer Research), University of Newcastle, Callaghan, NSW, Australia
| | - Rachael Dykyj
- Trans Tasman Radiation Oncology Group (TROG Cancer Research), University of Newcastle, Callaghan, NSW, Australia
| | - Alana Rossi
- Trans Tasman Radiation Oncology Group (TROG Cancer Research), University of Newcastle, Callaghan, NSW, Australia
| | - Andrew Grose
- Trans Tasman Radiation Oncology Group (TROG Cancer Research), University of Newcastle, Callaghan, NSW, Australia
| | - Andrew M Scott
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Koh ES, Gan HK, Senko C, Francis RJ, Ebert M, Lee ST, Lau E, Khasraw M, Nowak AK, Bailey DL, Moffat BA, Fitt G, Hicks RJ, Coffey R, Verhaak R, Walsh KM, Barnes EH, De Abreu Lourenco R, Rosenthal M, Adda L, Foroudi F, Lasocki A, Moore A, Thomas PA, Roach P, Back M, Leonard R, Scott AM. [ 18F]-fluoroethyl-L-tyrosine (FET) in glioblastoma (FIG) TROG 18.06 study: protocol for a prospective, multicentre PET/CT trial. BMJ Open 2023; 13:e071327. [PMID: 37541751 PMCID: PMC10407346 DOI: 10.1136/bmjopen-2022-071327] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/08/2023] [Indexed: 08/06/2023] Open
Abstract
INTRODUCTION Glioblastoma is the most common aggressive primary central nervous system cancer in adults characterised by uniformly poor survival. Despite maximal safe resection and postoperative radiotherapy with concurrent and adjuvant temozolomide-based chemotherapy, tumours inevitably recur. Imaging with O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) positron emission tomography (PET) has the potential to impact adjuvant radiotherapy (RT) planning, distinguish between treatment-induced pseudoprogression versus tumour progression as well as prognostication. METHODS AND ANALYSIS The FET-PET in Glioblastoma (FIG) study is a prospective, multicentre, non-randomised, phase II study across 10 Australian sites and will enrol up to 210 adults aged ≥18 years with newly diagnosed glioblastoma. FET-PET will be performed at up to three time points: (1) following initial surgery and prior to commencement of chemoradiation (FET-PET1); (2) 4 weeks following concurrent chemoradiation (FET-PET2); and (3) within 14 days of suspected clinical and/or radiological progression on MRI (performed at the time of clinical suspicion of tumour recurrence) (FET-PET3). The co-primary outcomes are: (1) to investigate how FET-PET versus standard MRI impacts RT volume delineation and (2) to determine the accuracy and management impact of FET-PET in distinguishing pseudoprogression from true tumour progression. The secondary outcomes are: (1) to investigate the relationships between FET-PET parameters (including dynamic uptake, tumour to background ratio, metabolic tumour volume) and progression-free survival and overall survival; (2) to assess the change in blood and tissue biomarkers determined by serum assay when comparing FET-PET data acquired prior to chemoradiation with other prognostic markers, looking at the relationships of FET-PET versus MRI-determined site/s of progressive disease post chemotherapy treatment with MRI and FET-PET imaging; and (3) to estimate the health economic impact of incorporating FET-PET into glioblastoma management and in the assessment of post-treatment pseudoprogression or recurrence/true progression. Exploratory outcomes include the correlation of multimodal imaging, blood and tumour biomarker analyses with patterns of failure and survival. ETHICS AND DISSEMINATION The study protocol V.2.0 dated 20 November 2020 has been approved by a lead Human Research Ethics Committee (Austin Health, Victoria). Other clinical sites will provide oversight through local governance processes, including obtaining informed consent from suitable participants. The study will be conducted in accordance with the principles of the Declaration of Helsinki and Good Clinical Practice. Results of the FIG study (TROG 18.06) will be disseminated via relevant scientific and consumer forums and peer-reviewed publications. TRIAL REGISTRATION NUMBER ANZCTR ACTRN12619001735145.
Collapse
Affiliation(s)
- Eng-Siew Koh
- Radiation Oncology, Liverpool Hospital, Liverpool, New South Wales, Australia
- South West Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Hui K Gan
- Austin Health, Department of Medical Oncology, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Clare Senko
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia
| | - Roslyn J Francis
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Martin Ebert
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
- School of Physics, Mathematics and Computing, University of Western Australia, Crawley, Western Australia, Australia
| | - Sze Ting Lee
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia
| | - Eddie Lau
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia
- Department of Radiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Radiology, Austin Health, Heidelberg, Victoria, Australia
| | - Mustafa Khasraw
- Department of Neurosurgery and Preston Robert Tisch Brain Tumor Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Anna K Nowak
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Dale L Bailey
- Faculty of Medicine & Health, University of Sydney, Camperdown, New South Wales, Australia
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Bradford A Moffat
- Melbourne Brain Centre Imaging Unit, Department of Radiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Greg Fitt
- Department of Radiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Radiology, Austin Health, Heidelberg, Victoria, Australia
| | - Rodney J Hicks
- Department of Radiology, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Robert Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Roel Verhaak
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Neurosurgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Kyle M Walsh
- Department of Neurosurgery and Preston Robert Tisch Brain Tumor Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Elizabeth H Barnes
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard De Abreu Lourenco
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, Broadway, New South Wales, Australia
| | - Mark Rosenthal
- School of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Lucas Adda
- The Cooperative Trials Group for Neuro-Oncology (COGNO) Consumer Advisor Panel, National Health and Medical Research Council (NHMRC) Clinical Trials Centre (CTC), University of Sydney, Sydney, New South Wales, Australia
| | - Farshad Foroudi
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Radiation Oncology, Austin Health, Melbourne, Victoria, Australia
| | - Arian Lasocki
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Alisha Moore
- Trans Tasman Radiation Oncology Group (TROG), Newcastle, New South Wales, Australia
| | - Paul A Thomas
- Department of Nuclear Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Paul Roach
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- The University of Sydney, Camperdown, New South Wales, Australia
| | - Michael Back
- Department of Radiation Oncology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Faculty of Medicine & Health, University of Sydney, Sydney, New South Wales, Australia
| | - Robyn Leonard
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Andrew M Scott
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
8
|
Harat M, Rakowska J, Harat M, Szylberg T, Furtak J, Miechowicz I, Małkowski B. Combining amino acid PET and MRI imaging increases accuracy to define malignant areas in adult glioma. Nat Commun 2023; 14:4572. [PMID: 37516762 PMCID: PMC10387066 DOI: 10.1038/s41467-023-39731-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/24/2023] [Indexed: 07/31/2023] Open
Abstract
Accurate determination of the extent and grade of adult-type diffuse gliomas is critical to patient management. In clinical practice, contrast-enhancing areas of diffuse gliomas in magnetic resonance imaging (MRI) sequences are usually used to target biopsy, surgery, and radiation therapy, but there can be discrepancies between these areas and the actual tumor extent. Here we show that adding 18F-fluoro-ethyl-tyrosine positron emission tomography (FET-PET) to MRI sequences accurately locates the most malignant areas of contrast-enhancing gliomas, potentially impacting subsequent management and outcomes. We present a prospective analysis of over 300 serial biopsy specimens from 23 patients with contrast-enhancing adult-type diffuse gliomas using a hybrid PET-MRI scanner to compare T2-weighted and contrast-enhancing MRI images with FET-PET. In all cases, we observe and confirm high FET uptake in early PET acquisitions (5-15 min after 18F-FET administration) outside areas of contrast enhancement on MRI, indicative of high-grade glioma. In 30% cases, inclusion of FET-positive sites changes the biopsy result to a higher tumor grade.
Collapse
Affiliation(s)
- Maciej Harat
- Department of Neurooncology and Radiosurgery, Franciszek Lukaszczyk Oncology Center, Bydgoszcz, Poland.
- Department of Oncology and Brachytherapy, Faculty of Medicine, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.
| | - Józefina Rakowska
- Department of Neurosurgery, 10th Military Research Hospital, Bydgoszcz, Poland
| | - Marek Harat
- Department of Neurosurgery, 10th Military Research Hospital, Bydgoszcz, Poland
- Centre of Medical Sciences, Bydgoszcz, University of Science and Technology, Bydgoszcz, Poland
| | - Tadeusz Szylberg
- Department of Pathomorphology, 10th Military Research Hospital, Bydgoszcz, Poland
| | - Jacek Furtak
- Department of Neurosurgery, 10th Military Research Hospital, Bydgoszcz, Poland
| | - Izabela Miechowicz
- Department of Computer Science and Statistics, University of Medical Sciences, Poznan, Poland
| | - Bogdan Małkowski
- Department of Nuclear Medicine, Franciszek Lukaszczyk Oncology Center, Bydgoszcz, Poland.
- Department of Positron Emission Tomography and Molecular Imaging, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.
| |
Collapse
|
9
|
Djekidel M, Alsadi R, Abi Akl M, Bouhali O, O'Doherty J. Tumor microenvironment and fibroblast activation protein inhibitor (FAPI) PET: developments toward brain imaging. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1183471. [PMID: 39355017 PMCID: PMC11440979 DOI: 10.3389/fnume.2023.1183471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/03/2023] [Indexed: 10/03/2024]
Abstract
Fibroblast activation protein (FAP) is a type-II membrane bound glycoprotein specifically expressed by activated fibroblasts almost exclusively in pathological conditions including arthritis, fibrosis and cancer. FAP is overexpressed in cancer-associated fibroblasts (CAFs) located in tumor stroma, and is known to be involved in a variety of tumor-promoting activities such as angiogenesis, proliferation, resistance to chemotherapy, extracellular matrix remodeling and immunosuppression. In most cancer types, higher FAP expression is associated with worse clinical outcomes, leading to the hypothesis that FAP activity is involved in cancer development, cancer cell migration, and cancer spread. Recently, various high selectivity FAP inhibitors (FAPIs) have been developed and subsequently used for positron emission tomography (PET) imaging of different pathologies. Considering the paucity of widely available and especially mainstream reliable radioligands in brain cancer PET imaging, and the poor survival rates of patients with certain types of brain cancer such as glioblastoma, FAPI-PET represents a major development in enabling the detection of small primary or metastatic lesions in the brain due to its biological characteristics and low background accumulation. In this work, we aim to summarize the potential avenues for use of FAPI-PET, from the basic biological processes to oncologic imaging and with a main focus on brain imaging.
Collapse
Affiliation(s)
- Mehdi Djekidel
- Department of Radiology/Nuclear Medicine, Northwell Health, New York, NY, United States
| | - Rahaf Alsadi
- Division of Arts and Science, Texas A&M University at Qatar, Doha, Qatar
| | - Maya Abi Akl
- Division of Arts and Science, Texas A&M University at Qatar, Doha, Qatar
- Department of Electronics and Information Systems, Medical Image and Signal Processing (MEDISIP), Ghent University, Ghent, Belgium
| | - Othmane Bouhali
- Division of Arts and Science, Texas A&M University at Qatar, Doha, Qatar
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Jim O'Doherty
- Siemens Medical Solutions, Malvern, PA, United States
- Department of Radiology & Radiological Sciences, Medical University of South Carolina, Charleston, SC, United States
- Radiography and Diagnostic Imaging, University College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Abstract
Computed tomography (CT), MR imaging, and PET with fluorodeoxyglucose F18/CT are commonly used for radiation therapy planning; however, issues including precise nodal staging on CT or false positive results on PET/CT limit their usability. Clinical trials using fibroblast activation protein ligands for additional imaging have provided promising results regarding staging and target volume delineation-particularly suitable for sarcoma, some gastrointestinal tumors, head and neck tumors, and lung and pancreatic cancer. Although further prospective trials are necessary to identify clinical settings for its application in radiation oncology, fibroblast activation protein inhibitor PET/CT indisputably represents an excellent opportunity for assisting radiotherapy planning.
Collapse
Affiliation(s)
- Stefan A Koerber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center, Heidelberg, Germany; Department of Radiation Oncology, Barmherzige Brueder Hospital Regensburgh, Regensburg, Germany.
| |
Collapse
|
11
|
Niyazi M, Andratschke N, Bendszus M, Chalmers AJ, Erridge SC, Galldiks N, Lagerwaard FJ, Navarria P, Munck Af Rosenschöld P, Ricardi U, van den Bent MJ, Weller M, Belka C, Minniti G. ESTRO-EANO guideline on target delineation and radiotherapy details for glioblastoma. Radiother Oncol 2023; 184:109663. [PMID: 37059335 DOI: 10.1016/j.radonc.2023.109663] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND AND PURPOSE Target delineation in glioblastoma is still a matter of extensive research and debate. This guideline aims to update the existing joint European consensus on delineation of the clinical target volume (CTV) in adult glioblastoma patients. MATERIAL AND METHODS The ESTRO Guidelines Committee identified 14 European experts in close interaction with the ESTRO clinical committee and EANO who discussed and analysed the body of evidence concerning contemporary glioblastoma target delineation, then took part in a two-step modified Delphi process to address open questions. RESULTS Several key issues were identified and are discussed including i) pre-treatment steps and immobilisation, ii) target delineation and the use of standard and novel imaging techniques, and iii) technical aspects of treatment including planning techniques and fractionation. Based on the EORTC recommendation focusing on the resection cavity and residual enhancing regions on T1-sequences with the addition of a reduced 15 mm margin, special situations are presented with corresponding potential adaptations depending on the specific clinical situation. CONCLUSIONS The EORTC consensus recommends a single clinical target volume definition based on postoperative contrast-enhanced T1 abnormalities, using isotropic margins without the need to cone down. A PTV margin based on the individual mask system and IGRT procedures available is advised; this should usually be no greater than 3 mm when using IGRT.
Collapse
Affiliation(s)
- Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany.
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Sara C Erridge
- Edinburgh Centre for Neuro-Oncology, University of Edinburgh, Western General Hospital, Edinburgh EH4 1EU, UK
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany; Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany; Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany
| | - Frank J Lagerwaard
- Department of Radiation Oncology, Amsterdam UMC location Vrije Universiteit Amsterdam, the Netherlands
| | - Pierina Navarria
- Radiotherapy and Radiosurgery Department, IRCCS, Humanitas Research Hospital, Rozzano, MI, Italy
| | - Per Munck Af Rosenschöld
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, and Lund University, Lund, Sweden
| | | | | | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Giuseppe Minniti
- Dept. of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy; IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| |
Collapse
|
12
|
Ryan JT, Nakayama M, Gleeson I, Mannion L, Geso M, Kelly J, Ng SP, Hardcastle N. Functional brain imaging interventions for radiation therapy planning in patients with glioblastoma: a systematic review. Radiat Oncol 2022; 17:178. [PMID: 36371225 PMCID: PMC9653002 DOI: 10.1186/s13014-022-02146-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 10/14/2022] [Indexed: 11/15/2022] Open
Abstract
RATIONALE This systematic review aims to synthesise the outcomes of different strategies of incorporating functional biological markers in the radiation therapy plans of patients with glioblastoma to support clinicians and further research. METHODS The systematic review protocol was registered on PROSPERO (CRD42021221021). A structured search for publications was performed following PRISMA guidelines. Quality assessment was performed using the Newcastle-Ottawa Scale. Study characteristics, intervention methodology and outcomes were extracted using Covidence. Data analysis focused on radiation therapy target volumes, toxicity, dose distributions, recurrence and survival mapped to functional image-guided radiotherapy interventions. RESULTS There were 5733 citations screened, with 53 citations (n = 32 studies) meeting review criteria. Studies compared standard radiation therapy planning volumes with functional image-derived volumes (n = 20 studies), treated radiation therapy volumes with recurrences (n = 15 studies), the impact on current standard target delineations (n = 9 studies), treated functional volumes and survival (n = 8 studies), functionally guided dose escalation (n = 8 studies), radiomics (n = 4 studies) and optimal organ at risk sparing (n = 3 studies). The approaches to target outlining and dose escalation were heterogeneous. The analysis indicated an improvement in median overall survival of over two months compared with a historical control group. Simultaneous-integrated-boost dose escalation of 72-76 Gy in 30 fractions appeared to have an acceptable toxicity profile when delivered with inverse planning to a volume smaller than 100 cm[Formula: see text]. CONCLUSION There was significant heterogeneity between the approaches taken by different study groups when implementing functional image-guided radiotherapy. It is recommended that functional imaging data be incorporated into the gross tumour volume with appropriate technology-specific margins used to create the clinical target volume when designing radiation therapy plans for patients with glioblastoma.
Collapse
Affiliation(s)
- John T Ryan
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Melbourne, Australia
- Medical Radiations Department, School of Health and Biomedical Sciences, STEM College, RMIT University Bundoora, Melbourne, Australia
| | - Masao Nakayama
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuou-ku, Kobe, Japan
| | - Ian Gleeson
- Cancer Research UK RadNet Cambridge, Medical Physics, NHS Foundation Trust, Addenbrookes Hospital, Cambridge, CB2 0QQ UK
| | - Liam Mannion
- Division of Midwifery and Radiography, School of Health Sciences, University of London, Northampton Square, London, UK
| | - Moshi Geso
- Medical Radiations Department, School of Health and Biomedical Sciences, STEM College, RMIT University Bundoora, Melbourne, Australia
| | - Jennifer Kelly
- Medical Radiations Department, School of Health and Biomedical Sciences, STEM College, RMIT University Bundoora, Melbourne, Australia
| | - Sweet Ping Ng
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, 145 Studley Rd, Heidelberg, Melbourne, Australia
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Australia
| |
Collapse
|
13
|
Şahin M, Akgun E, Sirolu S, Can G, Sayman HB, Oner Dincbas F. Is there any additional benefit of 68Ga-PSMA PET on radiotherapy target volume definition in patients with glioblastoma? Br J Radiol 2022; 95:20220049. [PMID: 35993417 PMCID: PMC9793479 DOI: 10.1259/bjr.20220049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/14/2022] [Accepted: 08/03/2022] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE To investigate the contribution of 68Gallium (68Ga)-PSMA (prostate-specific membrane antigen) positron emission tomography (PET) in defining radiotherapy (RT) target volume for glioblastoma and to compare the target volumes defined by Magnetic Resonance Imaging (MRI). METHODS RT planning Computed Tomography (CT) images were fused separately with pre-operative MRI and PET/MRI images of 10 glioblastoma patients, retrospectively. The contrast-enhanced area in T1 weighted MRI was contoured as gross tumor volume (GTV) and clinical target volume (CTV1) was obtained by including the cavity and T2/FLAIR hyperintense areas after giving a margin of 2 cm to the GTV. 68Ga-PSMA uptake area was contoured as biological tumor volume (BTV) and CTV2 was obtained with a margin of 2 cm to BTV. Planning target volumes (PTVs) were created with the 3 mm added to the CTVs. Conformity index (CI), dice similarity coefficient (DSC) and overlap volume (OV) were calculated by obtaining the intersection and union volumes. Volumetric comparison, similarity and overlap analyzes were performed statistically by Wilcoxon signed rank and One sample t-test. RESULTS The median GTV was 21,96 cc (1,04 - 82,04) and BTV was 25,58 cc (2,43 - 99,47). BTV was on average 47% larger than GTV which was statistically significant (p = 0.03). For GTV-BTV, CTV1-CTV2 and PTV1-PTV2; mean values of CI were 0,56, 0,76 and 0,76; DSC were 0,70, 0,86 and 0,86; OV were 0,88, 0,94 and 0,94, respectively. There was no significant difference on size and spatial similarity between CTV1 and CTV2, PTV1 and PTV2. CONCLUSION Altough BTV was larger than GTV, this significance was lost while we gave the same CTV margin including the peripheral edema. It seems that it may help to improve defining non-enhancing tumor part and also recurrent tumor volume. ADVANCES IN KNOWLEDGE Recent studies have focused on the role of 68Ga-PSMA PET in imaging of glial tumors. It has been observed that 68Ga-PSMA PET can clearly define the tumor borders and it can be beneficial in target volume delineation, especially in reirradiation of recurrent tumors.
Collapse
Affiliation(s)
- Merve Şahin
- Department of Radiation Oncology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Elife Akgun
- Department of Nuclear Medicine, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Sabri Sirolu
- Department of Radiology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Gunay Can
- Department of Public Health, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Haluk Burcak Sayman
- Department of Nuclear Medicine, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Fazilet Oner Dincbas
- Department of Radiation Oncology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
14
|
DEGRO practical guideline for central nervous system radiation necrosis part 1: classification and a multistep approach for diagnosis. Strahlenther Onkol 2022; 198:873-883. [PMID: 36038669 PMCID: PMC9515024 DOI: 10.1007/s00066-022-01994-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 10/31/2022]
Abstract
PURPOSE The Working Group for Neuro-Oncology of the German Society for Radiation Oncology in cooperation with members of the Neuro-Oncology Working Group of the German Cancer Society aimed to define a practical guideline for the diagnosis and treatment of radiation-induced necrosis (RN) of the central nervous system (CNS). METHODS Panel members of the DEGRO working group invited experts, participated in a series of conferences, supplemented their clinical experience, performed a literature review, and formulated recommendations for medical treatment of RN including bevacizumab in clinical routine. CONCLUSION Diagnosis and treatment of RN requires multidisciplinary structures of care and defined processes. Diagnosis has to be made on an interdisciplinary level with the joint knowledge of a neuroradiologist, radiation oncologist, neurosurgeon, neuropathologist, and neuro-oncologist. A multistep approach as an opportunity to review as many characteristics as possible to improve diagnostic confidence is recommended. Additional information about radiotherapy (RT) techniques is crucial for the diagnosis of RN. Misdiagnosis of untreated and progressive RN can lead to severe neurological deficits. In this practice guideline, we propose a detailed nomenclature of treatment-related changes and a multistep approach for their diagnosis.
Collapse
|
15
|
Castello A, Castellani M, Florimonte L, Ciccariello G, Mansi L, Lopci E. PET radiotracers in glioma: a review of clinical indications and evidence. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Radiotherapy Target Volume Definition in Newly Diagnosed High-Grade Glioma Using 18F-FET PET Imaging and Multiparametric MRI: An Inter Observer Agreement Study. Tomography 2022; 8:2030-2041. [PMID: 36006068 PMCID: PMC9415495 DOI: 10.3390/tomography8040170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Background: The aim of this prospective monocentric study was to assess the inter-observer agreement for tumor volume delineations by multiparametric MRI and 18-F-FET-PET/CT in newly diagnosed, untreated high-grade glioma (HGG) patients. Methods: Thirty patients HGG underwent O-(2-[18F]-fluoroethyl)-l-tyrosine(18F-FET) positron emission tomography (PET), and multiparametric MRI with computation of rCBV map and K2 map. Three nuclear physicians and three radiologists with different levels of experience delineated the 18-F-FET-PET/CT and 6 MRI sequences, respectively. Spatial similarity (Dice and Jaccard: DSC and JSC) and overlap (Overlap: OV) coefficients were calculated between the readers for each sequence. Results: DSC, JSC, and OV were high for 18F-FET PET/CT, T1-GD, and T2-FLAIR (>0.67). The Spearman correlation coefficient between readers was ≥0.6 for these sequences. Cross-comparison of similarity and overlap parameters showed significant differences for DSC and JSC between 18F-FET PET/CT and T2-FLAIR and for JSC between 18F-FET PET/CT and T1-GD with higher values for 18F-FET PET/CT. No significant difference was found between T1-GD and T2-FLAIR. rCBV, K2, b1000, and ADC showed correlation coefficients between readers <0.6. Conclusion: The interobserver agreements for tumor volume delineations were high for 18-F-FET-PET/CT, T1-GD, and T2-FLAIR. The DWI (b1000, ADC), rCBV, and K2-based sequences, as performed, did not seem sufficiently reproducible to be used in daily practice.
Collapse
|
17
|
Repeatability of image features extracted from FET PET in application to post-surgical glioblastoma assessment. Phys Eng Sci Med 2021; 44:1131-1140. [PMID: 34436751 DOI: 10.1007/s13246-021-01049-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/18/2021] [Indexed: 11/27/2022]
Abstract
Positron emission tomography (PET) imaging using the amino acid tracer O-[2-(18F)fluoroethyl]-L-tyrosine (FET) has gained increased popularity within the past decade in the management of glioblastoma (GBM). Radiomics features extracted from FET PET images may be sensitive to variations when imaging at multiple time points. It is therefore necessary to assess feature robustness to test-retest imaging. Eight patients with histologically confirmed GBM that had undergone post-surgical test-retest FET PET imaging were recruited. In total, 1578 radiomic features were extracted from biological tumour volumes (BTVs) delineated using a semi-automatic contouring method. Feature repeatability was assessed using the intraclass correlation coefficient (ICC). The effect of both bin width and filter choice on feature repeatability was also investigated. 59/106 (55.7%) features from the original image and 843/1472 (57.3%) features from filtered images had an ICC ≥ 0.85. Shape and first order features were most stable. Choice of bin width showed minimal impact on features defined as stable. The Laplacian of Gaussian (LoG, σ = 5 mm) and Wavelet filters (HLL and LHL) significantly improved feature repeatability (p ≪ 0.0001, p = 0.003, p = 0.002, respectively). Correlation of textural features with tumour volume was reported for transparency. FET PET radiomic features extracted from post-surgical images of GBM patients that are robust to test-retest imaging were identified. An investigation with a larger dataset is warranted to validate the findings in this study.
Collapse
|
18
|
Galldiks N, Niyazi M, Grosu AL, Kocher M, Langen KJ, Law I, Minniti G, Kim MM, Tsien C, Dhermain F, Soffietti R, Mehta MP, Weller M, Tonn JC. Contribution of PET imaging to radiotherapy planning and monitoring in glioma patients - a report of the PET/RANO group. Neuro Oncol 2021; 23:881-893. [PMID: 33538838 DOI: 10.1093/neuonc/noab013] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The management of patients with glioma usually requires multimodality treatment including surgery, radiotherapy, and systemic therapy. Accurate neuroimaging plays a central role for radiotherapy planning and follow-up after radiotherapy completion. In order to maximize the radiation dose to the tumor and to minimize toxic effects on the surrounding brain parenchyma, reliable identification of tumor extent and target volume delineation is crucial. The use of positron emission tomography (PET) for radiotherapy planning and monitoring in gliomas has gained considerable interest over the last several years, but Class I data are not yet available. Furthermore, PET has been used after radiotherapy for response assessment and to distinguish tumor progression from pseudoprogression or radiation necrosis. Here, the Response Assessment in Neuro-Oncology (RANO) working group provides a summary of the literature and recommendations for the use of PET imaging for radiotherapy of patients with glioma based on published studies, constituting levels 1-3 evidence according to the Oxford Centre for Evidence-based Medicine.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3,-4), Research Center Juelich, Juelich, Germany.,Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Düsseldorf, Cologne and Aachen, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Anca L Grosu
- Department of Radiation Oncology, University Hospital Freiburg, Freiburg, Germany
| | - Martin Kocher
- Institute of Neuroscience and Medicine (INM-3,-4), Research Center Juelich, Juelich, Germany.,Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3,-4), Research Center Juelich, Juelich, Germany.,Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Düsseldorf, Cologne and Aachen, Germany.,Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, University Hospital Copenhagen, Copenhagen, Denmark
| | - Giuseppe Minniti
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.,IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Christina Tsien
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Frederic Dhermain
- Department of Radiation Therapy, Institut de Cancerologie Gustave Roussy, Villejuif, France
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA.,Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Michael Weller
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Jörg-Christian Tonn
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
19
|
Unterrainer M, Ruf V, von Rohr K, Suchorska B, Mittlmeier LM, Beyer L, Brendel M, Wenter V, Kunz WG, Bartenstein P, Herms J, Niyazi M, Tonn JC, Albert NL. TERT-Promoter Mutational Status in Glioblastoma - Is There an Association With Amino Acid Uptake on Dynamic 18F-FET PET? Front Oncol 2021; 11:645316. [PMID: 33996563 PMCID: PMC8121001 DOI: 10.3389/fonc.2021.645316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
Objective The mutation of the ‘telomerase reverse transcriptase gene promoter’ (TERTp) has been identified as an important factor for individual prognostication and tumorigenesis and will be implemented in upcoming glioma classifications. Uptake characteristics on dynamic 18F-FET PET have been shown to serve as additional imaging biomarker for prognosis. However, data on the correlation of TERTp-mutational status and amino acid uptake on dynamic 18F-FET PET are missing. Therefore, we aimed to analyze whether static and dynamic 18F-FET PET parameters are associated with the TERTp-mutational status in de-novo IDH-wildtype glioblastoma and whether a TERTp-mutation can be predicted by dynamic 18F-FET PET. Methods Patients with de-novo IDH-wildtype glioblastoma, WHO grade IV, available TERTp-mutational status and dynamic 18F-FET PET scan prior to any therapy were included. Here, established clinical parameters maximal and mean tumor-to-background-ratios (TBRmax/TBRmean), the biological-tumor-volume (BTV) and minimal-time-to-peak (TTPmin) on dynamic PET were analyzed and correlated with the TERTp-mutational status. Results One hundred IDH-wildtype glioblastoma patients were evaluated; 85/100 of the analyzed tumors showed a TERTp-mutation (C228T or C250T), 15/100 were classified as TERTp-wildtype. None of the static PET parameters was associated with the TERTp-mutational status (median TBRmax 3.41 vs. 3.32 (p=0.362), TBRmean 2.09 vs. 2.02 (p=0.349) and BTV 26.1 vs. 22.4 ml (p=0.377)). Also, the dynamic PET parameter TTPmin did not differ in both groups (12.5 vs. 12.5 min, p=0.411). Within the TERTp-mutant subgroups (i.e., C228T (n=23) & C250T (n=62)), the median TBRmax (3.33 vs. 3.69, p=0.095), TBRmean (2.08 vs. 2.09, p=0.352), BTV (25.4 vs. 30.0 ml, p=0.130) and TTPmin (12.5 vs. 12.5 min, p=0.190) were comparable, too. Conclusion Uptake characteristics on dynamic 18F-FET PET are not associated with the TERTp-mutational status in glioblastoma However, as both, dynamic 18F-FET PET parameters as well as the TERTp-mutation status are well-known prognostic biomarkers, future studies should investigate the complementary and independent prognostic value of both factors in order to further stratify patients into risk groups.
Collapse
Affiliation(s)
- Marcus Unterrainer
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.,Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Viktoria Ruf
- Department of Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Katharina von Rohr
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Bogdana Suchorska
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | | | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Vera Wenter
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jochen Herms
- Department of Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Maximilian Niyazi
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Jörg C Tonn
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Nathalie Lisa Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
20
|
Oberacker E, Diesch C, Nadobny J, Kuehne A, Wust P, Ghadjar P, Niendorf T. Patient-Specific Planning for Thermal Magnetic Resonance of Glioblastoma Multiforme. Cancers (Basel) 2021; 13:cancers13081867. [PMID: 33919701 PMCID: PMC8070230 DOI: 10.3390/cancers13081867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hyperthermia was proven to enhance the efficacy of chemo- and radiation therapy treatment of glioblastoma multiforme, an aggressive brain tumor of poor prognosis. Despite good clinical results in other tumor types and locations, hyperthermia induced by electromagnetic waves in the radiofrequency range is not available so far for the treatment of brain tumors due to the highly sensitive surrounding tissue and lack of non-invasive therapy monitoring. ThermalMR integrates non-invasive diagnosis, therapy, and therapy monitoring in a single RF applicator device by employing radiowaves for magnetic resonance imaging, radiofrequency heating, as well as magnetic resonance thermometry. This work examines three optimization algorithms for hyperthermia treatment planning and up to ten RF applicator configurations for a cohort of nine patient models with glioblastoma multiforme. Clinical diversity is represented in target size and location and the inclusion of post-operative models. Our findings indicate the need and potential for patient-specific treatment planning and RF applicator design when targeting brain tumors. Abstract Thermal intervention is a potent sensitizer of cells to chemo- and radiotherapy in cancer treatment. Glioblastoma multiforme (GBM) is a potential clinical target, given the cancer’s aggressive nature and resistance to current treatment options. This drives research into optimization algorithms for treatment planning as well as radiofrequency (RF) applicator design for treatment delivery. In this work, nine clinically realistic GBM target volumes (TVs) for thermal intervention are compared using three optimization algorithms and up to ten RF applicator designs for thermal magnetic resonance. Hyperthermia treatment planning (HTP) was successfully performed for all cases, including very small, large, and even split target volumes. Minimum requirements formulated for the metrics assessing HTP outcome were met and exceeded for all patient specific cases. Results indicate a 16 channel two row arrangement to be most promising. HTP of TVs with a small extent in the cranial–caudal direction in conjunction with a large radial extent remains challenging despite the advanced optimization algorithms used. In general, deep seated targets are favorable. Overall, our findings indicate that a one-size-fits-all RF applicator might not be the ultimate approach in hyperthermia of brain tumors. It stands to reason that modular and reconfigurable RF applicator configurations might best suit the needs of targeting individual GBM geometry.
Collapse
Affiliation(s)
- Eva Oberacker
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (C.D.); (T.N.)
- Department Radiation Oncology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (J.N.); (P.W.); (P.G.)
- Department of Physics, Faculty of Mathematics and Natural Sciences, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-(0)30-450-557188
| | - Cecilia Diesch
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (C.D.); (T.N.)
| | - Jacek Nadobny
- Department Radiation Oncology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (J.N.); (P.W.); (P.G.)
| | | | - Peter Wust
- Department Radiation Oncology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (J.N.); (P.W.); (P.G.)
| | - Pirus Ghadjar
- Department Radiation Oncology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (J.N.); (P.W.); (P.G.)
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (C.D.); (T.N.)
- MRI.TOOLS GmbH, 13125 Berlin, Germany;
- Experimental and Clinical Research Center, Joint Cooperation between Charité Unversitätsmedizin and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| |
Collapse
|
21
|
Castellano A, Bailo M, Cicone F, Carideo L, Quartuccio N, Mortini P, Falini A, Cascini GL, Minniti G. Advanced Imaging Techniques for Radiotherapy Planning of Gliomas. Cancers (Basel) 2021; 13:cancers13051063. [PMID: 33802292 PMCID: PMC7959155 DOI: 10.3390/cancers13051063] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
The accuracy of target delineation in radiation treatment (RT) planning of cerebral gliomas is crucial to achieve high tumor control, while minimizing treatment-related toxicity. Conventional magnetic resonance imaging (MRI), including contrast-enhanced T1-weighted and fluid-attenuated inversion recovery (FLAIR) sequences, represents the current standard imaging modality for target volume delineation of gliomas. However, conventional sequences have limited capability to discriminate treatment-related changes from viable tumors, owing to the low specificity of increased blood-brain barrier permeability and peritumoral edema. Advanced physiology-based MRI techniques, such as MR spectroscopy, diffusion MRI and perfusion MRI, have been developed for the biological characterization of gliomas and may circumvent these limitations, providing additional metabolic, structural, and hemodynamic information for treatment planning and monitoring. Radionuclide imaging techniques, such as positron emission tomography (PET) with amino acid radiopharmaceuticals, are also increasingly used in the workup of primary brain tumors, and their integration in RT planning is being evaluated in specialized centers. This review focuses on the basic principles and clinical results of advanced MRI and PET imaging techniques that have promise as a complement to RT planning of gliomas.
Collapse
Affiliation(s)
- Antonella Castellano
- Neuroradiology Unit, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (A.C.); (A.F.)
| | - Michele Bailo
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (M.B.); (P.M.)
| | - Francesco Cicone
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, and Nuclear Medicine Unit, University Hospital “Mater Domini”, 88100 Catanzaro, Italy;
- Correspondence: ; Tel.: +39-0-961-369-4155
| | - Luciano Carideo
- National Cancer Institute, G. Pascale Foundation, 80131 Naples, Italy;
| | - Natale Quartuccio
- A.R.N.A.S. Ospedale Civico Di Cristina Benfratelli, 90144 Palermo, Italy;
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (M.B.); (P.M.)
| | - Andrea Falini
- Neuroradiology Unit, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (A.C.); (A.F.)
| | - Giuseppe Lucio Cascini
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, and Nuclear Medicine Unit, University Hospital “Mater Domini”, 88100 Catanzaro, Italy;
| | - Giuseppe Minniti
- Radiation Oncology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, 53100 Siena, Italy;
- IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| |
Collapse
|
22
|
Carles M, Popp I, Starke MM, Mix M, Urbach H, Schimek-Jasch T, Eckert F, Niyazi M, Baltas D, Grosu AL. FET-PET radiomics in recurrent glioblastoma: prognostic value for outcome after re-irradiation? Radiat Oncol 2021; 16:46. [PMID: 33658069 PMCID: PMC7931514 DOI: 10.1186/s13014-020-01744-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose The value of O-(2-[18F]fluoroethyl)-L-tyrosine (FET)-positron emission tomography (PET)-radiomics in the outcome assessment of patients with recurrent glioblastoma (rGBM) has not been evaluated until now.
The aim of this study was to evaluate whether a prognostic model based on FET-PET radiomics features (RF) is feasible and can identify rGBM patients that would most benefit from re-irradiation.
Methods We prospectively recruited rGBM patients who underwent FET-PET before re-irradiation (GLIAA-Pilot trial, DRKS00000633). Tumor volume was delineated using a semi-automatic method with a threshold of 1.8 times the standardized-uptake-value of the background. 135 FET-RF (histogram parameters, shape and texture features) were extracted. The analysis involved the characterization of tumor and non-tumor tissue with FET-RF and the evaluation of the prognostic value of FET-RF for time-to-progression (TTP), overall survival (OS) and recurrence location (RL). Results Thirty-two rGBM patients constituted our cohort. FET-RF discriminated significantly between tumor and non-tumor. The texture feature Small-Zone-Low-Gray-Level-Emphasis (SZLGE) showed the best performance for the prediction of TTP (p = 0.001, satisfying Bonferroni-multiple-test significance level). Additionally, two radiomics signatures could predict TTP (TTP-radiomics-signature, p = 0.001) and OS (OS-radiomics-signature, p = 0.038). SZLGE and the TTP-radiomics-signature additionally predicted RL. Specifically, high values for TTP-radiomics-signature and for SZLGE indicated not only earlier progression, but also a RL within the initial FET-PET active volume. Conclusion Our findings suggest that FET-PET radiomics could contribute to the prognostic assessment and selection of rGBM-patients benefiting from re-irradiation. Trial registration DRKS00000633. Registered on 8th of December in 2010. https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00000633.
Collapse
Affiliation(s)
- Montserrat Carles
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, University of Freiburg, Robert-Koch Str. 3, 79106, Freiburg, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg, Heidelberg, Germany. .,Biomedical Imaging Research Group (GIBI230-PREBI), Imaging La Fe Node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), La Fe Health Research Institute, Valencia, Spain.
| | - Ilinca Popp
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg, Heidelberg, Germany.,Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Maximilian Starke
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Mix
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg, Heidelberg, Germany.,Department of Nuclear Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tanja Schimek-Jasch
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franziska Eckert
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,Cerman Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Munich, Munich, Germany
| | - Dimos Baltas
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, University of Freiburg, Robert-Koch Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg, Heidelberg, Germany
| | - Anca L Grosu
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg, Heidelberg, Germany.,Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
23
|
Corradini S, Niyazi M, Verellen D, Valentini V, Walsh S, Grosu AL, Lauber K, Giaccia A, Unger K, Debus J, Pieters BR, Guckenberger M, Senan S, Budach W, Rad R, Mayerle J, Belka C. X-change symposium: status and future of modern radiation oncology-from technology to biology. Radiat Oncol 2021; 16:27. [PMID: 33541387 PMCID: PMC7863262 DOI: 10.1186/s13014-021-01758-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Future radiation oncology encompasses a broad spectrum of topics ranging from modern clinical trial design to treatment and imaging technology and biology. In more detail, the application of hybrid MRI devices in modern image-guided radiotherapy; the emerging field of radiomics; the role of molecular imaging using positron emission tomography and its integration into clinical routine; radiation biology with its future perspectives, the role of molecular signatures in prognostic modelling; as well as special treatment modalities such as brachytherapy or proton beam therapy are areas of rapid development. More clinically, radiation oncology will certainly find an important role in the management of oligometastasis. The treatment spectrum will also be widened by the rational integration of modern systemic targeted or immune therapies into multimodal treatment strategies. All these developments will require a concise rethinking of clinical trial design. This article reviews the current status and the potential developments in the field of radiation oncology as discussed by a panel of European and international experts sharing their vision during the "X-Change" symposium, held in July 2019 in Munich (Germany).
Collapse
Affiliation(s)
- Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Dirk Verellen
- Department of Radiotherapy, Iridium Network, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Vincenzo Valentini
- Department of Radiation Oncology and Hematology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Università Cattolica S. Cuore, Rome, Italy
| | | | - Anca-L Grosu
- Department of Radiation Oncology, Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Amato Giaccia
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, USA
| | - Kristian Unger
- Integrative Biology Group, Helmholtz Zentrum Munich, Munich, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Bradley R Pieters
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Suresh Senan
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Wilfried Budach
- Department of Radiation Oncology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), TU Munich, Munich, Germany
| | - Julia Mayerle
- Department of Internal Medicine II, University Hospital, LMU, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
24
|
Hua T, Zhou W, Zhou Z, Guan Y, Li M. Heterogeneous parameters based on 18F-FET PET imaging can non-invasively predict tumor grade and isocitrate dehydrogenase gene 1 mutation in untreated gliomas. Quant Imaging Med Surg 2021; 11:317-327. [PMID: 33392031 DOI: 10.21037/qims-20-723] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background The present study aimed to explore the efficacy of easily obtained intratumoral heterogeneous parameters, other than regular semi-quantitative parameters, based on static O-(2-[18F]fluoroethyl)-l-tyrosine (18F-FET) positron emission tomography (PET) imaging in glioma grade and isocitrate dehydrogenase (IDH) gene 1 mutation prediction. Methods Fifty-eight adult patients with untreated glioma (grades II-IV) who underwent preoperative 18F-FET PET/computed tomography (CT) imaging were enrolled in the present study. Eight semi-automatically obtained static PET imaging parameters after lesion delineation were chosen for analysis. These were: maximal tumor-to-background ratio (TBRmax), peak tumor-to-background ratio (TBRpeak), mean tumor-to-background ratio (TBRmean), coefficient of variation (COV), heterogeneity index (HI), the standard deviation of lesion standardized uptake value (SUVsd), metabolic tumor volume (MTV), and total lesion tracer standardized uptake (TLU). Pathological and immunohistochemical results were used as a reference. The receiver-operating characteristic analysis was used to investigate the predictive efficacy of these parameters in glioma grade and IDH1 mutation status. Results TLU [area under the curve (AUC): 0.841, P<0.0001], TBRpeak (AUC: 0.832, P<0.0001), and HI (AUC: 0.826, P<0.0001) had the top 3 single-parameter predictive performance between grade II or III and grade IV glioma patients. Combinations of TBRmax, SUVsd, and TBRmean (AUC: 0.850, P<0.0001); HI, SUVsd, and MTV (AUC: 0.848, P<0.0001); and HI, SUVsd, and TLU (AUC: 0.848, P<0.0001) had the top 3 multiple-parameter predictive performance. SUVsd (AUC: 0.710, P=0.0028), TLU (AUC: 0.698, P=0.0074), and HI (AUC: 0.676, P=0.0159) had the top 3 single-parameter predictive performance in the IDH1 genotype. Combinations of TBRmax, SUVsd, and TBRmean (AUC: 0.821, P<0.0001); SUVsd and TBRmean (AUC: 0.804, P<0.0001); and SUVsd, HI, and TBRmean (AUC: 0.799, P<0.0001) had the top 3 multiple-parameter predictive performance. Conclusions These easily obtained and highly repetitive heterogeneous parameters based on static 18F-FET PET/CT imaging can non-invasively predict glioma grade and IDH1 mutation, crucial in treatment planning, and prognostic evaluation.
Collapse
Affiliation(s)
- Tao Hua
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiyan Zhou
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhirui Zhou
- Department of Radiotherapy, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ming Li
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Fibroblast Activation Protein (FAP) specific PET for advanced target volume delineation in glioblastoma. Radiother Oncol 2020; 150:159-163. [PMID: 32598977 DOI: 10.1016/j.radonc.2020.06.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 11/21/2022]
Abstract
Fibroblast Activation Protein (FAP)-specific Positron Emission Tomography (PET) has shown promising results in various cancers. This pilot study compares FAP-specific PET to MRI for treatment planning in 13 Glioblastoma patients. The resulting incongruent volumes could provide additional information for radiotherapy or biopsy planning.
Collapse
|
26
|
Dissaux G, Dissaux B, Kabbaj OE, Gujral DM, Pradier O, Salaün PY, Seizeur R, Bourhis D, Ben Salem D, Querellou S, Schick U. Radiotherapy target volume definition in newly diagnosed high grade glioma using 18F-FET PET imaging and multiparametric perfusion MRI: A prospective study (IMAGG). Radiother Oncol 2020; 150:164-171. [PMID: 32580001 DOI: 10.1016/j.radonc.2020.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE The aim of this study was to prospectively investigate tumor volume delineation by amino acid PET and multiparametric perfusion magnetic resonance imaging (MRI) in patients with newly diagnosed, untreated high grade glioma (HGG). MATERIALS AND METHODS Thirty patients with histologically confirmed HGG underwent O-(2-[18F]-fluoroethyl)-l-tyrosine (18F-FET) positron emission tomography (PET), conventional Magnetic Resonance Imaging (MRI) as contrast-enhanced (CE) and fluid-attenuated inversion recovery (FLAIR) and multiparametric MRI as relative cerebral blood volume (rCBV) and permeability estimation map (K2). Areas of MRI volumes were semi-automatically segmented. The percentage overlap volumes, Dice and Jaccard spatial similarity coefficients (OV, DSC, JSC) were calculated. RESULTS The 18F-FET tumor volume was significantly larger than the CE volume (median 43.5 mL (2.5-124.9) vs. 23.8 mL (1.4-80.3), p = 0.005). The OV between 18F-FET uptake and CE volume was low (median OV 0.59 (0.10-1)), as well as spatial similarity (median DSC 0.52 (0.07-0.78); median JSC 0.35 (0.03-0.64)). Twenty-five patients demonstrated both rCBV and CE on MRI: The median rCBV tumor volume was significantly smaller than the median CE volume (p < 0.001). The OV was high (median 0.83 (0.54-1)), but the spatial similarity was low (median DSC 0.45 (0.04-0.83); median JSC 0.29 (0.07-0.71)). Twenty-eight patients demonstrated both K2 and CE on MRI. The median K2 tumor volume was not significantly larger than the median CE volume. The OV was high (median OV 0.90 (0.61-1)), and the spatial similarity was moderate (median DSC 0.75 (0.01-0.83); median JSC 0.60 (0.11-0.89)). CONCLUSION We demonstrated that multiparametric perfusion MRI volumes (rCBV, K2) were highly correlated with CE T1 gadolinium volumes whereas 18F-FET PET provided complementary information, suggesting that the metabolically active tumor volume in patients with newly diagnosed untreated HGG is critically underestimated by contrast enhanced MRI. 18F-FET PET imaging may help to improve target volume delineation accuracy for radiotherapy planning.
Collapse
Affiliation(s)
- Gurvan Dissaux
- Radiation Oncology Department, University Hospital, Brest, France; Université de Bretagne Occidentale, Brest, France; LaTIM, INSERM 1101, Brest, France.
| | - Brieg Dissaux
- Radiology Department, University Hospital, Brest, France; EA 3878 GETBO IFR 148, Brest, France; Université de Bretagne Occidentale, Brest, France
| | - Osman El Kabbaj
- Radiation Oncology Department, University Hospital, Brest, France
| | - Dorothy M Gujral
- Clinical Oncology Department, Imperial College Healthcare NHS Trust, Charing Cross Hospital, Hammersmith, London, United Kingdom; Department of Cancer and Surgery, Imperial College London, London, United Kingdom
| | - Olivier Pradier
- Radiation Oncology Department, University Hospital, Brest, France; Université de Bretagne Occidentale, Brest, France; LaTIM, INSERM 1101, Brest, France
| | - Pierre-Yves Salaün
- Nuclear Medicine Department, University Hospital, Brest, France; EA 3878 GETBO IFR 148, Brest, France; Université de Bretagne Occidentale, Brest, France
| | - Romuald Seizeur
- Neurosurgery Department, University Hospital, Brest, France; Université de Bretagne Occidentale, Brest, France; LaTIM, INSERM 1101, Brest, France
| | - David Bourhis
- Nuclear Medicine Department, University Hospital, Brest, France; EA 3878 GETBO IFR 148, Brest, France; Université de Bretagne Occidentale, Brest, France
| | - Douraied Ben Salem
- Radiology Department, University Hospital, Brest, France; Université de Bretagne Occidentale, Brest, France; LaTIM, INSERM 1101, Brest, France
| | - Solène Querellou
- Nuclear Medicine Department, University Hospital, Brest, France; EA 3878 GETBO IFR 148, Brest, France; Université de Bretagne Occidentale, Brest, France
| | - Ulrike Schick
- Radiation Oncology Department, University Hospital, Brest, France; Université de Bretagne Occidentale, Brest, France; LaTIM, INSERM 1101, Brest, France
| |
Collapse
|
27
|
Unterrainer M, Eze C, Ilhan H, Marschner S, Roengvoraphoj O, Schmidt-Hegemann NS, Walter F, Kunz WG, Rosenschöld PMA, Jeraj R, Albert NL, Grosu AL, Niyazi M, Bartenstein P, Belka C. Recent advances of PET imaging in clinical radiation oncology. Radiat Oncol 2020; 15:88. [PMID: 32317029 PMCID: PMC7171749 DOI: 10.1186/s13014-020-01519-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/19/2020] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy and radiation oncology play a key role in the clinical management of patients suffering from oncological diseases. In clinical routine, anatomic imaging such as contrast-enhanced CT and MRI are widely available and are usually used to improve the target volume delineation for subsequent radiotherapy. Moreover, these modalities are also used for treatment monitoring after radiotherapy. However, some diagnostic questions cannot be sufficiently addressed by the mere use standard morphological imaging. Therefore, positron emission tomography (PET) imaging gains increasing clinical significance in the management of oncological patients undergoing radiotherapy, as PET allows the visualization and quantification of tumoral features on a molecular level beyond the mere morphological extent shown by conventional imaging, such as tumor metabolism or receptor expression. The tumor metabolism or receptor expression information derived from PET can be used as tool for visualization of tumor extent, for assessing response during and after therapy, for prediction of patterns of failure and for definition of the volume in need of dose-escalation. This review focuses on recent and current advances of PET imaging within the field of clinical radiotherapy / radiation oncology in several oncological entities (neuro-oncology, head & neck cancer, lung cancer, gastrointestinal tumors and prostate cancer) with particular emphasis on radiotherapy planning, response assessment after radiotherapy and prognostication.
Collapse
Affiliation(s)
- M Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany. .,Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany. .,German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - C Eze
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - H Ilhan
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - S Marschner
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - O Roengvoraphoj
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - N S Schmidt-Hegemann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - F Walter
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - W G Kunz
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - P Munck Af Rosenschöld
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, and Lund University, Lund, Sweden
| | - R Jeraj
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
| | - N L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A L Grosu
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), partner Site Freiburg, Freiburg, Germany
| | - M Niyazi
- German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - P Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - C Belka
- German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
28
|
Fleischmann DF, Unterrainer M, Schön R, Corradini S, Maihöfer C, Bartenstein P, Belka C, Albert NL, Niyazi M. Margin reduction in radiotherapy for glioblastoma through 18F-fluoroethyltyrosine PET? - A recurrence pattern analysis. Radiother Oncol 2020; 145:49-55. [PMID: 31923709 DOI: 10.1016/j.radonc.2019.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND PURPOSE 18F-fluoroethyltyrosine (18F-FET) PET is increasingly used in radiation treatment planning for the primary treatment of glioblastoma (GBM) patients additionally to contrast-enhanced MRI. To answer the question, whether a margin reduction in the primary treatment setting could be achieved through 18F-FET PET imaging, a recurrence pattern analysis was performed. PATIENTS AND METHODS GBM patients undergoing 18F-FET PET examination before primary radiochemotherapy from 05/2009 to 11/2014 were included into the recurrence pattern analysis. Biological tumour volumes were semi-automatically created and fused with MR-based gross tumour volumes (MRGTVs). The pattern of recurrence was examined for MRGTVs and for PET-MRGTVs. The minimal margin including all recurrent tumour sites was assessed by gradual expansion of the PET-MRGTVs and MRGTVs until inclusion of all contrast-enhancing areas at recurrence. RESULTS 36 GBM patients were included to the analysis. The minimal margin including all contrast enhancing tumour at recurrence was significantly smaller for the PET-MRGTVs compared to the MRGTVs (median 12.5 mm vs. 16.5 mm; p < 0.001, Wilcoxon-Test). PET-MRGTVs with 15 mm CTV margins were significantly smaller than MRGTVs with 20 mm CTV margins (median volume 255.92 vs. 258.35 cm3; p = 0.020, Wilcoxon-Test; excluding 3 cases with large non-contrast enhancing tumours). The pattern of recurrence of PET-MRGTVs with 15 mm CTV margins was comparable to MRGTVs with 20 mm CTV margins (32 vs. 30 central, 2 vs. 4 in-field, 2 vs. 2 ex-field and no marginal recurrences). CONCLUSION Target volume delineation of GBM patients can be improved through 18F-FET PET imaging prior to primary radiation treatment, since vital tumour can be detected more accurately. Furthermore, the results suggest that CTV margins could be reduced through 18F-FET PET imaging prior to primary RT of GBM.
Collapse
Affiliation(s)
- Daniel F Fleischmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Marcus Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Germany.
| | - Rudolph Schön
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany.
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany.
| | - Cornelius Maihöfer
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany.
| | - Peter Bartenstein
- German Cancer Consortium (DKTK), Partner Site Munich, Germany; Department of Nuclear Medicine, University Hospital, LMU Munich, Germany.
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany.
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Germany.
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany.
| |
Collapse
|
29
|
Seidensaal K, Harrabi SB, Debus J. Molecular Imaging for Particle Therapy: Current Approach and Future Directions. Recent Results Cancer Res 2020; 216:865-879. [PMID: 32594410 DOI: 10.1007/978-3-030-42618-7_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
During the last decades, radiation oncology has been subject to a number of technological innovations. Particle therapy has evolved in parallel to the modern high-precision photon radiotherapy techniques and offers a superior dose distribution with decreased integral dose to healthy tissues. With advancing precision of treatment, the necessity for accurate and confident target volume delineation is rising. When morphological imaging reaches its limitations, molecular imaging can provide valuable information.
Collapse
Affiliation(s)
- Katharina Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Semi Ben Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
30
|
Hirata T, Kinoshita M, Tamari K, Seo Y, Suzuki O, Wakai N, Achiha T, Umehara T, Arita H, Kagawa N, Kanemura Y, Shimosegawa E, Hashimoto N, Hatazawa J, Kishima H, Teshima T, Ogawa K. 11C-methionine-18F-FDG dual-PET-tracer-based target delineation of malignant glioma: evaluation of its geometrical and clinical features for planning radiation therapy. J Neurosurg 2019; 131:676-686. [PMID: 30239314 DOI: 10.3171/2018.4.jns1859] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/05/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE It is important to correctly and precisely define the target volume for radiotherapy (RT) of malignant glioma. 11C-methionine (MET) positron emission tomography (PET) holds promise for detecting areas of glioma cell infiltration: the authors' previous research showed that the magnitude of disruption of MET and 18F-fluorodeoxyglucose (FDG) uptake correlation (decoupling score [DS]) precisely reflects glioma cell invasion. The purpose of the present study was to analyze volumetric and geometrical properties of RT target delineation based on DS and compare them with those based on MRI. METHODS Twenty-five patients with a diagnosis of malignant glioma were included in this study. Three target volumes were compared: 1) contrast-enhancing core lesions identified by contrast-enhanced T1-weighted images (T1Gd), 2) high-intensity lesions on T2-weighted images, and 3) lesions showing high DS (DS ≥ 3; hDS). The geometrical differences of these target volumes were assessed by calculating the probabilities of overlap and one encompassing the other. The correlation of geometrical features of RT planning and recurrence patterns was further analyzed. RESULTS The analysis revealed that T1Gd with a 2.0-cm margin was able to cover the entire high DS area only in 6 (24%) patients, which indicates that microscopic invasion of glioma cells often extended more than 2.0 cm beyond a Gd-enhanced core lesion. Insufficient coverage of high DS regions with RT target volumes was suggested to be a risk for out-of-field recurrence. Higher coverage of hDS by T1Gd with a 2-cm margin (i.e., higher values of "[T1Gd + 2 cm]/hDS") had a trend to positively impact overall and progression-free survival. Cox regression analysis demonstrated that low coverage of hDS by T1Gd with a 2-cm margin was predictive of disease recurrence outside the Gd-enhanced core lesion, indicative of out-of-field reoccurrence. CONCLUSIONS The findings of this study indicate that MRI is inadequate for target delineation for RT in malignant glioma treatment. Expanding the treated margins substantially beyond the MRI-based target volume may reduce the risk of undertreatment, but it may also result in unnecessary irradiation of uninvolved regions. As MET/FDG PET-DS seems to provide more accurate information for target delineation than MRI in malignant glioma treatment, this method should be further evaluated on a larger scale.
Collapse
Affiliation(s)
- Takero Hirata
- Departments of1Radiation Oncology
- Departments of2Radiation Oncology and
| | - Manabu Kinoshita
- 3Neurosurgery, and
- 4Neurosurgery, Osaka International Cancer Institute, Chuo-ku, Osaka
| | | | - Yuji Seo
- Departments of1Radiation Oncology
| | | | - Nobuhide Wakai
- 5Department of Radiation Oncology, Nara Medical University, Kashihara, Nara; and
| | - Takamune Achiha
- 3Neurosurgery, and
- 4Neurosurgery, Osaka International Cancer Institute, Chuo-ku, Osaka
| | | | | | | | - Yonehiro Kanemura
- 6Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Chuo-ku, Osaka, Japan
| | - Eku Shimosegawa
- 7Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Osaka
| | | | - Jun Hatazawa
- 7Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Osaka
| | | | | | | |
Collapse
|
31
|
Peeken JC, Molina-Romero M, Diehl C, Menze BH, Straube C, Meyer B, Zimmer C, Wiestler B, Combs SE. Deep learning derived tumor infiltration maps for personalized target definition in Glioblastoma radiotherapy. Radiother Oncol 2019; 138:166-172. [DOI: 10.1016/j.radonc.2019.06.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 10/26/2022]
|
32
|
Alongi P, Laudicella R, Desideri I, Chiaravalloti A, Borghetti P, Quartuccio N, Fiore M, Evangelista L, Marino L, Caobelli F, Tuscano C, Mapelli P, Lancellotta V, Annunziata S, Ricci M, Ciurlia E, Fiorentino A. Positron emission tomography with computed tomography imaging (PET/CT) for the radiotherapy planning definition of the biological target volume: PART 1. Crit Rev Oncol Hematol 2019; 140:74-79. [PMID: 30795884 DOI: 10.1016/j.critrevonc.2019.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/11/2019] [Accepted: 01/21/2019] [Indexed: 02/07/2023] Open
Abstract
AIM Functional and molecular imaging, including positron emission tomography with computed tomography imaging (PET/CT) is increasing for radiotherapy (RT) definition of the target volume. This expert review summarizes existing data of functional imaging modalities and RT management, in terms of target volume delineation, for the following anatomical districts: brain (for primary and secondary tumors), head/neck and lung. MATERIALS AND METHODS A collection of available published data was made, by PubMed a search. Only original articles were carefully and critically revised. RESULTS For primary and secondary brain tumors, amino acid PET radiotracers could be useful to identify microscopic residual areas and to differ between recurrence and treatment-related alterations in case of re-irradiation. As for head and neck neoplasms may benefit from precise PET/CT-based target delineation, due to the major capability to identify high-risk RT areas. In primary and secondary lung cancer, PET/CT could be useful both to delimit a tumor and collapsed lungs and as a predictive parameter of treatment response. CONCLUSION Taken together, molecular and functional imaging approaches offer a major step to individualize radiotherapeutic care going forward. Nevertheless, several uncertainties remain on the standard method to properly assess the target volume definition including PET information for primary and secondary brain tumors.
Collapse
Affiliation(s)
- Pierpaolo Alongi
- Department of Radiological Sciences, Nuclear Medicine Service, Fondazione Istituto G. Giglio, Cefalu. Italy
| | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morphofunctional Imaging, University of Messina. Italy
| | - Isacco Desideri
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio", Section of Radiation Oncology, University of Florence, Italy
| | - Agostino Chiaravalloti
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Paolo Borghetti
- Radiation Oncology Department University and Spedali Civili, Brescia, Italy
| | | | - Michele Fiore
- Radiation Oncology, Campus Bio-Medico University, Rome, Italy
| | - Laura Evangelista
- Nuclear Medicine Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Lorenza Marino
- Radiotherapy Oncology Department, REM, Viagrande, Catania, Italy
| | - Federico Caobelli
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Carmelo Tuscano
- Radiotherapy Oncology Department, Azienda Ospedaliera Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Paola Mapelli
- Department of Nuclear Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Salvatore Annunziata
- Fondazione Policlinico A. Gemelli IRCCS-Università Cattolica Sacro Cuore, Roma, Italy
| | - Maria Ricci
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Elisa Ciurlia
- Radiotherapy Oncology Department, Vito Fazzi Hospital, Lecce, Italy
| | - Alba Fiorentino
- Radiotherapy Oncology Department, General Regional Hospital "F. Miulli", Strada Prov. 127 Km 4, 70021, Acquaviva delle Fonti, Bari, Italy.
| |
Collapse
|
33
|
Abstract
The progressive integration of positron emission tomography/computed tomography (PET/CT) imaging in radiation therapy has its rationale in the biological intertumoral and intratumoral heterogeneity of malignant lesions that require the individual adjustment of radiation dose to obtain an effective local tumor control in cancer patients. PET/CT provides information on the biological features of tumor lesions such as metabolism, hypoxia, and proliferation that can identify radioresistant regions and be exploited to optimize treatment plans. Here, we provide an overview of the basic principles of PET-based target volume selection and definition using 18F-fluorodeoxyglucose (18F-FDG) and then we focus on the emerging strategies of dose painting and adaptive radiotherapy using different tracers. Previous studies provided consistent evidence that integration of 18F-FDG PET/CT in radiotherapy planning improves delineation of target volumes and reduces the uncertainties and variabilities of anatomical delineation of tumor sites. PET-based dose painting and adaptive radiotherapy are feasible strategies although their clinical implementation is highly demanding and requires strong technical, computational, and logistic efforts. Further prospective clinical trials evaluating local tumor control, survival, and toxicity of these emerging strategies will promote the full integration of PET/CT in radiation oncology.
Collapse
Affiliation(s)
- Rosa Fonti
- Institute of Biostructures and Bioimages, National Research Council, Naples, Italy
| | - Manuel Conson
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Silvana Del Vecchio
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
34
|
Report of first recurrent glioma patients examined with PET-MRI prior to re-irradiation. PLoS One 2019; 14:e0216111. [PMID: 31339892 PMCID: PMC6655559 DOI: 10.1371/journal.pone.0216111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/16/2019] [Indexed: 11/22/2022] Open
Abstract
Background and purpose The advantage of combined PET-MRI over sequential PET and MRI is the high spatial conformity and the absence of time delay between the examinations. The benefit of this technique for planning of re-irradiation (re-RT) treatment is unkown yet. Imaging data from a phase 1 trial of re-RT for recurrent glioma was analysed to assess whether planning target volumes and treatment margins in glioma re-RT can be adjusted by PET-MRI with rater independent PET based biological tumour volumes (BTVs). Patients and methods Combined PET-MRI with the tracer O-(2-18F-fluoroethyl)-l-tyrosine (18F-FET) prior to re-RT was performed in recurrent glioma patients in a phase I trial. GTVs including all regions suspicious of tumour on contrast enhanced MRI were delineated by three experienced radiation oncologists and included into MRI based consensus GTVs (MRGTVs). BTVs were semi-automatically delineated with a fixed threshold of 1.6 x background activity. Corresponding BTVs and MRGTVs were fused into union volume PET-MRGTVs. The Sørensen–Dice coefficient and the conformity index were used to assess the geometric overlap of the BTVs with the MRGTVs. A recurrence pattern analysis was performed based on the original planning target volumes (PTVs = GTV + 10 mm margin or 5 mm in one case) and the PET-MRGTVs with margins of 10, 8, 5 and 3 mm. Results Seven recurrent glioma patients, who received PET-MRI prior to re-RT, were included into the present planning study. At the time of re-RT, patients were in median 54 years old and had a median Karnofsky Performance Status (KPS) score of 80. Median post-recurrence survival after the beginning of re-RT was 13 months. Concomitant bevacizumab therapy was applied in six patients and one patient received chemoradiation with temozolomide. Median GTV volumes of the three radiation oncologists were 35.0, 37.5 and 40.5 cubic centimeters (cc) and median MRGTV volume 41.8 cc. Median BTV volume was 36.6 cc and median PET-MRGTV volume 59.3 cc. The median Sørensen–Dice coefficient for the comparison between MRGTV and BTV was 0.61 and the median conformity index 0.44. Recurrence pattern analysis revealed two central, two in-field and one distant recurrence within both, the original PTV, as well as the PET-MRGTV with a reduced margin of 3 mm. Conclusion PET-MRI provides radiation treatment planning imaging with high spatial and timely conformity for high-grade glioma patients treated with re-RT with potential advancements for target volume delineation. Prospective randomised trials are warranted to further investigate the treatment benefits of PET-MRI based re-RT planning.
Collapse
|
35
|
Abstract
Delineating the gross tumor volume (GTV) is a core task within radiation treatment planning. GTVs must be precisely defined irrespective of the region involved, but even more so in a sensitive area such as the brain. As precision medicine cannot exist without precision imaging, the current article aims to discuss the various imaging modalities employed in the radiation treatment planning of brain tumors.Gliomas, meningiomas, and paragangliomas are some of the most challenging tumors and the advancement in diagnostic imaging can significantly contribute to their delineation. For gliomas, irradiation based on multiparametric magnetic resonance imaging (MRI) and amino-acid positron emission tomography (PET)/computed tomography (CT) may have a higher sensitivity and specificity, which could lead to a better sparing of organs at risk and help distinguish between tumor, edema, and radiogenic alterations. Meningiomas and paragangliomas are often associated with a good prognosis. Therefore, GTV delineation according to MRI and somatostatin receptor ligand-PET/CT plays an essential role in sparing sensitive structures and maintaining a good quality of life for these patients.The combination of multiparametric MRI and PET/CT (possibly in the form of PET/MRI) presently appears to be the optimal approach for target volume delineation. The comparative efficacy of these imaging modalities has to be further evaluated in prospective trials.
Collapse
|
36
|
Gaw N, Hawkins-Daarud A, Hu LS, Yoon H, Wang L, Xu Y, Jackson PR, Singleton KW, Baxter LC, Eschbacher J, Gonzales A, Nespodzany A, Smith K, Nakaji P, Mitchell JR, Wu T, Swanson KR, Li J. Integration of machine learning and mechanistic models accurately predicts variation in cell density of glioblastoma using multiparametric MRI. Sci Rep 2019; 9:10063. [PMID: 31296889 PMCID: PMC6624304 DOI: 10.1038/s41598-019-46296-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/26/2019] [Indexed: 01/30/2023] Open
Abstract
Glioblastoma (GBM) is a heterogeneous and lethal brain cancer. These tumors are followed using magnetic resonance imaging (MRI), which is unable to precisely identify tumor cell invasion, impairing effective surgery and radiation planning. We present a novel hybrid model, based on multiparametric intensities, which combines machine learning (ML) with a mechanistic model of tumor growth to provide spatially resolved tumor cell density predictions. The ML component is an imaging data-driven graph-based semi-supervised learning model and we use the Proliferation-Invasion (PI) mechanistic tumor growth model. We thus refer to the hybrid model as the ML-PI model. The hybrid model was trained using 82 image-localized biopsies from 18 primary GBM patients with pre-operative MRI using a leave-one-patient-out cross validation framework. A Relief algorithm was developed to quantify relative contributions from the data sources. The ML-PI model statistically significantly outperformed (p < 0.001) both individual models, ML and PI, achieving a mean absolute predicted error (MAPE) of 0.106 ± 0.125 versus 0.199 ± 0.186 (ML) and 0.227 ± 0.215 (PI), respectively. Associated Pearson correlation coefficients for ML-PI, ML, and PI were 0.838, 0.518, and 0.437, respectively. The Relief algorithm showed the PI model had the greatest contribution to the result, emphasizing the importance of the hybrid model in achieving the high accuracy.
Collapse
Affiliation(s)
- Nathan Gaw
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA
| | - Andrea Hawkins-Daarud
- Precision NeuroTherapeutics (PNT) Lab, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, Arizona, 85054, USA.
| | - Leland S Hu
- Department of Radiology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, Arizona, 85054, USA
| | - Hyunsoo Yoon
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA
| | - Lujia Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA
| | - Yanzhe Xu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA
| | - Pamela R Jackson
- Precision NeuroTherapeutics (PNT) Lab, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, Arizona, 85054, USA
| | - Kyle W Singleton
- Precision NeuroTherapeutics (PNT) Lab, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, Arizona, 85054, USA
| | - Leslie C Baxter
- Department of Radiology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, Arizona, 85054, USA
| | - Jennifer Eschbacher
- Department of Pathology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Ashlyn Gonzales
- Department of Radiology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, Arizona, 85054, USA
| | - Ashley Nespodzany
- Department of Radiology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, Arizona, 85054, USA
| | - Kris Smith
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - J Ross Mitchell
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, 33612, USA
| | - Teresa Wu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA
| | - Kristin R Swanson
- Precision NeuroTherapeutics (PNT) Lab, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, Arizona, 85054, USA
- Department of Neurosurgery, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, Arizona, 85054, USA
| | - Jing Li
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA
| |
Collapse
|
37
|
Vanhove C, Goethals I. Magnetic resonance imaging-guided radiation therapy using animal models of glioblastoma. Br J Radiol 2018; 92:20180713. [PMID: 30563357 DOI: 10.1259/bjr.20180713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma is the most aggressive and most common malignant primary brain tumour in adults and has a high mortality and morbidity. Because local tumour control in glioblastoma patients is still elusive in the majority of patients, there is an urgent need for alternative treatment strategies. However, to implement changes to the existing clinical standard of care, research must be conducted to develop alternative treatment strategies. A novel approach in radiotherapy is the introduction of pre-clinical precision image-guided radiation research platforms. The aim of this review is to give a brief overview of the efforts that have been made in the field of radiation research using animal models of glioblastoma. Because MRI has become the reference imaging technique for treatment planning and assessment of therapeutic responses in glioblastoma patients, we will focus in this review on small animal radiotherapy combined with MRI.
Collapse
Affiliation(s)
- Christian Vanhove
- 1 Department of Electronics and Information Systems, Institute Biomedical Technology (IBiTech), Ghent University , Ghent , Belgium
| | - Ingeborg Goethals
- 2 Department of Nuclear Medicine, Ghent University Hospital , Ghent , Belgium
| |
Collapse
|
38
|
Press RH, Zhong J, Gurbani SS, Weinberg BD, Eaton BR, Shim H, Shu HKG. The Role of Standard and Advanced Imaging for the Management of Brain Malignancies From a Radiation Oncology Standpoint. Neurosurgery 2018; 85:165-179. [DOI: 10.1093/neuros/nyy461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/30/2018] [Indexed: 01/20/2023] Open
Abstract
Abstract
Radiation therapy (RT) plays a critical role in the overall management of many central nervous system (CNS) tumors. Advances in RT treatment planning, with techniques such as intensity modulated radiation therapy, volumetric modulated arc therapy, and stereotactic radiosurgery, now allow the delivery of highly conformal dose with great precision. These techniques rely on high-resolution 3-dimensional anatomical imaging modalities such as computed tomography or magnetic resonance imaging (MRI) scans to accurately and reliably define CNS targets and normal tissue avoidance structures. The integration of cross-sectional imaging into radiation oncology has directly translated into improvements in the therapeutic window of RT, and the union between radiation oncology and imaging is only expected to grow stronger. In addition, advanced imaging modalities including diffusion, perfusion, and spectroscopic MRIs as well as positron emission tomography (PET) scans with novel tracers are being utilized to provide additional insight into tumor biology and behavior beyond anatomy. Together, these standard and advanced imaging modalities hold significant potential to improve future RT delivery and response assessment. In this review, we will discuss the current utilization of standard/advanced imaging for CNS tumors from a radiation oncology perspective as well as the implications of novel MRI and PET modalities currently under investigation.
Collapse
Affiliation(s)
- Robert H Press
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Jim Zhong
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Saumya S Gurbani
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Brent D Weinberg
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Bree R Eaton
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Hyunsuk Shim
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Hui-Kuo G Shu
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| |
Collapse
|
39
|
Influence of volumetric modulated arc therapy and FET-PET scanning on treatment outcomes for glioblastoma patients. Radiother Oncol 2018; 130:149-155. [PMID: 30446316 DOI: 10.1016/j.radonc.2018.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/26/2018] [Accepted: 10/01/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND We sought to assess the influence of the clinical introduction of new radiotherapy technologies on glioblastoma patients' outcomes. METHODS Newly diagnosed glioblastoma patients treated with 60 Gy and temozolomide (2005-2014) were analyzed. The patients' GTV and CTV were defined based on MR (n = 521) or FET-PET/MR (n = 190), and were treated using conformal radiotherapy (CRT, n = 159) or image-guided volumetric modulated arc therapy with hippocampal sparing (IG-VMAT, n = 362). Progression-free survival (PFS) was assessed using the McDonald criteria. Associations between clinical data, dosimetry data, treatment technology, for PFS and overall survival (OS) were explored. RESULTS The PFS (7 months) and OS (15 months) were unaffected by CRT, IG-VMAT and FET-PET technology. Mean brain dose was correlated with tumor volume, and was lower for IG-VMAT vs. CRT (p < 0.001). Larger mean brain dose was associated with inferior PFS (univariate/multivariate Cox models, p < 0.001) and OS (univariate, p < 0.001). Multivariate Cox models revealed association of larger mean brainstem dose (p < 0.001), BTV (p = 0.045), steroid use at baseline (p = 0.003), age (p = 0.019) and MGMT status (p = 0.022) with lower OS. CONCLUSIONS Introduction of hippocampal-sparing IG-VMAT technology appeared to be safe, and may have reduced toxicity and cognitive impairment. Larger mean brain dose was strongly associated with inferior PFS and OS.
Collapse
|
40
|
Lohmann P, Stavrinou P, Lipke K, Bauer EK, Ceccon G, Werner JM, Neumaier B, Fink GR, Shah NJ, Langen KJ, Galldiks N. FET PET reveals considerable spatial differences in tumour burden compared to conventional MRI in newly diagnosed glioblastoma. Eur J Nucl Med Mol Imaging 2018; 46:591-602. [PMID: 30327856 DOI: 10.1007/s00259-018-4188-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/03/2018] [Indexed: 01/02/2023]
Abstract
PURPOSE Areas of contrast enhancement (CE) on MRI are usually the target for resection or radiotherapy target volume definition in glioblastomas. However, the solid tumour mass may extend beyond areas of CE. Amino acid PET can detect parts of the tumour that show no CE. We systematically investigated tumour volumes delineated by amino acid PET and MRI in patients with newly diagnosed, untreated glioblastoma. METHODS Preoperatively, 50 patients with neuropathologically confirmed glioblastoma underwent O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) PET, and fluid-attenuated inversion recovery (FLAIR) and contrast-enhanced MRI. Areas of CE were manually segmented. FET PET tumour volumes were segmented using a tumour-to-brain ratio of ≥1.6. The percentage overlap volumes, and Dice and Jaccard spatial similarity coefficients (DSC, JSC) were calculated. FLAIR images were evaluated visually. RESULTS In 43 patients (86%), the FET tumour volume was significantly larger than the CE volume (21.5 ± 14.3 mL vs. 9.4 ± 11.3 mL; P < 0.001). Forty patients (80%) showed both increased uptake of FET and CE. In these 40 patients, the spatial similarity between FET uptake and CE was low (mean DSC 0.39 ± 0.21, mean JSC 0.26 ± 0.16). Ten patients (20%) showed no CE, and one of these patients showed no FET uptake. In five patients (10%), increased FET uptake was present outside areas of FLAIR hyperintensity. CONCLUSION Our results show that the metabolically active tumour volume delineated by FET PET is significantly larger than tumour volume delineated by CE. Furthermore, the results strongly suggest that the information derived from both imaging modalities should be integrated into the management of patients with newly diagnosed glioblastoma.
Collapse
Affiliation(s)
- Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, 52425, Juelich, Germany.
| | | | - Katharina Lipke
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, 52425, Juelich, Germany
| | - Elena K Bauer
- Department of Neurology, University of Cologne, Cologne, Germany
| | - Garry Ceccon
- Department of Neurology, University of Cologne, Cologne, Germany
| | | | - Bernd Neumaier
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, 52425, Juelich, Germany
| | - Gereon R Fink
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, 52425, Juelich, Germany.,Department of Neurology, University of Cologne, Cologne, Germany
| | - Nadim J Shah
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, 52425, Juelich, Germany.,Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, 52425, Juelich, Germany.,Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, 52425, Juelich, Germany.,Department of Neurology, University of Cologne, Cologne, Germany.,Center of Integrated Oncology (CIO), Universities of Cologne and Bonn, Cologne, Germany
| |
Collapse
|
41
|
Debus C, Afshar-Oromieh A, Floca R, Ingrisch M, Knoll M, Debus J, Haberkorn U, Abdollahi A. Feasibility and robustness of dynamic 18F-FET PET based tracer kinetic models applied to patients with recurrent high-grade glioma prior to carbon ion irradiation. Sci Rep 2018; 8:14760. [PMID: 30283013 PMCID: PMC6170489 DOI: 10.1038/s41598-018-33034-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/07/2018] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to analyze the robustness and diagnostic value of different compartment models for dynamic 18F-FET PET in recurrent high-grade glioma (HGG). Dynamic 18F-FET PET data of patients with recurrent WHO grade III (n:7) and WHO grade IV (n: 9) tumors undergoing re-irradiation with carbon ions were analyzed by voxelwise fitting of the time-activity curves with a simplified and an extended one-tissue compartment model (1TCM) and a two-tissue compartment model (2TCM), respectively. A simulation study was conducted to assess robustness and precision of the 2TCM. Parameter maps showed enhanced detail on tumor substructure. Neglecting the blood volume VB in the 1TCM yields insufficient results. Parameter K1 from both 1TCM and 2TCM showed correlation with overall patient survival after carbon ion irradiation (p = 0.043 and 0.036, respectively). The 2TCM yields realistic estimates for tumor blood volume, which was found to be significantly higher in WHO IV compared to WHO III (p = 0.031). Simulations on the 2TCM showed that K1 yields good accuracy and robustness while k2 showed lowest stability of all parameters. The 1TCM provides the best compromise between parameter stability and model accuracy; however application of the 2TCM is still feasible and provides a more accurate representation of tracer-kinetics at the cost of reduced robustness. Detailed tracer kinetic analysis of 18F-FET PET with compartment models holds valuable information on tumor substructures and provides additional diagnostic and prognostic value.
Collapse
Affiliation(s)
- Charlotte Debus
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Division of Molecular and Translational Radiation Oncology, Heidelberg University Medical School, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ralf Floca
- Division of Molecular and Translational Radiation Oncology, Heidelberg University Medical School, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Ingrisch
- Department of Radiology, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Maximilian Knoll
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg University Medical School, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg University Medical School, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg University Medical School, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
42
|
Diffusion-weighted MRI and ADC versus FET-PET and GdT1w-MRI for gross tumor volume (GTV) delineation in re-irradiation of recurrent glioblastoma. Radiother Oncol 2018; 130:121-131. [PMID: 30219612 DOI: 10.1016/j.radonc.2018.08.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/18/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE GTV definition for re-irradiation treatment planning in recurrent glioblastoma (rGBM) is usually based on contrast-enhanced MRI (GdT1w-MRI) and, for an increased specificity, on amino acid PET. Diffusion-weighted (DWI) MRI and ADC maps can reveal regions of high cellularity as surrogate for active tumor. The objective of this study was to compare the localization and quality of diffusion restriction foci (GTV-ADClow) with FET-PET (GTV-PET) and GdT1w-MRI (GTV-GdT1w-MRI). MATERIAL AND METHODS We prospectively evaluated 41 patients, who received a fractionated stereotactic re-irradiation for rGBM. GTV-PET was generated automatically (tumor-to-background ratio 1.7-1.8) and manually customized. GTV-ADClow was manually defined based on DWI data (3D diffusion gradients, b = 0, 1000 s/mm2) and parametric ADC maps. The localization of recurrence was correlated with initial GdT1w-MRI and PET data. RESULTS In 30/41 patients, DWI-MRI showed areas with restricted diffusion (mean ADC-value 0.74 ± 0.22 mm2/s). 66% of GTVs-ADClow were located outside the GdT1w-MRI volume and 76% outside increased FET uptake regions. Furthermore, GTVs-ADClow were only partially included in the high dose volume and received in mean 82% of the reference dose. An adjusted volume including GdT1w-MRI, PET-positive and restricted diffusion areas would imply a GTV increase of 48%. GTV-PET and GdT1w-MRI correlated better with the localization of re-recurrence in comparison to GTV-ADClow. CONCLUSION Unexpectedly, GTV-ADClow overlapped only partially with FET-PET and GdT1w-MRI in rGBM. Moreover, GTV-ADClow correlated poorly with later rGBM-recurrences. Seeing as a restricted diffusion is known to correlate with hypercellularity, this imaging discrepancy could only be further explained in histopathological studies.
Collapse
|
43
|
Radiotherapy of Glioblastoma 15 Years after the Landmark Stupp's Trial: More Controversies than Standards? Radiol Oncol 2018; 52:121-128. [PMID: 30018514 PMCID: PMC6043880 DOI: 10.2478/raon-2018-0023] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/12/2018] [Indexed: 12/29/2022] Open
Abstract
Background The current standard of care of glioblastoma, the most common primary brain tumor in adults, has remained unchanged for over a decade. Nevertheless, some improvements in patient outcomes have occurred as a consequence of modern surgery, improved radiotherapy and up-to-date management of toxicity. Patients from control arms (receiving standard concurrent chemoradiotherapy and adjuvant chemotherapy with temozolomide) of recent clinical trials achieve better outcomes compared to the median survival of 14.6 months reported in Stupp’s landmark clinical trial in 2005. The approach to radiotherapy that emerged from Stupp’s trial, which continues to be a basis for the current standard of care, is no longer applicable and there is a need to develop updated guidelines for radiotherapy within the daily clinical practice that address or at least acknowledge existing controversies in the planning of radiotherapy. The goal of this review is to provoke critical thinking about potentially controversial aspects in the radiotherapy of glioblastoma, including among others the issue of target definitions, simultaneously integrated boost technique, and hippocampal sparing. Conclusions In conjunction with new treatment approaches such as tumor-treating fields (TTF) and immunotherapy, the role of adjuvant radiotherapy will be further defined. The personalized approach in daily radiotherapy practice is enabled with modern radiotherapy systems.
Collapse
|
44
|
Impact of 18F-FET PET on Target Volume Definition and Tumor Progression of Recurrent High Grade Glioma Treated with Carbon-Ion Radiotherapy. Sci Rep 2018; 8:7201. [PMID: 29740097 PMCID: PMC5940831 DOI: 10.1038/s41598-018-25350-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 04/17/2018] [Indexed: 11/26/2022] Open
Abstract
High-precision radiotherapy (HPR) of recurrent high grade glioma (HGG) requires accurate spatial allocation of these infiltrative tumors. We investigated the impact of 18F-FET PET on tumor delineation and progression of recurrent HGG after HPR with carbon ions. T1 contrast enhanced MRI and 18F-FET-PET scans of 26 HGG patients were fused with radiotherapy planning volumes. PET-positive (PET+) tumor volumes using different isocontours (I%) were systematically investigated and compared with MRI-derived gross tumor volumes (GTV). Standardized uptake ratios (SUR) were further correlated with GTV and tumor progression patterns. In grade IV glioma, SUR > 2.92 significantly correlated with poor median overall survival (6.5 vs 13.1 months, p = 0.00016). We found no reliable SUR cut-off criteria for definition of PET+ volumes. Overall conformity between PET and MRI-based contours was low, with maximum conformities between 0.42–0.51 at I40%. The maximum sensitivity and specificity for PET+ volumes outside of GTV predicting tumor progression were 0.16 (I40%) and 0.52 (I50%), respectively. In 75% of cases, FLAIR hyperintense area covered over 80% of PET+ volumes. 18F-FET-PET derived SUR has a prognostic impact in grade IV glioma. The value of substantial mismatches between MRI-based GTV and PET+ volumes to improve tumor delineation in radiotherapy awaits further validation in randomized prospective trials.
Collapse
|
45
|
Schinkelshoek M, Lopci E, Clerici E, Alongi F, Mancosu P, Rodari M, Navarria P, van der Hiel B, Scorsetti M, Chiti A. Impact of 11C-methionine positron emission tomography/computed tomography on radiation therapy planning and prognosis in patients with primary brain tumors. TUMORI JOURNAL 2018. [DOI: 10.1177/1778.19268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Egesta Lopci
- Nuclear Medicine Department, Humanitas Research Hospital, Rozzano (MI), Italy
| | - Elena Clerici
- Radiotherapy and Radiosurgery Department, Humanitas Research Hospital, Rozzano (MI), Italy
| | - Filippo Alongi
- Radiotherapy and Radiosurgery Department, Humanitas Research Hospital, Rozzano (MI), Italy
| | - Pietro Mancosu
- Radiotherapy and Radiosurgery Department, Humanitas Research Hospital, Rozzano (MI), Italy
| | - Marcello Rodari
- Nuclear Medicine Department, Humanitas Research Hospital, Rozzano (MI), Italy
| | - Pierina Navarria
- Radiotherapy and Radiosurgery Department, Humanitas Research Hospital, Rozzano (MI), Italy
| | - Bernies van der Hiel
- Nuclear Medicine Department, the Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital (NKI-AVL), Amsterdam, the Netherlands
| | - Marta Scorsetti
- Radiotherapy and Radiosurgery Department, Humanitas Research Hospital, Rozzano (MI), Italy
| | - Arturo Chiti
- Nuclear Medicine Department, Humanitas Research Hospital, Rozzano (MI), Italy
| |
Collapse
|
46
|
Unterrainer M, Winkelmann I, Suchorska B, Giese A, Wenter V, Kreth FW, Herms J, Bartenstein P, Tonn JC, Albert NL. Biological tumour volumes of gliomas in early and standard 20-40 min 18F-FET PET images differ according to IDH mutation status. Eur J Nucl Med Mol Imaging 2018; 45:1242-1249. [PMID: 29487977 DOI: 10.1007/s00259-018-3969-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/02/2018] [Indexed: 01/18/2023]
Abstract
PURPOSE For the clinical evaluation of O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) PET images, the use of standard summation images obtained 20-40 min after injection is recommended. However, early summation images obtained 5-15 min after injection have been reported to allow better differentiation between low-grade glioma (LGG) and high-grade glioma (HGG) by capturing the early 18F-FET uptake peak specific for HGG. We compared early and standard summation images with regard to delineation of the PET-derived biological tumour volume (BTV) in correlation with the molecular genetic profile according the updated 2016 WHO classification. METHODS The analysis included 245 patients with newly diagnosed, histologically verified glioma and a positive 18F-FET PET scan prior to any further treatment. BTVs were delineated during the early 5-15 min and standard 20-40 min time frames using a threshold of 1.6 × background activity and were compared intraindividually. Volume differences between early and late summation images of >20% were considered significant and were correlated with WHO grade and the molecular genetic profile (IDH mutation and 1p/19q codeletion status). RESULTS In 52.2% of the patients (128/245), a significant difference in BTV of >20% between early and standard summation images was found. While 44.3% of WHO grade II gliomas (31 of 70) showed a significantly smaller BTV in the early summation images, 35.0% of WHO grade III gliomas (28/80) and 37.9% of WHO grade IV gliomas (36/95) had a significantly larger BTVs. Among IDH-wildtype gliomas, an even higher portion (44.4%, 67/151) showed significantly larger BTVs in the early summation images, which was observed in 5.3% (5/94) of IDH-mutant gliomas only: most of the latter had significantly smaller BTVs in the early summation images, i.e. 51.2% of IDH-mutant gliomas without 1p/19q codeletion (21/41) and 39.6% with 1p/19q codeletion (21/53). CONCLUSION BTVs delineated in early and standard summation images differed significantly in more than half of gliomas. While the standard summation images seem appropriate for delineation of LGG as well as IDH-mutant gliomas, a remarkably high percentage of HGG and, particularly, IDH-wildtype gliomas were depicted with significantly larger volumes in early summation images. This finding might be of interest for optimization of treatment planning (e.g. radiotherapy) in accordance with the individual IDH mutation status.
Collapse
Affiliation(s)
- M Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - I Winkelmann
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - B Suchorska
- Department of Neurosurgery, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - A Giese
- Department of Neuropathology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - V Wenter
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - F W Kreth
- Department of Neurosurgery, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - J Herms
- Department of Neuropathology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - P Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - J C Tonn
- Department of Neurosurgery, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - N L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
47
|
Hayes AR, Jayamanne D, Hsiao E, Schembri GP, Bailey DL, Roach PJ, Khasraw M, Newey A, Wheeler HR, Back M. Utilizing 18F-fluoroethyltyrosine (FET) positron emission tomography (PET) to define suspected nonenhancing tumor for radiation therapy planning of glioblastoma. Pract Radiat Oncol 2018; 8:230-238. [PMID: 29730279 DOI: 10.1016/j.prro.2018.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/25/2018] [Indexed: 11/15/2022]
Abstract
AIM The authors sought to evaluate the impact of 18F-fluoroethyltyrosine (FET) positron emission tomography (PET) on radiation therapy planning for patients diagnosed with glioblastoma (GBM) and the presence of suspected nonenhancing tumors compared with standard magnetic resonance imaging (MRI). METHODS AND MATERIALS Patients with GBM and contrast-enhanced MRI scans showing regions suspicious of nonenhancing tumor underwent postoperative FET-PET before commencing radiation therapy. Two clinical target volumes (CTVs) were created using pre- and postoperative MRI: MRI fluid-attenuated inversion recovery (FLAIR) sequences (CTVFLAIR) and MRI contrast sequences with an expansion on the surgical cavity (CTVSx). FET-PET was used to create biological tumor volumes (BTVs) by encompassing FET-avid regions, forming BTVFLAIR and BTVSx. Volumetric analyses were conducted between CTVs and respective BTVs using Wilcoxon signed-rank tests. The volume increase with addition of FET was analyzed with respect to BTVFLAIR and BTVSx. Presence of focal gadolinium contrast enhancement within previously nonenhancing tumor or within the FET-avid region was noted on MRI scans at 1 and 3 months after radiation therapy. RESULTS Twenty-six patients were identified retrospectively from our database, of whom 24 had demonstrable FET uptake. The median CTVFLAIR, CTVSx, BTVFLAIR, and BTVSx were 57.1 mL (range, 1.1-217.4), 83.6 mL (range, 27.2-275.8), 62.8 mL (range, 1.1-307.3), and 94.7 mL (range, 27.2-285.5), respectively. When FET-PET was used, there was a mean increase in volume of 26.8% from CTVFLAIR to BTVFLAIR and 20.6% from CTVSx to BTVSx. A statistically significant difference was noted on Wilcoxon signed-rank test when assessing volumetric change between CTVFLAIR and BTVFLAIR (P < .0001) and CTVSx and BTVSx (P < .0001). Six of 24 patients (25%) with FET avidity before radiation therapy showed focal gadolinium enhancement within the radiation therapy portal. CONCLUSIONS FET-PET may help improve delineation of GBM in cases with a suspected nonenhancing component. This may result in improved radiation therapy target delineation and reduce the risk of potential geographical miss. SUMMARY We investigated the impact of 18F-fluoroethyltyrosine (FET) positron emission tomography (PET) on radiation therapy planning for patients diagnosed with glioblastoma (GBM) and a suspected nonenhancing tumor compared with standard magnetic resonance imaging. We performed volumetric analyses between clinical target volumes and respective biological target volumes using Wilcoxon signed-rank tests. FET-PET may help improve delineation of GBM in cases with a suspected nonenhancing component and reduce the risk of potential geographical miss.
Collapse
Affiliation(s)
- Aimee R Hayes
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Vital, Northern Translational Cancer Research Centre, St Leonards, NSW, Australia; Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia.
| | - Dasantha Jayamanne
- Department of Radiation Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Edward Hsiao
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Geoffrey P Schembri
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Dale L Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Vital, Northern Translational Cancer Research Centre, St Leonards, NSW, Australia; Faculty of Health Sciences, Cumberland Campus, The University of Sydney, Lidcombe, NSW, Australia
| | - Paul J Roach
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Mustafa Khasraw
- Sydney Vital, Northern Translational Cancer Research Centre, St Leonards, NSW, Australia; Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; Sydney Neuro-Oncology Group, North Shore Private Hospital, St Leonards, NSW, Australia
| | - Allison Newey
- Department of Radiology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Helen R Wheeler
- Sydney Vital, Northern Translational Cancer Research Centre, St Leonards, NSW, Australia; Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; Sydney Neuro-Oncology Group, North Shore Private Hospital, St Leonards, NSW, Australia
| | - Michael Back
- Sydney Vital, Northern Translational Cancer Research Centre, St Leonards, NSW, Australia; Department of Radiation Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; Sydney Neuro-Oncology Group, North Shore Private Hospital, St Leonards, NSW, Australia
| |
Collapse
|
48
|
Bolcaen J, Descamps B, Boterberg T, Vanhove C, Goethals I. PET and MRI Guided Irradiation of a Glioblastoma Rat Model Using a Micro-irradiator. J Vis Exp 2017. [PMID: 29364211 DOI: 10.3791/56601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
For decades, small animal radiation research was mostly performed using fairly crude experimental setups applying simple single-beam techniques without the ability to target a specific or well-delineated tumor volume. The delivery of radiation was achieved using fixed radiation sources or linear accelerators producing megavoltage (MV) X-rays. These devices are unable to achieve sub-millimeter precision required for small animals. Furthermore, the high doses delivered to healthy surrounding tissue hamper response assessment. To increase the translation between small animal studies and humans, our goal was to mimic the treatment of human glioblastoma in a rat model. To enable a more accurate irradiation in a preclinical setting, recently, precision image-guided small animal radiation research platforms were developed. Similar to human planning systems, treatment planning on these micro-irradiators is based on computed tomography (CT). However, low soft-tissue contrast on CT makes it very challenging to localize targets in certain tissues, such as the brain. Therefore, incorporating magnetic resonance imaging (MRI), which has excellent soft-tissue contrast compared to CT, would enable a more precise delineation of the target for irradiation. In the last decade also biological imaging techniques, such as positron emission tomography (PET) gained interest for radiation therapy treatment guidance. PET enables the visualization of e.g., glucose consumption, amino-acid transport, or hypoxia, present in the tumor. Targeting those highly proliferative or radio-resistant parts of the tumor with a higher dose could give a survival benefit. This hypothesis led to the introduction of the biological tumor volume (BTV), besides the conventional gross target volume (GTV), clinical target volume (CTV), and planned target volume (PTV). At the preclinical imaging lab of Ghent University, a micro-irradiator, a small animal PET, and a 7 T small animal MRI are available. The goal was to incorporate MRI-guided irradiation and PET-guided sub-volume boosting in a glioblastoma rat model.
Collapse
Affiliation(s)
- Julie Bolcaen
- Department of Nuclear Medicine, Ghent University Hospital;
| | - Benedicte Descamps
- IBiTech-MEDISIP, Department of Electronics and Information Systems, Ghent University
| | - Tom Boterberg
- Department of Radiation Oncology, Ghent University Hospital
| | - Christian Vanhove
- IBiTech-MEDISIP, Department of Electronics and Information Systems, Ghent University
| | | |
Collapse
|
49
|
Jaymanne DT, Kaushal S, Chan D, Schembri G, Brazier D, Bailey D, Wheeler H, Back M. Utilizing 18F-fluoroethyl-l
-tyrosine positron emission tomography in high grade glioma for radiation treatment planning in patients with contraindications to MRI. J Med Imaging Radiat Oncol 2017; 62:122-127. [DOI: 10.1111/1754-9485.12676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/20/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Dasantha T Jaymanne
- Northern Sydney Cancer Centre; Royal North Shore Hospital; Sydney New South Wales Australia
- Central Coast Cancer Centre; Gosford Hospital; Gosford New South Wales Australia
| | - Sneha Kaushal
- Central Coast Cancer Centre; Gosford Hospital; Gosford New South Wales Australia
| | - David Chan
- Department of PET and Nuclear Medicine; Royal North Shore Hospital; Sydney New South Wales Australia
| | - Geoff Schembri
- Department of PET and Nuclear Medicine; Royal North Shore Hospital; Sydney New South Wales Australia
| | - David Brazier
- Department of Medical Imaging; Royal North Shore Hospital; Sydney New South Wales Australia
| | - Dale Bailey
- Department of PET and Nuclear Medicine; Royal North Shore Hospital; Sydney New South Wales Australia
| | - Helen Wheeler
- Northern Sydney Cancer Centre; Royal North Shore Hospital; Sydney New South Wales Australia
- Sydney Medical School; University of Sydney; Sydney New South Wales Australia
| | - Michael Back
- Northern Sydney Cancer Centre; Royal North Shore Hospital; Sydney New South Wales Australia
- Central Coast Cancer Centre; Gosford Hospital; Gosford New South Wales Australia
- Sydney Medical School; University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
50
|
Unterrainer M, Vettermann F, Brendel M, Holzgreve A, Lifschitz M, Zähringer M, Suchorska B, Wenter V, Illigens BM, Bartenstein P, Albert NL. Towards standardization of 18F-FET PET imaging: do we need a consistent method of background activity assessment? EJNMMI Res 2017; 7:48. [PMID: 28560582 PMCID: PMC5449315 DOI: 10.1186/s13550-017-0295-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/18/2017] [Indexed: 11/25/2022] Open
Abstract
Background PET with O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) has reached increasing clinical significance for patients with brain neoplasms. For quantification of standard PET-derived parameters such as the tumor-to-background ratio, the background activity is assessed using a region of interest (ROI) or volume of interest (VOI) in unaffected brain tissue. However, there is no standardized approach regarding the assessment of the background reference. Therefore, we evaluated the intra- and inter-reader variability of commonly applied approaches for clinical 18F-FET PET reading. The background activity of 20 18F-FET PET scans was independently evaluated by 6 readers using a (i) simple 2D-ROI, (ii) spherical VOI with 3.0 cm diameter, and (iii) VOI consisting of crescent-shaped ROIs; each in the contralateral, non-affected hemisphere including white and gray matter in line with the European Association of Nuclear Medicine (EANM) and German guidelines. To assess intra-reader variability, each scan was evaluated 10 times by each reader. The coefficient of variation (CoV) was assessed for determination of intra- and inter-reader variability. In a second step, the best method was refined by instructions for a guided background activity assessment and validated by 10 further scans. Results Compared to the other approaches, the crescent-shaped VOIs revealed most stable results with the lowest intra-reader variabilities (median CoV 1.52%, spherical VOI 4.20%, 2D-ROI 3.69%; p < 0.001) and inter-reader variabilities (median CoV 2.14%, spherical VOI 4.02%, 2D-ROI 3.83%; p = 0.001). Using the guided background assessment, both intra-reader variabilities (median CoV 1.10%) and inter-reader variabilities (median CoV 1.19%) could be reduced even more. Conclusions The commonly applied methods for background activity assessment show different variability which might hamper 18F-FET PET quantification and comparability in multicenter settings. The proposed background activity assessment using a (guided) crescent-shaped VOI allows minimization of both intra- and inter-reader variability and might facilitate comprehensive methodological standardization of amino acid PET which is of interest in the light of the anticipated EANM technical guidelines.
Collapse
Affiliation(s)
- Marcus Unterrainer
- Department of Nuclear Medicine, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,Center for Clinical Research and Management Education, Division of Health Care Sciences, Dresden International University, Dresden, Germany
| | - Franziska Vettermann
- Department of Nuclear Medicine, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,Department of Neurosurgery, LMU Munich, Munich, Germany
| | - Michael Lifschitz
- Department of Nuclear Medicine, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Matthias Zähringer
- Department of Nuclear Medicine, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | | | - Vera Wenter
- Department of Nuclear Medicine, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Ben M Illigens
- Center for Clinical Research and Management Education, Division of Health Care Sciences, Dresden International University, Dresden, Germany.,Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Peter Bartenstein
- Department of Nuclear Medicine, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| |
Collapse
|