1
|
Noël G, Bou-Gharios J, Burckel H. Tumor reirradiation: Issues, challenges and perspectives for radiobiology. Cancer Radiother 2024; 28:493-502. [PMID: 39327200 DOI: 10.1016/j.canrad.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024]
Abstract
The radiobiology of tumor reirradiation is poorly understood. It pertains to tumors and their sensitivity at the time of relapse, encompassing primary tumors, metastases, or secondary cancers developed in or proximal to previously irradiated tissues. The ability to control the pathology depends, in part, on understanding this sensitivity. To date, literature data remains limited regarding changes in the radiosensitivity of tissues after initial irradiation, and most proposals are based on conjecture. The response of healthy tissues at the site of irradiation raises concerns about radio-induced complications. Cumulative dose is likely a major factor in this risk, thus using equivalent dose calculations might help reduce the risk of complications. However, the correlation between mathematical equivalence formulas and clinical effects of radiobiological origin is weak, and the lack of knowledge of the alpha/beta (α/β) ratio of healthy tissues remains an obstacle to the extensive use of these formulas. However, tissues exposed to recovery dose may have a tolerance to irradiation much higher than assumed, thus further biological work remains to be developed. Also, the functionality of previously irradiated tissues could be useful in selecting the most suitable irradiation beams. Finally, research on the genomics of irradiated healthy tissues could improve the prediction of side effects and personalize radiotherapy.
Collapse
Affiliation(s)
- Georges Noël
- Radiotherapy Department, institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, BP 23025, 67033 Strasbourg, France; Faculté de médecine, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France; Radiobiology Laboratory, institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67000 Strasbourg, France; Laboratory of Engineering, Informatics and Imaging (ICube), Integrative Multimodal Imaging in Healthcare (Imis), UMR 7357, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France.
| | - Jolie Bou-Gharios
- Radiobiology Laboratory, institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67000 Strasbourg, France; Laboratory of Engineering, Informatics and Imaging (ICube), Integrative Multimodal Imaging in Healthcare (Imis), UMR 7357, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France
| | - Hélène Burckel
- Radiobiology Laboratory, institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67000 Strasbourg, France; Laboratory of Engineering, Informatics and Imaging (ICube), Integrative Multimodal Imaging in Healthcare (Imis), UMR 7357, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France
| |
Collapse
|
2
|
Ge X, Yang M, Li T, Liu T, Gao X, Qiu Q, Yin Y. Comparative analysis of dose calculation algorithms for CyberKnife-based stereotactic radiotherapy in lung cancer. Front Oncol 2023; 13:1215976. [PMID: 37849803 PMCID: PMC10577380 DOI: 10.3389/fonc.2023.1215976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
Purpose The accuracy of dose calculation is the prerequisite for CyberKnife (CK) to implement precise stereotactic body radiotherapy (SBRT). In this study, CK-MLC treatment planning for early-stage non-small cell lung cancer (NSCLC) were compared using finite-size pencil beam (FSPB) algorithm, FSPB with lateral scaling option (FSPB_LS) and Monte Carlo (MC) algorithms, respectively. We concentrated on the enhancement of accuracy with the FSPB_LS algorithm over the conventional FSPB algorithm and the dose consistency with the MC algorithm. Methods In this study, 54 cases of NSCLC were subdivided into central lung cancer (CLC, n=26) and ultra-central lung cancer (UCLC, n=28). For each patient, we used the FSPB algorithm to generate a treatment plan. Then the dose was recalculated using FSPB_LS and MC dose algorithms based on the plans computed using the FSPB algorithm. The resultant plans were assessed by calculating the mean value of pertinent comparative parameters, including PTV prescription isodose, conformity index (CI), homogeneity index (HI), and dose-volume statistics of organs at risk (OARs). Results In this study, most dose parameters of PTV and OARs demonstrated a trend of MC > FSPB_LS > FSPB. The FSPB_LS algorithm aligns better with the dose parameters of the target compared to the MC algorithm, which is particularly evident in UCLC. However, the FSPB algorithm significantly underestimated the does of the target. Regarding the OARs in CLC, differences in dose parameters were observed between FSPB and FSPB_LS for V10 of the contralateral lung, as well as between FSPB and MC for mean dose (Dmean) of the contralateral lung and maximum dose (Dmax) of the aorta, exhibiting statistical differences. There were no statistically significant differences observed between FSPB_LS and MC for the OARs. However, the average dose deviation between FSPB_LS and MC algorithms for OARs ranged from 2.79% to 11.93%. No significant dose differences were observed among the three algorithms in UCLC. Conclusion For CLC, the FSPB_LS algorithm exhibited good consistency with the MC algorithm in PTV and demonstrated a significant improvement in accuracy when compared to the traditional FSPB algorithm. However, the FSPB_LS algorithm and the MC algorithm showed a significant dose deviation in OARs of CLC. In the case of UCLC, FSPB_LS showed better consistency with the MC algorithm than observed in CLC. Notwithstanding, UCLC's OARs were highly sensitive to radiation dose and could result in potentially serious adverse reactions. Consequently, it is advisable to use the MC algorithm for dose calculation in both CLC and UCLC, while the application of FSPB_LS algorithm should be carefully considered.
Collapse
Affiliation(s)
- Xuanchu Ge
- Department of Radiation Oncology and Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Mingshan Yang
- Department of Urology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Tengxiang Li
- Department of Radiation Oncology and Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Tonghai Liu
- Department of Radiation Oncology and Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiangyu Gao
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingtao Qiu
- Department of Radiation Oncology and Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yong Yin
- Department of Radiation Oncology and Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
3
|
Janopaul-Naylor JR, Cao Y, McCall NS, Switchenko JM, Tian S, Chen H, Stokes WA, Kesarwala AH, McDonald MW, Shelton JW, Bradley JD, Higgins KA. Definitive intensity modulated proton re-irradiation for lung cancer in the immunotherapy era. Front Oncol 2023; 12:1074675. [PMID: 36733369 PMCID: PMC9888533 DOI: 10.3389/fonc.2022.1074675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction As immunotherapy has improved distant metastasis-free survival (DMFS) in Non-Small Cell Lung Cancer (NSCLC), isolated locoregional recurrences have increased. However, management of locoregional recurrences can be challenging. We report our institutional experience with definitive intent re-irradiation using Intensity Modulated Proton Therapy (IMPT). Method Retrospective cohort study of recurrent or second primary NSCLC or LS-SCLC treated with IMPT. Kaplan-Meier method and log-rank test were used for time-to-event analyses. Results 22 patients were treated from 2019 to 2021. After first course of radiation (median 60 Gy, range 45-70 Gy), 45% received adjuvant immunotherapy. IMPT re-irradiation began a median of 28.2 months (8.8-172.9 months) after initial radiotherapy. The median IMPT dose was 60 GyE (44-60 GyE). 36% received concurrent chemotherapy with IMPT and 18% received immunotherapy after IMPT. The median patient's IMPT lung mean dose was 5.3 GyE (0.9-13.9 GyE) and 5 patients had cumulative esophagus max dose >100 GyE with 1-year overall survival (OS) 68%, 1-year local control 80%, 1-year progression free survival 45%, and 1-year DMFS 60%. Higher IMPT (HR 1.4; 95% CI 1.1-1.7, p=0.01) and initial radiotherapy mean lung doses (HR 1.3; 95% CI 1.0-1.6, p=0.04) were associated with worse OS. Two patients developed Grade 3 pneumonitis or dermatitis, one patient developed Grade 2 pneumonitis, and seven patients developed Grade 1 toxicity. There were no Grade 4 or 5 toxicities. Discussion Definitive IMPT re-irradiation for lung cancer can prolong disease control with limited toxicity, particularly in the immunotherapy era.
Collapse
Affiliation(s)
- James R. Janopaul-Naylor
- Winship Cancer Institute, Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Yichun Cao
- Biostatistics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Neal S. McCall
- Winship Cancer Institute, Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Jeffrey M. Switchenko
- Biostatistics Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, United States
- Rollins School of Public Health, Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, United States
| | - Sibo Tian
- Winship Cancer Institute, Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Haijian Chen
- Winship Cancer Institute, Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - William A. Stokes
- Winship Cancer Institute, Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Aparna H. Kesarwala
- Winship Cancer Institute, Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Mark W. McDonald
- Winship Cancer Institute, Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Joseph W. Shelton
- Winship Cancer Institute, Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Jeffrey D. Bradley
- Winship Cancer Institute, Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Kristin A. Higgins
- Winship Cancer Institute, Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
4
|
Chopra S, Shankavaram U, Bylicky M, Dalo J, Scott K, Aryankalayil MJ, Coleman CN. Profiling mRNA, miRNA and lncRNA expression changes in endothelial cells in response to increasing doses of ionizing radiation. Sci Rep 2022; 12:19941. [PMID: 36402833 PMCID: PMC9675751 DOI: 10.1038/s41598-022-24051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022] Open
Abstract
Recent and past research have highlighted the importance of the endothelium in the manifestation of radiation injury. Our primary focus is on medical triage and management following whole body or partial-body irradiation. Here we investigated the usability of endothelial cells' radiation response for biodosimetry applications. We profiled the transcriptome in cultured human endothelial cells treated with increasing doses of X-rays. mRNA expression changes were useful 24 h and 72 h post-radiation, microRNA and lncRNA expression changes were useful 72 h after radiation. More mRNA expressions were repressed than induced while more miRNA and lncRNA expressions were induced than repressed. These novel observations imply distinct radiation responsive regulatory mechanisms for coding and non-coding transcripts. It also follows how different RNA species should be explored as biomarkers for different time-points. Radiation-responsive markers which could classify no radiation (i.e., '0 Gy') and dose-differentiating markers were also predicted. IPA analysis showed growth arrest-related processes at 24 h but immune response coordination at the 72 h post-radiation. Collectively, these observations suggest that endothelial cells have a precise dose and time-dependent response to radiation. Further studies in the laboratory are examining if these differences could be captured in the extracellular vesicles released by irradiated endothelial cells.
Collapse
Affiliation(s)
- Sunita Chopra
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, 20892, USA
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, 20892, USA
| | - Michelle Bylicky
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, 20892, USA
| | - Juan Dalo
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, 20892, USA
| | - Kevin Scott
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, 20892, USA
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, 20892, USA.
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Mohamed S, Assenholt MS, Fokdal L, Kallehauge J, Lindegaard JC, Tanderup K. Coverage probability planning for simultaneously integrated boosts of inguinal lymph nodes in vulvar cancer. Acta Oncol 2022; 61:1406-1411. [DOI: 10.1080/0284186x.2022.2134735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Sandy Mohamed
- Department of Radiotherapy and Nuclear Medicine, National Cancer Institute, Cairo University, Cairo, Egypt
| | | | - Lars Fokdal
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Kari Tanderup
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Seyedin SN, Bassalow R, Mawlawi OR, Turner LM, Patel RR, Mazin SR, Oderinde OM, Voronenko Y, Wages CA, Olcott PD, Chang JY, Balter PA, Welsh JW. The potential of biology-guided radiation therapy in thoracic cancer: A preliminary treatment planning study. Front Oncol 2022; 12:921473. [PMID: 36313653 PMCID: PMC9613936 DOI: 10.3389/fonc.2022.921473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/23/2022] [Indexed: 01/12/2023] Open
Abstract
Purpose We investigated the feasibility of biology-guided radiotherapy (BgRT), a technique that utilizes real-time positron emission imaging to minimize tumor motion uncertainties, to spare nearby organs at risk. Methods Volumetric modulated arc therapy (VMAT), intensity-modulated proton (IMPT) therapy, and BgRT plans were created for a paratracheal node recurrence (case 1; 60 Gy in 10 fractions) and a primary peripheral left upper lobe adenocarcinoma (case 2; 50 Gy in four fractions). Results For case 1, BgRT produced lower bronchus V40 values compared to VMAT and IMPT. For case 2, total lung V20 was lower in the BgRT case compared to VMAT and IMPT. Conclusions BgRT has the potential to reduce the radiation dose to proximal critical structures but requires further detailed investigation.
Collapse
Affiliation(s)
- Steven N. Seyedin
- Department of Radiation Oncology, University of California, Irvine-Chao Family Comprehensive Cancer Center, Orange, CA, United States
| | - Rostem Bassalow
- Northwest Medical Physics Center, Lynnwood, WA, United States
| | - Osama R. Mawlawi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lehendrick M. Turner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Roshal R. Patel
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | | | | | - Cody A. Wages
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Joe Y. Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Peter A. Balter
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - James W. Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
7
|
Comparison of radiofrequency ablation and ablative external radiotherapy for the treatment of intrahepatic malignancies: A hybrid meta-analysis. JHEP Rep 2022; 5:100594. [PMID: 36561128 PMCID: PMC9763860 DOI: 10.1016/j.jhepr.2022.100594] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 02/01/2023] Open
Abstract
Background & Aims Radiofrequency ablation (RFA) and ablative external beam radiotherapy (ablative RT) are commonly used to treat small intrahepatic malignancies. We meta-analysed oncologic outcomes and systematically reviewed the clinical consideration of tumour location and size. Methods PubMed, Medline, Embase, and Cochrane Library databases were searched on February 24, 2022. Studies comparing RFA and ablative RT, providing one of the endpoints (local control or survival), and encompassing ≥5 patients in each arm were included. Results Twenty-one studies involving 4,638 patients were included. Regarding survival, the odds ratio (OR) was 1.204 (p = 0.194, favouring RFA, not statistically significant) among all studies, 1.253 (p = 0.153) among hepatocellular carcinoma (HCC) studies, and 1.002 (p = 0.996) among colorectal cancer metastasis studies. Regarding local control, the OR was 0.458 (p <0.001, favouring ablative RT) among all studies, 0.452 (p <0.001) among HCC studies, favouring the ablative RT arm, and 0.649 (p = 0.484) among colorectal cancer metastasis studies. Pooled 1- and 2-year survival rates for HCC studies were 91.8% and 77.7% after RFA, and 89.0% and 76.0% after ablative RT, respectively; and for metastasis studies were 88.2% and 66.4% after RFA and 82.7% and 60.6% after RT, respectively. Literature analysis suggests that ablative RT can be more effective than RFA for tumours larger than 2-3 cm or for specific sublocations in the liver (e.g. subphrenic or perivascular sites), with moderate quality of evidence (reference to the grading system of the American Society for Radiation Oncology Primary Liver Cancer Clinical Guidelines). The pooled grade ≥3 complication rates were 2.9% and 2.8% in the RFA and ablative RT arms, respectively (p = 0.952). Conclusions Our study shows that ablative RT can yield oncologic outcomes similar to RFA, and suggests that it can be more effective for the treatment of tumours in locations where RFA is difficult to perform or for large-sized tumours. Systematic Review Registration This study was registered with PROSPERO (Protocol No: CRD42022332997). Impact and implications Radiofrequency ablation (RFA) and ablative radiotherapy (RT) are non-surgical modalities for the treatment of small intrahepatic malignancies. Ablative RT showed oncologic outcomes at least similar to those of RFA, and was more effective at specific locations (e.g. perivascular or subphrenic locations).
Collapse
Key Words
- ASCO, American Society of Clinical Oncology
- ASTRO, American Society for Radiation Oncology
- CIRSE, cardiovascular and interventional radiological society of Europe
- CRC, colorectal cancer
- EBRT, external beam radiation therapy
- EQD2, Equivalent dose, 2 Gy per Fraction
- External beam radiation therapy
- HCC, hepatocellular carcinoma
- HFRT, hypofractionated radiotherapy
- IPTW, inverse probability of treatment weighting
- Intrahepatic malignancy
- LC, local control
- LT, liver transplantation
- Liver cancer
- MWA, microwave ablation
- NCDB, national cancer database
- OS, overall survival
- P, prospective
- PBT, proton beam therapy
- PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses
- PSM, propensity score matching
- R, retrospective
- RCT, randomised controlled trial
- RFA, radiofrequency ablation
- RT, radiotherapy
- Radiofrequency ablation
- SBRT, stereotactic body radiotherapy
- TACE, transarterial chemoembolisation
Collapse
|
8
|
Beddok A, Calugaru V, de Marzi L, Graff P, Dumas JL, Goudjil F, Dendale R, Minsat M, Verrelle P, Buvat I, Créhange G. Clinical and technical challenges of cancer reirradiation: Words of wisdom. Crit Rev Oncol Hematol 2022; 174:103655. [PMID: 35398521 DOI: 10.1016/j.critrevonc.2022.103655] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 12/25/2022] Open
Abstract
Since the development of new radiotherapy techniques that have improved healthy tissue sparing, reirradiation (reRT) has become possible. The selection of patients eligible for reRT is complex given that it can induce severe or even fatal side effects. The first step should therefore be to assess, in the context of multidisciplinary staff meeting, the patient's physical status, the presence of sequelae resulting from the first irradiation and the best treatment option available. ReRT can be performed either curatively or palliatively to treat a cancer-related symptom that is detrimental to the patient's quality of life. The selected techniques for reRT should provide the best protection of healthy tissue. The construction of target volumes and the evaluation of constraints regarding the doses that can be used in this context have not yet been fully codified. These points raised in the literature suggest that randomized studies should be undertaken to answer pending questions.
Collapse
Affiliation(s)
- Arnaud Beddok
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France; Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), U1288 Université Paris Saclay/Inserm/Institut Curie. Orsay. France; Proton Therapy Center. Institut Curie, PSL Research University, Orsay. France.
| | - Valentin Calugaru
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France; Proton Therapy Center. Institut Curie, PSL Research University, Orsay. France
| | - Ludovic de Marzi
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France; Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), U1288 Université Paris Saclay/Inserm/Institut Curie. Orsay. France; Proton Therapy Center. Institut Curie, PSL Research University, Orsay. France
| | - Pierre Graff
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France
| | - Jean-Luc Dumas
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France
| | - Farid Goudjil
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France; Proton Therapy Center. Institut Curie, PSL Research University, Orsay. France
| | - Rémi Dendale
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France; Proton Therapy Center. Institut Curie, PSL Research University, Orsay. France
| | - Mathieu Minsat
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France
| | - Pierre Verrelle
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France
| | - Irène Buvat
- Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), U1288 Université Paris Saclay/Inserm/Institut Curie. Orsay. France
| | - Gilles Créhange
- Department of Radiation Oncology. Institut Curie, PSL Research University, Paris - Saint Cloud-Orsay. France; Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), U1288 Université Paris Saclay/Inserm/Institut Curie. Orsay. France; Proton Therapy Center. Institut Curie, PSL Research University, Orsay. France
| |
Collapse
|
9
|
Gabrys D, Kulik R, Namysł-Kaletka A. Re-irradiation for intra-thoracic tumours and extra-thoracic breast cancer: dose accumulation, evaluation of efficacy and toxicity based on a literature review. Br J Radiol 2022; 95:20201292. [PMID: 34826226 PMCID: PMC9153724 DOI: 10.1259/bjr.20201292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The improvement seen in the diagnostic procedures and treatment of thoracic tumours means that patients have an increased chance of longer overall survival. Nevertheless, we can still find those who have had a recurrence or developed a secondary cancer in the previously treated area. These patients require retreatment including re-irradiation. We have reviewed the published data on thoracic re-irradiation, which shows that some specific healthy tissues can tolerate a significant dose of irradiation and these patients benefit from aggressive treatment; however, there is a risk of damage to normal tissue under these circumstances. We analysed the literature data on re-irradiation in the areas of vertebral bodies, spinal cord, breast, lung and oesophagus. We evaluated the doses of primary and secondary radiotherapy, the treatment techniques, as well as the local control and median or overall survival in patients treated with re-radiation. The longest OS is reported in the case of re-irradiation after second breast-conserving therapy where the 5-year OS range is 81 to 100% and is shorter in patients with loco-reginal re-irradiation where the 5-y OS range is 18 to 60%. 2-year OS in patients re-irradiated for lung cancer and oesophagus cancer range from 13 to 74% and 18 to 42%, respectively. Majority grade ≥3 toxicity after second breast-conserving therapy was fibrosis up to 35%. For loco-regional breast cancer recurrences, early toxicity occurred in up to 33% of patients resulting in mostly desquamation, while late toxicity was recorded in up to 23% of patients and were mostly ulcerations. Early grade ≥3 lung toxicity developed in up to 39% of patients and up to 20% of Grade 5 hemoptysis. The most frequently observed early toxicity grade ≥3 in oesophageal cancer was oesophagitis recorded in up to 57% of patients, followed by hematological complications which was recorded in up to 50% of patients. The most common late complications included dysphagia, recorded in up to 16.7% of patients. We have shown that thoracic re-irradiation is feasible and effective in achieving local control in some patients. Re-irradiation should be performed with maximum accuracy and care using the best available treatment methods with a highly conformal, image-guided approach. Due to tremendous technological progress in the field of radiotherapy, we can deliver radiation precisely, shorten the overall treatment time and potentially reduce treatment-related toxicities.
Collapse
Affiliation(s)
- Dorota Gabrys
- Radiotherapy Department, Maria Sklodowska-Curie National Research and Institute of Oncology, Gliwice, Poland
| | - Roland Kulik
- Radiotherapy Planning Department, Maria Sklodowska-Curie National Research and Institute of Oncology, Gliwice, Poland
| | - Agnieszka Namysł-Kaletka
- Radiotherapy Department, Maria Sklodowska-Curie National Research and Institute of Oncology, Gliwice, Poland
| |
Collapse
|
10
|
Vinogradskiy Y, Castillo R, Castillo E, Schubert L, Jones BL, Faught A, Gaspar LE, Kwak J, Bowles DW, Waxweiler T, Dougherty JM, Gao D, Stevens C, Miften M, Kavanagh B, Grills I, Rusthoven CG, Guerrero T. Results of a Multi-Institutional Phase 2 Clinical Trial for 4DCT-Ventilation Functional Avoidance Thoracic Radiation Therapy. Int J Radiat Oncol Biol Phys 2022; 112:986-995. [PMID: 34767934 PMCID: PMC8863640 DOI: 10.1016/j.ijrobp.2021.10.147] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/07/2021] [Accepted: 10/22/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE Radiation pneumonitis remains a major limitation in the radiation therapy treatment of patients with lung cancer. Functional avoidance radiation therapy uses functional imaging to reduce pulmonary toxic effects by designing radiation therapy plans that reduce doses to functional regions of the lung. Lung functional imaging has been developed that uses 4-dimensional computed tomography (4DCT) imaging to calculate 4DCT-based lung ventilation (4DCT-ventilation). A phase 2 multicenter study was initiated to evaluate 4DCT-ventilation functional avoidance radiation therapy. The study hypothesis was that functional avoidance radiation therapy could reduce the rate of grade ≥2 radiation pneumonitis to 12% compared with a 25% historical rate, with the trial being positive if ≤16.4% of patients experienced grade ≥2 pneumonitis. METHODS AND MATERIALS Lung cancer patients receiving curative-intent radiation therapy (prescription doses of 45-75 Gy) and chemotherapy were accrued. Patient 4DCT scans were used to generate 4DCT-ventilation images. The 4DCT-ventilation images were used to generate functional avoidance plans that reduced doses to functional portions of the lung while delivering the prescribed tumor dose. Pneumonitis was evaluated by a clinician at 3, 6, and 12 months after radiation therapy. RESULTS Sixty-seven evaluable patients were accrued between April 2015 and December 2019. The median prescription dose was 60 Gy (range, 45-66 Gy) delivered in 30 fractions (range, 15-33 fractions). The average reduction in the functional volume of lung receiving ≥20 Gy with functional avoidance was 3.5% (range, 0%-12.8%). The median follow-up was 312 days. The rate of grade ≥2 radiation pneumonitis was 10 of 67 patients (14.9%; 95% upper CI, 24.0%), meeting the phase 2 criteria. CONCLUSIONS 4DCT-ventilation offers an imaging modality that is convenient and provides functional imaging without an extra procedure necessary. This first report of a multicenter study of 4DCT-ventilation functional avoidance radiation therapy provided data showing that the trial met phase 2 criteria and that evaluation in a phase 3 study is warranted.
Collapse
Affiliation(s)
- Yevgeniy Vinogradskiy
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado; Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Richard Castillo
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Edward Castillo
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan
| | - Leah Schubert
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Bernard L Jones
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Austin Faught
- Department of Radiation Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Laurie E Gaspar
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Jennifer Kwak
- Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Daniel W Bowles
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, Colorado; Rocky Mountain Regional VA Medical Center, Aurora, Colorado
| | - Timothy Waxweiler
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | | | - Dexiang Gao
- Departments of Pediatrics and Biostatistics and Informatics, University of Colorado School of Medicine, Aurora, Colorado
| | - Craig Stevens
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan
| | - Moyed Miften
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Brian Kavanagh
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Inga Grills
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan
| | - Chad G Rusthoven
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Thomas Guerrero
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan
| |
Collapse
|
11
|
Grambozov B, Stana M, Kaiser B, Karner J, Gerum S, Ruznic E, Zellinger B, Moosbrugger R, Studnicka M, Fastner G, Sedlmayer F, Zehentmayr F. High Dose Thoracic Re-Irradiation and Chemo-Immunotherapy for Centrally Recurrent NSCLC. Cancers (Basel) 2022; 14:573. [PMID: 35158841 PMCID: PMC8833516 DOI: 10.3390/cancers14030573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Thoracic re-irradiation for recurrent lung cancer dates back four decades, when the first small series on 29 patients receiving palliative doses was published. With 5-year overall survival rates of 57% in PDL-1 positive patients after primary chemo-radio-immunotherapy, the number of patients who experience loco-regional relapse will increase in the near future. In this context, centrally recurring lung tumors pose a major treatment challenge. Hence, the aim of the current review is to compile the available evidence on curatively intended thoracic re-irradiation for this special clinical situation. METHODS A systematic literature search according to the PRISMA guidelines was performed. A study was included when the following criteria were met: (1) 66% of the patients had NSCLC, (2) a total dose of 50 Gy in the second course and/or a biologically effective dose of at least 100 Gy in both treatment courses was administered, (3) re-irradiation was administered with modern radiation techniques, (4) 50% or more of the patients had a centrally located relapse, (5) the minimum cohort size was 30 patients. RESULTS Of the initial 227 studies, 11 were analyzed, 1 of which was prospective. Median overall survival (OS) was 18.1 months (range 9.3-25.1), median progression free survival (PFS) was nine months (range 4.5-16), and median loco-regional control (LRC) was 12.1 months (range 6.5-20). Treatment-related mortality rates ranged from 2% to 14%. The total dose at re-irradiation correlated with both LRC (p-value = 0.012) and OS (p-value = 0.007) with a close relation between these two clinical endpoints (p-value = 0.006). The occurrence of acute toxicity grade 1 to 4 depended on the PTV size at re-irradiation (p-value = 0.033). CONCLUSION The evidence regarding curative re-irradiation for centrally recurrent NSCLC is primarily based on scarce retrospective data, which are characterized by a high degree of heterogeneity. The OS in this clinically challenging situation is expected to be around 1.5 years after re-treatment. Patients with a good performance score, younger age, small tumors, and a longer interval to recurrence potentially benefit most from re-irradiation. In this context, prospective trials are warranted to achieve substantial advances in the field.
Collapse
Affiliation(s)
- Brane Grambozov
- Department of Radiation Oncology, Paracelsus Medical University, SALK, A-5020 Salzburg, Austria; (B.G.); (M.S.); (J.K.); (S.G.); (E.R.); (G.F.); (F.S.)
| | - Markus Stana
- Department of Radiation Oncology, Paracelsus Medical University, SALK, A-5020 Salzburg, Austria; (B.G.); (M.S.); (J.K.); (S.G.); (E.R.); (G.F.); (F.S.)
| | - Bernhard Kaiser
- Department of Pneumology, Paracelsus Medical University, SALK, A-5020 Salzburg, Austria; (B.K.); (R.M.); (M.S.)
| | - Josef Karner
- Department of Radiation Oncology, Paracelsus Medical University, SALK, A-5020 Salzburg, Austria; (B.G.); (M.S.); (J.K.); (S.G.); (E.R.); (G.F.); (F.S.)
| | - Sabine Gerum
- Department of Radiation Oncology, Paracelsus Medical University, SALK, A-5020 Salzburg, Austria; (B.G.); (M.S.); (J.K.); (S.G.); (E.R.); (G.F.); (F.S.)
| | - Elvis Ruznic
- Department of Radiation Oncology, Paracelsus Medical University, SALK, A-5020 Salzburg, Austria; (B.G.); (M.S.); (J.K.); (S.G.); (E.R.); (G.F.); (F.S.)
| | - Barbara Zellinger
- Institute of Pathology, Paracelsus Medical University, SALK, A-5020 Salzburg, Austria;
| | - Raphaela Moosbrugger
- Department of Pneumology, Paracelsus Medical University, SALK, A-5020 Salzburg, Austria; (B.K.); (R.M.); (M.S.)
| | - Michael Studnicka
- Department of Pneumology, Paracelsus Medical University, SALK, A-5020 Salzburg, Austria; (B.K.); (R.M.); (M.S.)
| | - Gerd Fastner
- Department of Radiation Oncology, Paracelsus Medical University, SALK, A-5020 Salzburg, Austria; (B.G.); (M.S.); (J.K.); (S.G.); (E.R.); (G.F.); (F.S.)
| | - Felix Sedlmayer
- Department of Radiation Oncology, Paracelsus Medical University, SALK, A-5020 Salzburg, Austria; (B.G.); (M.S.); (J.K.); (S.G.); (E.R.); (G.F.); (F.S.)
| | - Franz Zehentmayr
- Department of Radiation Oncology, Paracelsus Medical University, SALK, A-5020 Salzburg, Austria; (B.G.); (M.S.); (J.K.); (S.G.); (E.R.); (G.F.); (F.S.)
| |
Collapse
|
12
|
An algorithm for thoracic re-irradiation using biologically effective dose: a common language on how to treat in a "no-treat zone". Radiat Oncol 2022; 17:4. [PMID: 34991637 PMCID: PMC8739721 DOI: 10.1186/s13014-021-01977-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background Re-irradiation (re-RT) is a technically challenging task for which few standardized approaches exist. This is in part due to the lack of a common platform to assess dose tolerance in relation to toxicity in the re-RT setting. To better address this knowledge gap and provide new tools for studying and developing thresholds for re-RT, we developed a novel algorithm that allows for anatomically accurate three-dimensional mapping of composite biological effective dose (BED) distributions from nominal doses (Gy). Methods The algorithm was designed to automatically convert nominal dose from prior treatment plans to corresponding BED value maps (voxel size 2.5 mm3 and α/β of 3 for normal tissue, BED3). Following the conversion of each plan to a BED3 dose distribution, deformable registration was used to create a summed composite re-irradiation BED3 plan for each patient who received two treatments. A proof-of-principle analysis was performed on 38 re-irradiation cases of initial stereotactic ablative radiotherapy (SABR) followed by either re-SABR or chemoradiation for isolated locoregional recurrence of early-stage non-small cell lung cancer. Results Evaluation of the algorithm-generated maps revealed appropriate conversion of physical dose to BED at each voxel. Of 14 patients receiving repeat SABR, there was one case each of grade 3 chest wall pain (7%), pneumonitis (7%), and dyspnea (7%). Of 24 patients undergoing repeat fractionated radiotherapy, grade 3 events were limited to two cases each of pneumonitis and dyspnea (8%). Composite BED3 dosimetry for each patient who experienced grade 2–3 events is provided and may help guide development of precise cumulative dose thresholds for organs at risk in the re-RT setting. Conclusions This novel algorithm successfully created a voxel-by-voxel composite treatment plan using BED values. This approach may be used to more precisely examine dosimetric predictors of toxicities and to establish more accurate normal tissue constraints for re-irradiation.
Collapse
|
13
|
Re-Irradiation for Locally Recurrent Lung Cancer: A Single Center Retrospective Analysis. ACTA ACUST UNITED AC 2021; 28:1835-1846. [PMID: 34068043 PMCID: PMC8161822 DOI: 10.3390/curroncol28030170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/25/2022]
Abstract
The treatment of locally recurrent lung cancer is a major challenge for radiation-oncologists, especially with data on high-dose reirradiation being limited to small retrospective studies. The aim of the present study is to assess overall survival (OS) for patients with locally recurrent lung cancer after high-dose thoracic reirradiation. Thirty-nine patients who were re-irradiated for lung cancer relapse between October 2013 and February 2019 were eligible for the current retrospective analysis. All patients were re-irradiated with curative intent for in-field tumor recurrence. The diagnostic work-up included a mandatory 18F-FDG-PET-CT scan and—if possible—histological verification. The ECOG was ≤2, and the interval between initial and second radiation was at least nine months. Thirty patients (77%) had non-small cell lung cancer (NSCLC), eight (20%) had small cell lung cancer (SCLC), and in one patient (3%) histological confirmation could not be obtained. More than half of the patients (20/39, 51%) received re-treatment with dose differentiated accelerated re-irradiation (DART) at a median interval of 20.5 months (range: 6–145.3 months) after the initial radiation course. A cumulative EQD2 of 131 Gy (range: 77–211 Gy) in a median PTV of 46 mL (range: 4–541 mL) was delivered. Patients with SCLC had a 3 mL larger median re-irradiation volume (48 mL, range: 9–541) compared to NSCLC patients (45 mL, range: 4–239). The median cumulative EQD2 delivered in SCLC patients was 84 Gy (range: 77–193 Gy), while NSCLC patients received a median cumulative EQD2 of 135 Gy (range: 98–211 Gy). The median OS was 18.4 months (range: 0.6–64 months), with tumor volume being the only predictor (p < 0.000; HR 1.007; 95%-CI: 1.003–1.012). In terms of toxicity, 17.9% acute and 2.6% late side effects were observed, with a toxicity grade >3 occurring in only one patient. Thoracic high dose reirradiation plays a significant role in prolonging survival, especially in patients with small tumor volume at recurrence.
Collapse
|
14
|
Hunter B, Crockett C, Faivre-Finn C, Hiley C, Salem A. Re-Irradiation of Recurrent Non-Small Cell Lung Cancer. Semin Radiat Oncol 2021; 31:124-132. [PMID: 33610269 DOI: 10.1016/j.semradonc.2020.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Locoregional recurrence occurs in 10%-30% of non-small cell lung cancer (NSCLC) after treatment with definitive (chemo)radiotherapy. Re-irradiation is the main curative-intent treatment option for these patients; however, it represents a therapeutic challenge for thoracic radiation oncologists. Re-irradiation practices are variable worldwide with lack of agreement on the optimal dose or the cumulative maximum dose acceptable for critical organs. The role of re-irradiation in NSCLC is also not clearly defined in the era of immunotherapy. In this review, we will present published and on-going re-irradiation studies for recurrent NSCLC. We will appraise available evidence for critical organ dose constraints and provide a framework for future therapeutic approaches and trials.
Collapse
Affiliation(s)
| | - Cathryn Crockett
- Division of Cancer Sciences, University of Manchester, The Christie NHS Foundation Trust, Manchester, UK
| | - Corrinne Faivre-Finn
- Division of Cancer Sciences, University of Manchester, The Christie NHS Foundation Trust, Manchester, UK
| | - Crispin Hiley
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, Faculty of Medical Sciences, University College London, University College London Hospital, London, UK
| | - Ahmed Salem
- Division of Cancer Sciences, University of Manchester, The Christie NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
15
|
Yamazaki H, Suzuki G, Aibe N, Nakamura S, Yoshida K, Oh R. A surveillance study of patterns of reirradiation practice using external beam radiotherapy in Japan. JOURNAL OF RADIATION RESEARCH 2021; 62:285-293. [PMID: 33341887 PMCID: PMC7948832 DOI: 10.1093/jrr/rraa112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 11/07/2020] [Indexed: 06/12/2023]
Abstract
The aim of this study was to survey the present status and patterns of reirradiation (Re-RT) practice using external beam radiotherapy in Japan. We distributed an e-mail questionnaire to the Japanese Society for Radiation Oncology partner institutions, which consisted of part 1 (number of Re-RT cases in 2008-2012 and 2013-2018) and part 2 (indications and treatment planning for Re-RT and eight case scenarios). Of the 85 institutions that replied to part 1, 75 (88%) performed Re-RTs. However, 59 of these 75 institutions (79%) reported difficulty in obtaining Re-RT case information from their databases. The responses from 37 institutions included the number of Re-RT cases, which totaled 508 in the period from 2009 to 2013 (institution median 3; 0-235), and an increase to 762 cases in the period from 2014 to 2018 (12.5; 0-295). A total of 47 physicians responded to part 2 of the survey. Important indications for Re-RT that were considered were age, performance status, life expectancy, absence of distant metastases and time interval since previous radiotherapy. In addition to clinical decision-making factors, previous total radiation dose, volume of irradiated tissue and the biologically equivalent dose were considered during Re-RT planning. From the eight site-specific scenarios presented to the respondents, >60% of radiation oncologists agreed to perform Re-RT. Re-RT cases have increased in number, and interest in Re-RT among radiation oncologists has increased recently due to advances in technology. However, several problems exist that emphasize the need for consensus building and the establishment of guidelines for practice and prospective evaluation.
Collapse
Affiliation(s)
- Hideya Yamazaki
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566 Japan
| | - Gen Suzuki
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566 Japan
| | - Norihiro Aibe
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566 Japan
| | - Satoaki Nakamura
- Department of Radiology, Kansai Medical University, Hirakata 573-1010, Japan
| | - Ken Yoshida
- Department of Radiology, Kansai Medical University, Hirakata 573-1010, Japan
| | - Ryoongjin Oh
- Department of Radiation Oncology, Miyakojima IGRT Clinic
| | | |
Collapse
|
16
|
An International Expert Survey on the Indications and Practice of Radical Thoracic Reirradiation for Non-Small Cell Lung Cancer. Adv Radiat Oncol 2021; 6:100653. [PMID: 33851065 PMCID: PMC8022147 DOI: 10.1016/j.adro.2021.100653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/09/2020] [Accepted: 01/09/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose Thoracic reirradiation for non-small cell lung cancer with curative intent is potentially associated with severe toxicity. There are limited prospective data on the best method to deliver this treatment. We sought to develop expert consensus guidance on the safe practice of treating non-small cell lung cancer with radiation therapy in the setting of prior thoracic irradiation. Methods and Materials Twenty-one thoracic radiation oncologists were invited to participate in an international Delphi consensus process. Guideline statements were developed and refined during 4 rounds on the definition of reirradiation, selection of appropriate patients, pretreatment assessments, planning of radiation therapy, and cumulative dose constraints. Consensus was achieved once ≥75% of respondents agreed with a statement. Statements that did not reach consensus in the initial survey rounds were revised based on respondents’ comments and re-presented in subsequent rounds. Results Fifteen radiation oncologists participated in the 4 surveys between September 2019 and March 2020. The first 3 rounds had a 100% response rate, and the final round was completed by 93% of participants. Thirty-three out of 77 statements across all rounds achieved consensus. Key recommendations are as follows: (1) appropriate patients should have a good performance status and can have locally relapsed disease or second primary cancers, and there are no absolute lung function values that preclude reirradiation; (2) a full diagnostic workup should be performed in patients with suspected local recurrence and; (3) any reirradiation should be delivered using optimal image guidance and highly conformal techniques. In addition, consensus cumulative dose for the organs at risk in the thorax are described. Conclusions These consensus statements provide practical guidance on appropriate patient selection for reirradiation, appropriate radiation therapy techniques, and cumulative dose constraints.
Collapse
|
17
|
Schröder C, Stiefel I, Tanadini-Lang S, Pytko I, Vu E, Guckenberger M, Andratschke N. Re-irradiation in the thorax - An analysis of efficacy and safety based on accumulated EQD2 doses. Radiother Oncol 2020; 152:56-62. [PMID: 32717358 DOI: 10.1016/j.radonc.2020.07.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Thoracic re-irradiation remains a challenge regarding the balance of local efficacy and acceptable toxicities. In this retrospective analysis we analyzed dosimetrical and clinical data of patients treated with thoracic re-irradiation based on accumulated EQD2Gy doses. METHODS AND MATERIAL We retrospectively analyzed the data of 42 consecutive single-institutional patients treated with repeated courses of thoracic radiotherapy from 12/2011 to 01/2017. Accumulated EQD2 dose distributions were calculated and dose parameters for organs at risk and target volumes were analysed. RESULTS The median prescription dose was 42.2 Gy (10-70.6 Gy) for all RT courses. The median Dmean of both lungs was 10.1 Gy3 (range: 1.9 Gy3-17.9 Gy3) with a maximum D0.1 cc of 253.86 Gy3. The median D0.1 cc of the esophagus was 62.2 Gy3 with a maximum of 103.78 Gy3. The maximum D0.1 cc for the bronchial tree was 187.33 Gy3 (median 74.35 Gy3) and for the Aorta 216.1 Gy3 (median 70.9 Gy3). Median OS after first re-irradiation was 19 months (range 1-45 months). 12-month local control after a course of re-irradiation was 52.6%. 80% of patients suffered from a G1-G2 toxicity, most frequently coughing. One patient suffered from a G5 complication probably unrelated to re-irradiation. CONCLUSION Even though several organs at risk received maximum accumulated doses of >100 Gy3, thoracic reirradiation resulted in an acceptable toxicity profile. Local tumor control and overall survival remained encouraging even after multiple courses of thoracic radiotherapy.
Collapse
Affiliation(s)
- C Schröder
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Canter for Proton Therapy, Paul Scherrer-Institut, Villigen, Switzerland
| | - I Stiefel
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - S Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - I Pytko
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - E Vu
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - M Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - N Andratschke
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Nicosia L, Di Muzio J, Agolli L, Alongi F, Mazzola R, Valeriani M, Badellino S, Osti MF, Ricardi U. What is the role of reirradiation in the management of locoregionally relapsed non small-cell lung cancer? Lung Cancer 2020; 146:263-275. [PMID: 32593916 DOI: 10.1016/j.lungcan.2020.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/06/2020] [Accepted: 06/13/2020] [Indexed: 12/25/2022]
Abstract
The prognosis of lung cancer patients has improved in the last few years. Despite definitive therapy, local recurrence or a second primary tumour can occur in many patients within previously irradiated areas. Recent developement of more accurate techniques in radiation oncology allows delivery of high radiation dose to the tumor with the aim of improving local control, delaying disease progression and in some cases even curing. Nevertheless, the use of high dose in the reirradiation setting is not without risks, especially when treatment volumes overlap with previously irradiated tissues. The risk of adverse effects must be balanced with the choice of an effective treatment by selecting suitable candidates and the best radiation technique. In this systemic review efficacy and toxicity of reirradiation in locoregionally recurrent non-small-cell lung cancer is extensively discussed. Results indicate that reirradiation might be beneficial in well-selected patients. Prospective and high quality studies are necessary in this field.
Collapse
Affiliation(s)
- Luca Nicosia
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, Italy.
| | - Jacopo Di Muzio
- Radiation Oncology Department AO Città della Salute e della Scienza - Molinette, University of Turin, Turin, Italy
| | - Linda Agolli
- Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Filippo Alongi
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, Italy; University of Brescia, Italy
| | - Rosario Mazzola
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, Italy
| | - Maurizio Valeriani
- Department of Radiation Oncology, Sant'Andrea Hospital, "Sapienza" University of Rome, Italy
| | - Serena Badellino
- Radiation Oncology Department AO Città della Salute e della Scienza - Molinette, University of Turin, Turin, Italy
| | - Mattia F Osti
- Department of Radiation Oncology, Sant'Andrea Hospital, "Sapienza" University of Rome, Italy
| | - Umberto Ricardi
- Radiation Oncology Department AO Città della Salute e della Scienza - Molinette, University of Turin, Turin, Italy
| |
Collapse
|
19
|
Balancing Fractionation and Advanced Technology in Consideration of Reirradiation. Semin Radiat Oncol 2020; 30:201-203. [DOI: 10.1016/j.semradonc.2020.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Fischer-Valuck BW, Robinson CG, Simone CB, Gomez DR, Bradley JD. Challenges in Re-Irradiation in the Thorax: Managing Patients with Locally Recurrent Non-Small Cell Lung Cancer. Semin Radiat Oncol 2020; 30:223-231. [PMID: 32503787 DOI: 10.1016/j.semradonc.2020.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Treatment of locally recurrent non-small lung cancer (NSCLC) after definitive chemoradiation therapy is challenging as patients are often inoperable and systemic therapy alone frequently results in suboptimal outcomes. Re-irradiation of NSCLC may be the best strategy for treating locoregional failures with the goal of durable long-term control and potentially cure. Repeat irradiation is technically challenging for fear of life-threatening toxicities to previously irradiated organs at risk while also delivering definitive doses of radiation to recurrent disease. No standard guidelines exist with regards to re-irradiation technique and re-treatment dose constraints to organs at risks. We herein describe a case of locoregional recurrence after definitive chemoradiation therapy for NSCLC with expert opinions for subsequent management. As described and guided by our experts, we review the various techniques for repeat radiation therapy, treatment planning goals, and reported toxicities and outcomes in the re-irradiation setting.
Collapse
Affiliation(s)
| | - Clifford G Robinson
- Department of Radiation Oncology, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO
| | - Charles B Simone
- New York Proton Center, New York City, NY; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY
| | - Daniel R Gomez
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY
| | - Jeffrey D Bradley
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| |
Collapse
|
21
|
Kamperis E, Kodona C, Giannouzakos V. Treatment-related toxicity in lung cancer: Radiation induced or radiation attributed? Ann Thorac Med 2020; 15:44. [PMID: 32002048 PMCID: PMC6967148 DOI: 10.4103/atm.atm_259_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Efstathios Kamperis
- Department of Radiation Oncology, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Chionia Kodona
- Department of Medical Physics, Papageorgiou General Hospital, Thessaloniki, Greece. E-mail:
| | | |
Collapse
|
22
|
Ji Z, Jiang Y, Guo F, Peng R, Sun H, Wang P, Fan J, Wang J. Radiation-related Adverse Effects of CT-guided Implantation of 125I Seeds for Thoracic Recurrent and/or Metastatic Malignancy. Sci Rep 2019; 9:14803. [PMID: 31616052 PMCID: PMC6794248 DOI: 10.1038/s41598-019-51458-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/30/2019] [Indexed: 11/17/2022] Open
Abstract
During radioactive Iodine-125 seed implantation (RISI), Iodine-125 radionuclide is implanted directly into a lesion and kills tumor cells by steadily emitting radiation. In our study, we analyzed the adverse effects of RISI for thoracic malignancy, and investigated the safety, dosage, and adverse effects of RISI for these cases. Between June 2007 and January 2018, 77 patients with thoracic recurrent and/or metastatic tumors who underwent CT-guided RISI were enrolled. Radiation-related adverse effects were analyzed, including pneumonia, esophagitis, hemorrhage, fistula, skin injury, heart injury, and spinal cord injury. We used the Common Terminology Criteria for Adverse Events (CTCAE) v4.03 to evaluate adverse effects and analyzed the relationship between adverse effects and dosimetric parameters of organs at risk (OAR), including D0.1cc, D2cc, Dmean, and V20. The results of the study were as follows: The median follow-up period was 11 months. The median postoperative dose (D90) was 122 Gy (45.7–241.8 Gy). Three patients (3.9%) showed radiation pneumonitis of grade ≥2. Two patients (2.6%) showed radiation-induced esophagitis of grade ≥2. One patient (1.3%) showed an esophageal fistula. Two patients (2.6%) had a tracheal fistula. Five patients (6.5%) had radiation-related skin reactions. One patient (1.3%) reported chest wall pain, while three (3.9%) showed hemoptysis. No patients showed radiation myelitis or cardiotoxicity. The mean D2cc of organs at risk were 165.7 Gy (lung), 10.61 Gy (esophagus), 10.25 Gy (trachea), 18.07 Gy (blood vessel), 12.64 Gy (heart), 14.77 Gy (spinal cord), 17.47 Gy (skin). Dosimetric parameters, such as D0.1cc, D2cc and Dmean, were higher in patients with toxic reactions (above the upper limit of 95% confidence interval among the overall data). Chi-square test showed that skin D0.1cc > 600 Gy, D2cc > 500 Gy, and Dmean >90 Gy were associated with grade ≥2 radiation dermatitis (p < 0.05), but no clear dose-toxicity correlation was found in other OARs. So, we concluded that the overall incidence of toxicity and adverse effects from RISI for the treatment of thoracic tumors is low. The dose-toxicity characteristics have not been fully defined. Doses within the upper limit of the 95% confidence interval may be considered safe. This was a retrospective analysis, and follow-up period was minimal, indicating possible limitations of this study.
Collapse
Affiliation(s)
- Zhe Ji
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Yuliang Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Fuxin Guo
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Ran Peng
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Haitao Sun
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Panfeng Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Jinghong Fan
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
23
|
Schlampp I, Rieber J, Adeberg S, Bozorgmehr F, Heußel CP, Steins M, Kappes J, Hoffmann H, Welzel T, Debus J, Rieken S. Re-irradiation in locally recurrent lung cancer patients. Strahlenther Onkol 2019; 195:725-733. [PMID: 30937509 DOI: 10.1007/s00066-019-01457-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 03/14/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Lung cancer remains one of the tumour diagnoses with high lethality, although innovative treatment approaches have yielded improvements in local control and survival rates. There is still no consensus on how to treat local relapse in patients after first-line treatments. Radiotherapy may be considered in this situation; however, data supporting its effectiveness are rare. The purpose of this retrospective analysis was to evaluate outcomes of patients re-irradiated for thoracic tumours in terms of overall survival (OS), local progression-free survival (LPFS), toxicity and dose-volume parameters. PATIENTS AND METHODS Sixty-two patients with locally recurrent previously irradiated lung cancer were analysed retrospectively (NSCLC n = 52, SCLC n = 10). Target volumes both in lung and mediastinum were re-irradiated with conventional three-dimensional or intensity-modulated radiotherapy techniques. Median overall dose of re-irradiation was 38.5 Gy (range 20-60 Gy) with a median single dose per fraction of 2 Gy (1.8-3.0 Gy). Clinical documents and treatment plans were evaluated. RESULTS Median follow-up was 8.2 months (range 0-27 months). OS following re-irradiation was 9.3 months (range: 0-27 months) and LPFS was 6.5 months (range: 0-24 months). OS and LPFS were not affected by histology, total dose or patient age and gender. OS was improved in patients whose re-irradiation volumes included less than two mediastinal lymph node stations (p = 0.016). Twelve patients suffered from pneumonitis ≥grade II (19%) and two from pneumonitis grade III. One patient presumably died from pneumonitis grade V. A slight decline in forced expiratory volume (FEV1) was detected in post-re-irradiation lung function testing. CONCLUSIONS Re-irradiation is an option for patients with tumour recurrence to control local progression and lower the symptom burden. Oncological outcome appears to be affected by size, location of mediastinal target volumes and lung function. Prospective clinical trials are warranted to substantiate the role of re-irradiation in recurrent lung cancer.
Collapse
Affiliation(s)
- Ingmar Schlampp
- University Hospital of Heidelberg, Department of Radiation Oncology, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany. .,HIRO - Heidelberger Institut für RadioOnkologie, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,National Center for Tumor diseases (NCT), Heidelberg, Germany.
| | - Juliane Rieber
- University Hospital of Heidelberg, Department of Radiation Oncology, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,HIRO - Heidelberger Institut für RadioOnkologie, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Sebastian Adeberg
- University Hospital of Heidelberg, Department of Radiation Oncology, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,HIRO - Heidelberger Institut für RadioOnkologie, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Farastuk Bozorgmehr
- Department of Thoracic Oncology, Thoraxlinik, Translational Lung Research Centre Heidelberg (TLRC-H), Heidelberg University, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.,Translational Lung Research Centre Heidelberg (TLRC-H), German Centre for Lung Research (DZL), Heidelberg, Germany
| | - Claus Peter Heußel
- Translational Lung Research Centre Heidelberg (TLRC-H), German Centre for Lung Research (DZL), Heidelberg, Germany.,Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany.,Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany
| | - Martin Steins
- Department of Thoracic Oncology, Thoraxlinik, Translational Lung Research Centre Heidelberg (TLRC-H), Heidelberg University, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.,Translational Lung Research Centre Heidelberg (TLRC-H), German Centre for Lung Research (DZL), Heidelberg, Germany
| | - Jutta Kappes
- Department of Thoracic Oncology, Thoraxlinik, Translational Lung Research Centre Heidelberg (TLRC-H), Heidelberg University, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.,Translational Lung Research Centre Heidelberg (TLRC-H), German Centre for Lung Research (DZL), Heidelberg, Germany.,Department of Pneumology, Thoraxklinik, Heidelberg University, Heidelberg, Germany
| | - Hans Hoffmann
- Dept. of Thoracic Surgery, Thoraxklinik, Heidelberg University, Heidelberg, Germany
| | - Thomas Welzel
- University Hospital of Heidelberg, Department of Radiation Oncology, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,HIRO - Heidelberger Institut für RadioOnkologie, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Jürgen Debus
- University Hospital of Heidelberg, Department of Radiation Oncology, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,HIRO - Heidelberger Institut für RadioOnkologie, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Stefan Rieken
- University Hospital of Heidelberg, Department of Radiation Oncology, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,HIRO - Heidelberger Institut für RadioOnkologie, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany
| |
Collapse
|
24
|
Nieder C. Second re-irradiation: A delicate balance between safety and efficacy. Phys Med 2019; 58:155-158. [DOI: 10.1016/j.ejmp.2019.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/20/2018] [Accepted: 01/04/2019] [Indexed: 12/16/2022] Open
|
25
|
McVicar N, Thomas S, Liu M, Carolan H, Bergman A. Re-irradiation volumetric modulated arc therapy optimization based on cumulative biologically effective dose objectives. J Appl Clin Med Phys 2018; 19:341-345. [PMID: 30371001 PMCID: PMC6236857 DOI: 10.1002/acm2.12481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/25/2022] Open
Abstract
The objective of this note is to introduce a clinical tool that generates ideal base plan dose distributions to enable re‐irradiation volumetric modulated arc therapy (VMAT) optimization based on cumulative biological effective dose objectives for specific organs at risk (OARs). The tool is demonstrated with a lung cancer case that required re‐irradiation at our clinic. First, previous treatment dose is deformed onto the retreatment computed tomography (CT) using commercial software. Then, the in‐house Matlab tool alters the deformed previous dose using radiobiological concepts on a voxel‐by‐voxel manner to generate an ideal base plan dose distribution. Ideal base plans that were generated using the in‐house Matlab tool were compatible with the Varian Eclipse™ treatment planning system. The tool enabled optimization of VMAT re‐irradiation plans using cumulative dose limits for OARs and all OAR cumulative dose objectives were met on the first optimization for the recurrent lung cancer case tested.
Collapse
Affiliation(s)
- Nevin McVicar
- Department of Medical Physics, BC Cancer - Vancouver Cancer Centre, Vancouver, BC, Canada
| | - Steven Thomas
- Department of Medical Physics, BC Cancer - Vancouver Cancer Centre, Vancouver, BC, Canada
| | - Mitchell Liu
- Department of Radiation Oncology, BC Cancer - Vancouver Cancer Centre, Vancouver, BC, Canada
| | - Hannah Carolan
- Department of Radiation Oncology, BC Cancer - Vancouver Cancer Centre, Vancouver, BC, Canada
| | - Alanah Bergman
- Department of Medical Physics, BC Cancer - Vancouver Cancer Centre, Vancouver, BC, Canada
| |
Collapse
|
26
|
Febbo JA, Gaddikeri RS, Shah PN. Stereotactic Body Radiation Therapy for Early-Stage Non–Small Cell Lung Cancer: A Primer for Radiologists. Radiographics 2018; 38:1312-1336. [DOI: 10.1148/rg.2018170155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jennifer A. Febbo
- From the Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, 1653 W Congress Pkwy, Jelke 181, Chicago, IL 60612
| | - Ramya S. Gaddikeri
- From the Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, 1653 W Congress Pkwy, Jelke 181, Chicago, IL 60612
| | - Palmi N. Shah
- From the Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, 1653 W Congress Pkwy, Jelke 181, Chicago, IL 60612
| |
Collapse
|
27
|
Hoffmann L, Knap MM, Khalil AA, Lutz CM, Sloth Møller D. The NARLAL2 dose escalation trial: dosimetric implications of inter-fractional changes in organs at risk. Acta Oncol 2018; 57:473-479. [PMID: 28830293 DOI: 10.1080/0284186x.2017.1366049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Phase II trials suggested that survival rates for locally advanced lung cancer could be increased by radiotherapy dose escalation. However, results of the phase III RTOG 0617 trial illustrated an imminent risk of treatment-related death. This could be thwarted with strict constraints to organs at risk (OARs) and control of the delivered dose. This study investigates the impact of anatomical changes during radiotherapy on escalated dose distributions used in the Danish NARLAL2 dose escalation trial. MATERIAL AND METHODS The phase III NARLAL2 trial randomizes patients between a standard and an escalated treatment plan. In the escalated arm, mean doses up to 95 Gy/33 fractions (tumour) and 74 Gy/33 fractions (lymph nodes) are delivered to the most 18fluorodeoxyglucose-positron emission tomography (18FDG PET) active regions. The dose distributions are limited by strict constraints to OARs. For a group of 27 patients, a surveillance scan (sCT) was acquired at fraction 11. The original-escalated treatment plans were recalculated on the sCTs and the impact of inter-fractional changes evaluated. RESULTS A total of 13 patients (48%) had overdosage of least one OAR. Constraints for the oesophagus, trachea and aorta were violated in 26% of the patients. No overdosage was seen for heart or bronchi. For the connective tissue (all tissue in the mediastinum not identified as OAR or tumour) overdosage was seen in 41% of the patients and for the chest wall in 30% of the patients. The main reason for overdosage was tumour shrinkage. CONCLUSIONS Anatomical changes during radiotherapy caused one or more OAR constraint violations for approximately half of the patient cohort. The main cause was tumour shrinkage. For lung cancer radiotherapy dose escalation trials, we recommend incorporation of adaptive radiotherapy strategies.
Collapse
Affiliation(s)
- Lone Hoffmann
- Department of Oncology, Aarhus University Hospital, Aarhus C, Denmark
| | | | - Azza Ahmed Khalil
- Department of Oncology, Aarhus University Hospital, Aarhus C, Denmark
| | | | | |
Collapse
|
28
|
Dörr W, Gabryś D. The Principles and Practice of Re-irradiation in Clinical Oncology: An Overview. Clin Oncol (R Coll Radiol) 2018; 30:67-72. [DOI: 10.1016/j.clon.2017.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 12/27/2022]
|
29
|
Stacchiotti S, Gronchi A, Fossati P, Akiyama T, Alapetite C, Baumann M, Blay JY, Bolle S, Boriani S, Bruzzi P, Capanna R, Caraceni A, Casadei R, Colia V, Debus J, Delaney T, Desai A, Dileo P, Dijkstra S, Doglietto F, Flanagan A, Froelich S, Gardner PA, Gelderblom H, Gokaslan ZL, Haas R, Heery C, Hindi N, Hohenberger P, Hornicek F, Imai R, Jeys L, Jones RL, Kasper B, Kawai A, Krengli M, Leithner A, Logowska I, Martin Broto J, Mazzatenta D, Morosi C, Nicolai P, Norum OJ, Patel S, Penel N, Picci P, Pilotti S, Radaelli S, Ricchini F, Rutkowski P, Scheipl S, Sen C, Tamborini E, Thornton KA, Timmermann B, Torri V, Tunn PU, Uhl M, Yamada Y, Weber DC, Vanel D, Varga PP, Vleggeert-Lankamp CLA, Casali PG, Sommer J. Best practices for the management of local-regional recurrent chordoma: a position paper by the Chordoma Global Consensus Group. Ann Oncol 2018; 28:1230-1242. [PMID: 28184416 PMCID: PMC5452071 DOI: 10.1093/annonc/mdx054] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chordomas are rare, malignant bone tumors of the skull-base and axial skeleton. Until recently, there was no consensus among experts regarding appropriate clinical management of chordoma, resulting in inconsistent care and suboptimal outcomes for many patients. To address this shortcoming, the European Society of Medical Oncology (ESMO) and the Chordoma Foundation, the global chordoma patient advocacy group, convened a multi-disciplinary group of chordoma specialists to define by consensus evidence-based best practices for the optimal approach to chordoma. In January 2015, the first recommendations of this group were published, covering the management of primary and metastatic chordomas. Additional evidence and further discussion were needed to develop recommendations about the management of local-regional failures. Thus, ESMO and CF convened a second consensus group meeting in November 2015 to address the treatment of locally relapsed chordoma. This meeting involved over 60 specialists from Europe, the United States and Japan with expertise in treatment of patients with chordoma. The consensus achieved during that meeting is the subject of the present publication and complements the recommendations of the first position paper.
Collapse
Affiliation(s)
| | - A Gronchi
- Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| | - P Fossati
- CNAO National Center for Oncological Hadrontherapy, Pavia.,Department of Radiotherapy, IEO-European Institute of Oncology, Milan, Italy
| | - T Akiyama
- Department of Orthopaedic Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - C Alapetite
- Department of Radiotherapy, Institut Curie, Paris.,Institut Curie-Centre de Protonthérapie d'Orsay (ICPO), Orsay, France
| | - M Baumann
- Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - J Y Blay
- Cancer Medicine Department, Centre Léon Bérard, Lyon
| | - S Bolle
- Department of Radiotherapy, Gustave Roussy, Villejuif Cedex, France
| | - S Boriani
- Department of Degenerative and Oncological Spine Surgery, Rizzoli Institute Bologna, Bologna
| | - P Bruzzi
- Department of Epidemiology, IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, Genova
| | - R Capanna
- University Clinic of Orthopedics and Traumatology AO Pisa, Pisa
| | - A Caraceni
- Palliative Care Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| | - R Casadei
- Orthopedic Department, Rizzoli Institute Bologna, Bologna, Italy
| | - V Colia
- Departments of Cancer Medicine
| | - J Debus
- Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany
| | - T Delaney
- Department of Radiation Oncology, Francis H. Burr Proton Therapy Center, Massachusetts General Hospital, Boston, USA
| | - A Desai
- Midlands Abdominal and Retroperitoneal Sarcoma Unit (MARSU), Queen Elizabeth Hospital, Birmingham
| | - P Dileo
- Department of Oncology, University College London Hospitals (UCLH), London, UK
| | - S Dijkstra
- Department of Orthopaedic Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - F Doglietto
- Institute of Neurosurgery, University of Brescia, Brescia, Italy
| | - A Flanagan
- University College London Cancer Institute, London.,Histopathology Department, Royal National Orthopaedic Hospital NHS Trust, Stanmore, UK
| | - S Froelich
- Department of Neurosurgery, Paris Diderot University, Hôpital Lariboisière, Paris, France
| | - P A Gardner
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - H Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Z L Gokaslan
- Department of Neurosurgery, Brown University School of Medicine, Providence, USA
| | - R Haas
- Department of Radiotherapy, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - C Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - N Hindi
- Department of Cancer Medicine, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - P Hohenberger
- Sarcoma Unit, Interdisciplinary Tumor Center, Mannheim University Medical Center, University of Heidelberg, Mannheim, Germany
| | - F Hornicek
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - R Imai
- National Institute of Radiological Sciences, Research Center Hospital for Charged Particle Therapy, Chiba, Japan
| | - L Jeys
- Department of Orthopaedics, Royal Orthopaedic Hospital Birmingham, Birmingham
| | - R L Jones
- Sarcoma Unit, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, UK
| | - B Kasper
- Sarcoma Unit, Interdisciplinary Tumor Center, Mannheim University Medical Center, University of Heidelberg, Mannheim, Germany
| | - A Kawai
- Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center, Tokio, Japan
| | - M Krengli
- Radiotherapy Department, University of Piemonte Orientale, Novara, Italy
| | - A Leithner
- Department of Orthopaedics and Orthopaedic Surgery, Medical University Graz, Graz, Austria
| | - I Logowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - J Martin Broto
- Department of Cancer Medicine, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - D Mazzatenta
- Department of Neurosurgery, IRCCS Istituto delle Scienze Neurologiche, Bologna
| | - C Morosi
- Department of Radiology, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| | - P Nicolai
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Brescia, Brescia, Italy
| | - O J Norum
- Department of Tumor Orthopedic Surgery, The Norwegian Radium Hospital, Oslo, Norway
| | - S Patel
- Department of Sarcoma Medical Oncology, MD Anderson Cancer Center, Houston, USA
| | - N Penel
- Cencer Medicine Department, Oscar Lambret Cancer Centre, Lille, France
| | - P Picci
- Laboratory of Oncologic Research, Istituto Ortopedico Rizzoli, Bologna
| | - S Pilotti
- Laboratory of Molecular Pathology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - S Radaelli
- Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| | - F Ricchini
- Palliative Care Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| | - P Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - S Scheipl
- Department of Orthopaedics and Orthopaedic Surgery, Medical University Graz, Graz, Austria
| | - C Sen
- Department of Neurosurgery, NYU Langone Medical Center, New York
| | - E Tamborini
- Laboratory of Molecular Pathology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - K A Thornton
- Center for Bone and Soft Tissue Sarcoma, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - B Timmermann
- Particle Therapy Department, West German Proton Therapy Centre Essen, University Hospital Essen, Essen, Germany
| | - V Torri
- Oncology Unit, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - P U Tunn
- Department of Orthopaedic Oncology, HELIOS Klinikum Berlin-Buch, Berlin, Germany
| | - M Uhl
- Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany
| | - Y Yamada
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - D C Weber
- Paul Scherrer Institut PSI, Villigen, Switzerland
| | - D Vanel
- Department of Radiology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - P P Varga
- National Center for Spinal Disorders, Budapest, Hungary
| | | | | | - J Sommer
- Chordoma Foundation, Durham, USA
| |
Collapse
|
30
|
Re-irradiation for Locally Recurrent Lung Cancer: Evidence, Risks and Benefits. Clin Oncol (R Coll Radiol) 2017; 30:101-109. [PMID: 29223641 DOI: 10.1016/j.clon.2017.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/16/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022]
Abstract
In spite of recent improvements in both the technical delivery of radiotherapy and systemic therapy in the treatment of non-small cell lung cancer, local recurrence rates after radiotherapy remain a significant challenge. In the setting of local relapse after radiotherapy, treatments such as surgical resection or radiofrequency ablation are often not appropriate owing to disease and patient factors. Re-irradiation may be a potential treatment option. This overview considers the published evidence and potential treatment strategies.
Collapse
|
31
|
De Rose F, Franceschini D, Reggiori G, Stravato A, Navarria P, Ascolese AM, Tomatis S, Mancosu P, Scorsetti M. Organs at risk in lung SBRT. Phys Med 2017; 44:131-138. [PMID: 28433508 DOI: 10.1016/j.ejmp.2017.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 03/24/2017] [Accepted: 04/09/2017] [Indexed: 12/23/2022] Open
Abstract
Lung stereotactic body radiotherapy (SBRT) is an accurate and precise technique to treat lung tumors with high 'ablative' doses. Given the encouraging data in terms of local control and toxicity profile, SBRT has currently become a treatment option for both early stage lung cancer and lung oligometastatic disease in patients who are medically inoperable or refuse surgical resection. Dose-adapted fractionation schedules and ongoing prospective trials should provide further evidence of SBRT safety trying to reduce toxicities and complications. In this heterogeneous scenario, a non-systematic review of dose constraints for lung SBRT was performed, including the main organs at risk in the thorax.
Collapse
Affiliation(s)
- F De Rose
- Radiotherapy and Radiosurgery Department, Humanitas Cancer Center and Research Hospital, Milan, Italy
| | - D Franceschini
- Radiotherapy and Radiosurgery Department, Humanitas Cancer Center and Research Hospital, Milan, Italy
| | - G Reggiori
- Radiotherapy and Radiosurgery Department, Humanitas Cancer Center and Research Hospital, Milan, Italy
| | - A Stravato
- Radiotherapy and Radiosurgery Department, Humanitas Cancer Center and Research Hospital, Milan, Italy.
| | - P Navarria
- Radiotherapy and Radiosurgery Department, Humanitas Cancer Center and Research Hospital, Milan, Italy
| | - A M Ascolese
- Radiotherapy and Radiosurgery Department, Humanitas Cancer Center and Research Hospital, Milan, Italy
| | - S Tomatis
- Radiotherapy and Radiosurgery Department, Humanitas Cancer Center and Research Hospital, Milan, Italy
| | - P Mancosu
- Radiotherapy and Radiosurgery Department, Humanitas Cancer Center and Research Hospital, Milan, Italy
| | - M Scorsetti
- Radiotherapy and Radiosurgery Department, Humanitas Cancer Center and Research Hospital, Milan, Italy; Depart ment of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
32
|
Karube M, Yamamoto N, Tsuji H, Kanematsu N, Nakajima M, Yamashita H, Nakagawa K, Kamada T. Carbon-ion re-irradiation for recurrences after initial treatment of stage I non-small cell lung cancer with carbon-ion radiotherapy. Radiother Oncol 2017; 125:31-35. [DOI: 10.1016/j.radonc.2017.07.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/29/2017] [Accepted: 07/16/2017] [Indexed: 12/25/2022]
|
33
|
Heterogeneous FDG-guided dose-escalation for locally advanced NSCLC (the NARLAL2 trial): Design and early dosimetric results of a randomized, multi-centre phase-III study. Radiother Oncol 2017; 124:311-317. [DOI: 10.1016/j.radonc.2017.06.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/23/2017] [Indexed: 12/25/2022]
|
34
|
Ho JC, Nguyen QN, Li H, Allen PK, Zhang X, Liao Z, Zhu XR, Gomez D, Lin SH, Gillin M, Komaki R, Hahn S, Chang JY. Reirradiation of thoracic cancers with intensity modulated proton therapy. Pract Radiat Oncol 2017; 8:58-65. [PMID: 28867546 DOI: 10.1016/j.prro.2017.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/27/2017] [Accepted: 07/03/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE Reirradiation of thoracic malignancies is a treatment challenge, with concerns for toxicity and the inability to deliver definitive doses. Intensity modulated proton therapy (IMPT) may allow safe delivery of a higher dose of radiation to the tumor while minimizing toxicities. METHODS AND MATERIALS Between 2011 and 2016, 27 patients who received IMPT for reirradiation of thoracic malignancies with definitive intent were retrospectively analyzed. Patients were included if they received a prior thoracic radiation course. All doses were recalculated to an equivalent dose in 2-Gy fractions (EQD2). Patients received IMPT to a median dose of 66 EQD2 Gy (range, 43.2-84 Gy) for recurrence of thoracic cancer (93%) or sequentially after a course of thoracic stereotactic ablative radiation therapy (7%). RESULTS Twenty-two patients (81%) were treated for non-small cell lung cancer. The median time to reirradiation was 29.5 months. At a median follow-up for all patients of 11.2 months (25.9 surviving patients), the median overall survival was 18.0 months, with a 1-year overall survival of 54%. Four patients (15%) experienced an in-field local failure (LF), with a 1-year freedom from LF rate of 78%. The 1-year freedom from locoregional failure and 1-year progression-free survival rates were 61% and 51%, respectively. Patients who received 66 EQD2 Gy or higher had improved 1-year freedom from LF (100% vs 49%; P = .013), 1-year freedom from locoregional failure (84% vs 23%; P = .035), and 1-year progression-free survival (76% vs 14%; P = .050). Reirradiation was well tolerated, with only 2 patients (7%) experiencing late grade 3 pulmonary toxicity, and none with grade 3 or higher esophagitis. There were no grade 4-5 toxicities. CONCLUSIONS These data represent the largest series of patients treated with IMPT for definitive reirradiation of thoracic cancers. They demonstrate that IMPT provided durable local control with minimal toxicity and suggest that higher doses may improve outcomes.
Collapse
Affiliation(s)
- Jennifer C Ho
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Quynh-Nhu Nguyen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heng Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pamela K Allen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaodong Zhang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhongxing Liao
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - X Ronald Zhu
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel Gomez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Gillin
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ritsuko Komaki
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen Hahn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joe Y Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
35
|
Dale JE, Molinelli S, Ciurlia E, Ciocca M, Bonora M, Vitolo V, Mirandola A, Russo S, Orecchia R, Dahl O, Fossati P. Risk of carotid blowout after reirradiation with particle therapy. Adv Radiat Oncol 2017; 2:465-474. [PMID: 29114615 PMCID: PMC5605322 DOI: 10.1016/j.adro.2017.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/23/2017] [Accepted: 05/29/2017] [Indexed: 11/15/2022] Open
Abstract
Purpose Carotid blowout (CB) is a serious complication in retreatment of neoplasms in the head and neck (H&N) region. Rates seem to increase in hypofractionated or accelerated hyperfractionated regimens. In this study, we investigate the CB rate and the cumulative doses received by the carotid artery (CA) in a cohort of patients who were reirradiated at CNAO with particle therapy in the H&N region. Methods and materials The dosimetric information, medical records, and tumor characteristics of 96 patients were analyzed. For 49 of these patients, the quality of dosimetric information was sufficient to calculate the cumulative doses to the CA. The corresponding biological equivalent dose in 2 Gy fractions (EQD2) was calculated with an α/β-ratio of 3. Results In the final reirradiation at CNAO, 17 patients (18%) had been treated with protons and 79 (82%) with carbon ions. Two patients experienced profuse oronasal bleeding, of which one case was confirmed to be caused by CB. If attributing both cases to CB, we found an actuarial CB rate of 2.7%. Interestingly, there were no CB cases in the carbon ion group even though this was the large majority of patients and they generally were treated more aggressively in terms of larger fraction doses and higher cumulative EQD2. Conclusions The current practice of particle reirradiation at CNAO for recurrent neoplasms in the H&N region results in acceptable rates of CB.
Collapse
Affiliation(s)
- Jon Espen Dale
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | - Elisa Ciurlia
- National Centre of Hadrontherapy (CNAO), Pavia, Italy
| | - Mario Ciocca
- National Centre of Hadrontherapy (CNAO), Pavia, Italy
| | - Maria Bonora
- National Centre of Hadrontherapy (CNAO), Pavia, Italy
| | | | | | | | - Roberto Orecchia
- National Centre of Hadrontherapy (CNAO), Pavia, Italy.,European Institute of Oncology (IEO), Milan, Italy
| | - Olav Dahl
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Piero Fossati
- National Centre of Hadrontherapy (CNAO), Pavia, Italy.,European Institute of Oncology (IEO), Milan, Italy
| |
Collapse
|
36
|
Reirradiation of recurrent node-positive non-small cell lung cancer after previous stereotactic radiotherapy for stage I disease. Strahlenther Onkol 2017; 193:515-524. [DOI: 10.1007/s00066-017-1130-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/22/2017] [Indexed: 12/25/2022]
|
37
|
Pollom EL, Chin AL, Diehn M, Loo BW, Chang DT. Normal Tissue Constraints for Abdominal and Thoracic Stereotactic Body Radiotherapy. Semin Radiat Oncol 2017; 27:197-208. [PMID: 28577827 DOI: 10.1016/j.semradonc.2017.02.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although stereotactic body radiotherapy (SBRT) or stereotactic ablative radiotherapy has become an established standard of care for the treatment of a variety of malignancies, our understanding of normal tissue dose tolerance with extreme hypofractionation remains immature. Since Timmerman initially proposed normal tissue dose constraints for SBRT in the 2008 issue of Seminars of Radiation Oncology, experience with SBRT has grown, and more long-term clinical outcome data have been reported. This article reviews the modern toxicity literature and provides updated clinically practical and useful recommendations of SBRT dose constraints for extracranial sites. We focus on the major organs of the thoracic and upper abdomen, specifically the liver and the lung.
Collapse
Affiliation(s)
- Erqi L Pollom
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Alexander L Chin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Maximilian Diehn
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
| | - Daniel T Chang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA.
| |
Collapse
|
38
|
Ma JT, Sun L, Sun X, Xiong ZC, Liu Y, Zhang SL, Huang LT, Han CB. Is pulmonary artery a dose-limiting organ at risk in non-small cell lung cancer patients treated with definitive radiotherapy? Radiat Oncol 2017; 12:34. [PMID: 28143532 PMCID: PMC5286829 DOI: 10.1186/s13014-017-0772-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/24/2017] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Our previous study suggested that some pulmonary artery (PA) dosimetric parameters were associated with mortality in unresectable non-small cell lung cancer (NSCLC) treated with definitive radiotherapy. The present study aims to analyze the impact of both PA and heart dosimetric parameters on survival of patients with NSCLC treated with definitive conventional fractionated radiotherapy (CFRT) in another independent research center and further determine whether the PA should be considered a dose-limiting organ at risk (OAR) for patients receiving thoracic CFRT. METHODS We performed a retrospective analysis of successive patients with medically inoperable or unresectable NSCLC treated with definitive radiotherapy or chemoradiotherapy from August 2010 to September 2014. Clinical and pathological information, PA and heart dosimetric factors, and follow-up data were collected from each patient's records and evaluated as potential prognostic factors for survival. Survival probabilities were estimated by the Kaplan-Meier method and compared by the log rank test. Cox proportional hazards regression models were performed to determine the independent predicators of survival. The optimal cutoff points of continuous dosimetric variables were determined by Youden index in receiver operating characteristic (ROC) analysis. RESULTS This study analyzed the records of 141 patients, 50.4% had adenocarcinoma, 71.6% had stage III disease, and 55% patients received concurrent chemoradiotherapy. Radiation dose ranged from 60 to 76 Gy in 30-38 fractions. Median follow up was 16.9 months. Median overall survival (OS) was 20.5 months (95% confidence interval [CI] 10.3-30.7 months), and 1-, 2-, 3-year OS rates were 75.2%, 58.2% and 56%, respectively. Univariate and multivariate analysis showed that Karnofsky Performance Status (KPS) score, Charlson's Comorbidity Index (CCI), T and N stage, PA invasion grade and the percentage of PA volume that received 40 to 55 Gy (PA V40-55) were significantly associated with OS. No significant associations were found between heart dosimetric factors and OS. Median OS of patients with PA invasion grade 0, 1, 2, and 3 were 41.8, 27.8, 12.7 and 7.5 months, respectively (P < 0.001). PA V40, V45, V50 and V55, using thresholds of 80%, 68%, 45%, and 32%, respectively, were independent predictors for OS. CONCLUSIONS PA invasion grade and PA V40-55 appear associated with OS in patients with NSCLC treated with definitive CFRT. We propose that PA be considered as a dose-limiting OAR for such patients.
Collapse
Affiliation(s)
- Jie-Tao Ma
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Li Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Xin Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Zhi-Cheng Xiong
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Shu-Ling Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Cheng-Bo Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
39
|
Validity of Current Stereotactic Body Radiation Therapy Dose Constraints for Aorta and Major Vessels. Semin Radiat Oncol 2016; 26:135-9. [DOI: 10.1016/j.semradonc.2015.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Dosimetric Factors and Toxicity in Highly Conformal Thoracic Reirradiation. Int J Radiat Oncol Biol Phys 2016; 94:808-15. [DOI: 10.1016/j.ijrobp.2015.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/03/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022]
|
41
|
Complications from Stereotactic Body Radiotherapy for Lung Cancer. Cancers (Basel) 2015; 7:981-1004. [PMID: 26083933 PMCID: PMC4491695 DOI: 10.3390/cancers7020820] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 06/08/2015] [Indexed: 12/25/2022] Open
Abstract
Stereotactic body radiotherapy (SBRT) has become a standard treatment option for early stage, node negative non-small cell lung cancer (NSCLC) in patients who are either medically inoperable or refuse surgical resection. SBRT has high local control rates and a favorable toxicity profile relative to other surgical and non-surgical approaches. Given the excellent tumor control rates and increasing utilization of SBRT, recent efforts have focused on limiting toxicity while expanding treatment to increasingly complex patients. We review toxicities from SBRT for lung cancer, including central airway, esophageal, vascular (e.g., aorta), lung parenchyma (e.g., radiation pneumonitis), and chest wall toxicities, as well as radiation-induced neuropathies (e.g., brachial plexus, vagus nerve and recurrent laryngeal nerve). We summarize patient-related, tumor-related, dosimetric characteristics of these toxicities, review published dose constraints, and propose strategies to reduce such complications.
Collapse
|
42
|
|
43
|
De Ruysscher D, Faivre-Finn C, Le Pechoux C, Peeters S, Belderbos J. High-dose re-irradiation following radical radiotherapy for non-small-cell lung cancer. Lancet Oncol 2014; 15:e620-e624. [PMID: 25456380 DOI: 10.1016/s1470-2045(14)70345-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As the prognosis of lung cancer patients improves, more patients are at risk of developing local recurrence or a new primary tumour in previously irradiated areas. Technological advances in radiotherapy and imaging have made treatment of patients with high-dose re-irradiation possible, with the aim of long-term disease-free survival and even cure. However, high-dose re-irradiation with overlapping volumes of previously irradiated tissues is not without risks. Late, irreversible, and potentially serious normal tissue damage may occur because of injury to surrounding thoracic structures and organs at risk. In this Review, we aimed to report the efficacy and toxic effects of high-dose re-irradiation for locoregional recurrent non-small-cell lung cancer. Our findings indicate that high-dose re-irradiation might be beneficial in selected patients; however, patients and physicians should be aware of the scarcity of high-quality data when considering this treatment.
Collapse
Affiliation(s)
- Dirk De Ruysscher
- Radiation Oncology, University Hospitals Leuven/KU Leuven, Leuven, Belgium.
| | - Corinne Faivre-Finn
- Radiation Related Research, The Christie NHS Foundation Trust and University of Manchester, Manchester, UK
| | - Cecile Le Pechoux
- Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Stéphanie Peeters
- Radiation Oncology, University Hospitals Leuven/KU Leuven, Leuven, Belgium
| | - José Belderbos
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
44
|
Radiation induced atherosclerotic plaque on descending thoracic aorta. Int J Cardiol 2014; 179:34-5. [PMID: 25464403 DOI: 10.1016/j.ijcard.2014.10.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 12/24/2022]
|
45
|
Amini A, Yeh N, Gaspar LE, Kavanagh B, Karam SD. Stereotactic body radiation therapy (SBRT) for lung cancer patients previously treated with conventional radiotherapy: a review. Radiat Oncol 2014; 9:210. [PMID: 25239200 PMCID: PMC4261522 DOI: 10.1186/1748-717x-9-210] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 09/14/2014] [Indexed: 12/25/2022] Open
Abstract
Lung cancer continues to be one of the most prevalent malignancies worldwide and is the leading cause of death in both men and women. Presently, local control rates are quite poor. Improvements in imaging and radiation treatment delivery systems however have provided radiation oncologists with new tools to better target these tumors. Stereotactic body radiation therapy (SBRT) is one such technique that has shown efficacy as upfront treatment for lung cancer. In addition, more recent studies have demonstrated some effectiveness in recurrent tumors in prior irradiated fields as well. This review summarizes seven recent studies of re-irradiation with SBRT in patients with thoracic recurrences treated previously with conventionally fractionated radiation therapy. Combined, 140 patients were included. The median initial thoracic radiation doses ranged from 50-87.5 Gy and median re-irradiation dose ranged from 40-80 Gy. Local control rates varied from 65-92%. Re-irradiation was well tolerated with few grade 4 and 5 complications (observed in one study). Currently, based on these published reports, re-irradiation with SBRT appears feasible for in-field thoracic recurrences, though caution must be taken in all cases of retreatment.
Collapse
Affiliation(s)
| | | | | | | | - Sana D Karam
- Department of Radiation Oncology, The University of Colorado School of Medicine, 1665 Aurora Court, Room 1032, Aurora, CO 80045, USA.
| |
Collapse
|
46
|
Toxicities of Organs at Risk in the Mediastinal and Hilar Regions Following Stereotactic Body Radiotherapy for Centrally Located Lung Tumors. J Thorac Oncol 2014; 9:1370-6. [DOI: 10.1097/jto.0000000000000260] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Griffioen GH, Dahele M, de Haan PF, van de Ven PM, Slotman BJ, Senan S. High-dose, conventionally fractionated thoracic reirradiation for lung tumors. Lung Cancer 2014; 83:356-62. [DOI: 10.1016/j.lungcan.2013.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/11/2013] [Accepted: 12/16/2013] [Indexed: 12/25/2022]
|
48
|
Chetty IJ, Devpura S, Liu D, Chen D, Li H, Wen NW, Kumar S, Fraser C, Siddiqui MS, Ajlouni M, Movsas B. Correlation of dose computed using different algorithms with local control following stereotactic ablative radiotherapy (SABR)-based treatment of non-small-cell lung cancer. Radiother Oncol 2013; 109:498-504. [PMID: 24231237 DOI: 10.1016/j.radonc.2013.10.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 10/02/2013] [Accepted: 10/03/2013] [Indexed: 02/06/2023]
Abstract
PURPOSE To retrospectively compute dose distributions for lung cancer patients treated with SABR, and to correlate dose distributions with outcome using a tumor control probability (TCP) model. METHODS Treatment plans for 133 NSCLC patients treated using 12 Gy/fxn × 4 (BED=106 Gy), and planned using a pencil-beam (1D-equivalent-path-length, EPL-1D) algorithm were retrospectively re-calculated using model-based algorithms (including convolution/superposition, Monte Carlo). 4D imaging was performed to manage motion. TCP was computed using the Marsden model and associations between dose and outcome were inferred. RESULTS Mean D95 reductions of 20% (max.=33%) were noted with model-based algorithms (relative to EPL-1D) for the smallest tumors (PTV<20 cm(3)), corresponding to actual delivered D95 BEDs of ≈ 60-85 Gy. For larger tumors (PTV>100 cm(3)), D95 reductions were ≈ 10% (BED>100 Gy). Mean lung doses (MLDs) were 15% lower for model-based algorithms for PTVs<20 cm(3). No correlation between tumor size and 2-year local control rate was observed clinically, consistent with TCP calculations, both of which were ≈ 90% across all PTV bins. CONCLUSION Results suggest that similar control rates might be achieved for smaller tumors using lower BEDs relative to larger tumors. However, more studies with larger patient cohorts are necessary to confirm this possible finding.
Collapse
Affiliation(s)
- Indrin J Chetty
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|