1
|
Koh ES, Gan HK, Senko C, Francis RJ, Ebert M, Lee ST, Lau E, Khasraw M, Nowak AK, Bailey DL, Moffat BA, Fitt G, Hicks RJ, Coffey R, Verhaak R, Walsh KM, Barnes EH, De Abreu Lourenco R, Rosenthal M, Adda L, Foroudi F, Lasocki A, Moore A, Thomas PA, Roach P, Back M, Leonard R, Scott AM. [ 18F]-fluoroethyl-L-tyrosine (FET) in glioblastoma (FIG) TROG 18.06 study: protocol for a prospective, multicentre PET/CT trial. BMJ Open 2023; 13:e071327. [PMID: 37541751 PMCID: PMC10407346 DOI: 10.1136/bmjopen-2022-071327] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/08/2023] [Indexed: 08/06/2023] Open
Abstract
INTRODUCTION Glioblastoma is the most common aggressive primary central nervous system cancer in adults characterised by uniformly poor survival. Despite maximal safe resection and postoperative radiotherapy with concurrent and adjuvant temozolomide-based chemotherapy, tumours inevitably recur. Imaging with O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) positron emission tomography (PET) has the potential to impact adjuvant radiotherapy (RT) planning, distinguish between treatment-induced pseudoprogression versus tumour progression as well as prognostication. METHODS AND ANALYSIS The FET-PET in Glioblastoma (FIG) study is a prospective, multicentre, non-randomised, phase II study across 10 Australian sites and will enrol up to 210 adults aged ≥18 years with newly diagnosed glioblastoma. FET-PET will be performed at up to three time points: (1) following initial surgery and prior to commencement of chemoradiation (FET-PET1); (2) 4 weeks following concurrent chemoradiation (FET-PET2); and (3) within 14 days of suspected clinical and/or radiological progression on MRI (performed at the time of clinical suspicion of tumour recurrence) (FET-PET3). The co-primary outcomes are: (1) to investigate how FET-PET versus standard MRI impacts RT volume delineation and (2) to determine the accuracy and management impact of FET-PET in distinguishing pseudoprogression from true tumour progression. The secondary outcomes are: (1) to investigate the relationships between FET-PET parameters (including dynamic uptake, tumour to background ratio, metabolic tumour volume) and progression-free survival and overall survival; (2) to assess the change in blood and tissue biomarkers determined by serum assay when comparing FET-PET data acquired prior to chemoradiation with other prognostic markers, looking at the relationships of FET-PET versus MRI-determined site/s of progressive disease post chemotherapy treatment with MRI and FET-PET imaging; and (3) to estimate the health economic impact of incorporating FET-PET into glioblastoma management and in the assessment of post-treatment pseudoprogression or recurrence/true progression. Exploratory outcomes include the correlation of multimodal imaging, blood and tumour biomarker analyses with patterns of failure and survival. ETHICS AND DISSEMINATION The study protocol V.2.0 dated 20 November 2020 has been approved by a lead Human Research Ethics Committee (Austin Health, Victoria). Other clinical sites will provide oversight through local governance processes, including obtaining informed consent from suitable participants. The study will be conducted in accordance with the principles of the Declaration of Helsinki and Good Clinical Practice. Results of the FIG study (TROG 18.06) will be disseminated via relevant scientific and consumer forums and peer-reviewed publications. TRIAL REGISTRATION NUMBER ANZCTR ACTRN12619001735145.
Collapse
Affiliation(s)
- Eng-Siew Koh
- Radiation Oncology, Liverpool Hospital, Liverpool, New South Wales, Australia
- South West Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Hui K Gan
- Austin Health, Department of Medical Oncology, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Clare Senko
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia
| | - Roslyn J Francis
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Martin Ebert
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
- School of Physics, Mathematics and Computing, University of Western Australia, Crawley, Western Australia, Australia
| | - Sze Ting Lee
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia
| | - Eddie Lau
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia
- Department of Radiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Radiology, Austin Health, Heidelberg, Victoria, Australia
| | - Mustafa Khasraw
- Department of Neurosurgery and Preston Robert Tisch Brain Tumor Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Anna K Nowak
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Dale L Bailey
- Faculty of Medicine & Health, University of Sydney, Camperdown, New South Wales, Australia
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Bradford A Moffat
- Melbourne Brain Centre Imaging Unit, Department of Radiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Greg Fitt
- Department of Radiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Radiology, Austin Health, Heidelberg, Victoria, Australia
| | - Rodney J Hicks
- Department of Radiology, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Robert Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Roel Verhaak
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Neurosurgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Kyle M Walsh
- Department of Neurosurgery and Preston Robert Tisch Brain Tumor Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Elizabeth H Barnes
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard De Abreu Lourenco
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, Broadway, New South Wales, Australia
| | - Mark Rosenthal
- School of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Lucas Adda
- The Cooperative Trials Group for Neuro-Oncology (COGNO) Consumer Advisor Panel, National Health and Medical Research Council (NHMRC) Clinical Trials Centre (CTC), University of Sydney, Sydney, New South Wales, Australia
| | - Farshad Foroudi
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Radiation Oncology, Austin Health, Melbourne, Victoria, Australia
| | - Arian Lasocki
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Alisha Moore
- Trans Tasman Radiation Oncology Group (TROG), Newcastle, New South Wales, Australia
| | - Paul A Thomas
- Department of Nuclear Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Paul Roach
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- The University of Sydney, Camperdown, New South Wales, Australia
| | - Michael Back
- Department of Radiation Oncology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Faculty of Medicine & Health, University of Sydney, Sydney, New South Wales, Australia
| | - Robyn Leonard
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Andrew M Scott
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
2
|
Harat M, Rakowska J, Harat M, Szylberg T, Furtak J, Miechowicz I, Małkowski B. Combining amino acid PET and MRI imaging increases accuracy to define malignant areas in adult glioma. Nat Commun 2023; 14:4572. [PMID: 37516762 PMCID: PMC10387066 DOI: 10.1038/s41467-023-39731-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/24/2023] [Indexed: 07/31/2023] Open
Abstract
Accurate determination of the extent and grade of adult-type diffuse gliomas is critical to patient management. In clinical practice, contrast-enhancing areas of diffuse gliomas in magnetic resonance imaging (MRI) sequences are usually used to target biopsy, surgery, and radiation therapy, but there can be discrepancies between these areas and the actual tumor extent. Here we show that adding 18F-fluoro-ethyl-tyrosine positron emission tomography (FET-PET) to MRI sequences accurately locates the most malignant areas of contrast-enhancing gliomas, potentially impacting subsequent management and outcomes. We present a prospective analysis of over 300 serial biopsy specimens from 23 patients with contrast-enhancing adult-type diffuse gliomas using a hybrid PET-MRI scanner to compare T2-weighted and contrast-enhancing MRI images with FET-PET. In all cases, we observe and confirm high FET uptake in early PET acquisitions (5-15 min after 18F-FET administration) outside areas of contrast enhancement on MRI, indicative of high-grade glioma. In 30% cases, inclusion of FET-positive sites changes the biopsy result to a higher tumor grade.
Collapse
Affiliation(s)
- Maciej Harat
- Department of Neurooncology and Radiosurgery, Franciszek Lukaszczyk Oncology Center, Bydgoszcz, Poland.
- Department of Oncology and Brachytherapy, Faculty of Medicine, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.
| | - Józefina Rakowska
- Department of Neurosurgery, 10th Military Research Hospital, Bydgoszcz, Poland
| | - Marek Harat
- Department of Neurosurgery, 10th Military Research Hospital, Bydgoszcz, Poland
- Centre of Medical Sciences, Bydgoszcz, University of Science and Technology, Bydgoszcz, Poland
| | - Tadeusz Szylberg
- Department of Pathomorphology, 10th Military Research Hospital, Bydgoszcz, Poland
| | - Jacek Furtak
- Department of Neurosurgery, 10th Military Research Hospital, Bydgoszcz, Poland
| | - Izabela Miechowicz
- Department of Computer Science and Statistics, University of Medical Sciences, Poznan, Poland
| | - Bogdan Małkowski
- Department of Nuclear Medicine, Franciszek Lukaszczyk Oncology Center, Bydgoszcz, Poland.
- Department of Positron Emission Tomography and Molecular Imaging, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.
| |
Collapse
|
3
|
Niyazi M, Andratschke N, Bendszus M, Chalmers AJ, Erridge SC, Galldiks N, Lagerwaard FJ, Navarria P, Munck Af Rosenschöld P, Ricardi U, van den Bent MJ, Weller M, Belka C, Minniti G. ESTRO-EANO guideline on target delineation and radiotherapy details for glioblastoma. Radiother Oncol 2023; 184:109663. [PMID: 37059335 DOI: 10.1016/j.radonc.2023.109663] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND AND PURPOSE Target delineation in glioblastoma is still a matter of extensive research and debate. This guideline aims to update the existing joint European consensus on delineation of the clinical target volume (CTV) in adult glioblastoma patients. MATERIAL AND METHODS The ESTRO Guidelines Committee identified 14 European experts in close interaction with the ESTRO clinical committee and EANO who discussed and analysed the body of evidence concerning contemporary glioblastoma target delineation, then took part in a two-step modified Delphi process to address open questions. RESULTS Several key issues were identified and are discussed including i) pre-treatment steps and immobilisation, ii) target delineation and the use of standard and novel imaging techniques, and iii) technical aspects of treatment including planning techniques and fractionation. Based on the EORTC recommendation focusing on the resection cavity and residual enhancing regions on T1-sequences with the addition of a reduced 15 mm margin, special situations are presented with corresponding potential adaptations depending on the specific clinical situation. CONCLUSIONS The EORTC consensus recommends a single clinical target volume definition based on postoperative contrast-enhanced T1 abnormalities, using isotropic margins without the need to cone down. A PTV margin based on the individual mask system and IGRT procedures available is advised; this should usually be no greater than 3 mm when using IGRT.
Collapse
Affiliation(s)
- Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany.
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Sara C Erridge
- Edinburgh Centre for Neuro-Oncology, University of Edinburgh, Western General Hospital, Edinburgh EH4 1EU, UK
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany; Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany; Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany
| | - Frank J Lagerwaard
- Department of Radiation Oncology, Amsterdam UMC location Vrije Universiteit Amsterdam, the Netherlands
| | - Pierina Navarria
- Radiotherapy and Radiosurgery Department, IRCCS, Humanitas Research Hospital, Rozzano, MI, Italy
| | - Per Munck Af Rosenschöld
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, and Lund University, Lund, Sweden
| | | | | | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Giuseppe Minniti
- Dept. of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy; IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| |
Collapse
|
4
|
Henssen D, Meijer F, Verburg FA, Smits M. Challenges and opportunities for advanced neuroimaging of glioblastoma. Br J Radiol 2023; 96:20211232. [PMID: 36062962 PMCID: PMC10997013 DOI: 10.1259/bjr.20211232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 08/10/2022] [Accepted: 08/25/2022] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma is the most aggressive of glial tumours in adults. On conventional magnetic resonance (MR) imaging, these tumours are observed as irregular enhancing lesions with areas of infiltrating tumour and cortical expansion. More advanced imaging techniques including diffusion-weighted MRI, perfusion-weighted MRI, MR spectroscopy and positron emission tomography (PET) imaging have found widespread application to diagnostic challenges in the setting of first diagnosis, treatment planning and follow-up. This review aims to educate readers with regard to the strengths and weaknesses of the clinical application of these imaging techniques. For example, this review shows that the (semi)quantitative analysis of the mentioned advanced imaging tools was found useful for assessing tumour aggressiveness and tumour extent, and aids in the differentiation of tumour progression from treatment-related effects. Although these techniques may aid in the diagnostic work-up and (post-)treatment phase of glioblastoma, so far no unequivocal imaging strategy is available. Furthermore, the use and further development of artificial intelligence (AI)-based tools could greatly enhance neuroradiological practice by automating labour-intensive tasks such as tumour measurements, and by providing additional diagnostic information such as prediction of tumour genotype. Nevertheless, due to the fact that advanced imaging and AI-diagnostics is not part of response assessment criteria, there is no harmonised guidance on their use, while at the same time the lack of standardisation severely hampers the definition of uniform guidelines.
Collapse
Affiliation(s)
- Dylan Henssen
- Department of Medical Imaging, Radboud university medical
center, Nijmegen, The Netherlands
| | - Frederick Meijer
- Department of Medical Imaging, Radboud university medical
center, Nijmegen, The Netherlands
| | - Frederik A. Verburg
- Department of Medical Imaging, Radboud university medical
center, Nijmegen, The Netherlands
| | - Marion Smits
- Department of Medical Imaging, Radboud university medical
center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Nardone V, Desideri I, D’Ambrosio L, Morelli I, Visani L, Di Giorgio E, Guida C, Clemente A, Belfiore MP, Cioce F, Spadafora M, Vinciguerra C, Mansi L, Reginelli A, Cappabianca S. Nuclear medicine and radiotherapy in the clinical management of glioblastoma patients. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00495-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Introduction
The aim of the narrative review was to analyse the applications of nuclear medicine (NM) techniques such as PET/CT with different tracers in combination with radiotherapy for the clinical management of glioblastoma patients.
Materials and methods
Key references were derived from a PubMed query. Hand searching and clinicaltrials.gov were also used.
Results
This paper contains a narrative report and a critical discussion of NM approaches in combination with radiotherapy in glioma patients.
Conclusions
NM can provide the Radiation Oncologist several aids that can be useful in the clinical management of glioblastoma patients. At the same, these results need to be validated in prospective and multicenter trials.
Collapse
|
6
|
Galldiks N, Niyazi M, Grosu AL, Kocher M, Langen KJ, Law I, Minniti G, Kim MM, Tsien C, Dhermain F, Soffietti R, Mehta MP, Weller M, Tonn JC. Contribution of PET imaging to radiotherapy planning and monitoring in glioma patients - a report of the PET/RANO group. Neuro Oncol 2021; 23:881-893. [PMID: 33538838 DOI: 10.1093/neuonc/noab013] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The management of patients with glioma usually requires multimodality treatment including surgery, radiotherapy, and systemic therapy. Accurate neuroimaging plays a central role for radiotherapy planning and follow-up after radiotherapy completion. In order to maximize the radiation dose to the tumor and to minimize toxic effects on the surrounding brain parenchyma, reliable identification of tumor extent and target volume delineation is crucial. The use of positron emission tomography (PET) for radiotherapy planning and monitoring in gliomas has gained considerable interest over the last several years, but Class I data are not yet available. Furthermore, PET has been used after radiotherapy for response assessment and to distinguish tumor progression from pseudoprogression or radiation necrosis. Here, the Response Assessment in Neuro-Oncology (RANO) working group provides a summary of the literature and recommendations for the use of PET imaging for radiotherapy of patients with glioma based on published studies, constituting levels 1-3 evidence according to the Oxford Centre for Evidence-based Medicine.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3,-4), Research Center Juelich, Juelich, Germany.,Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Düsseldorf, Cologne and Aachen, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Anca L Grosu
- Department of Radiation Oncology, University Hospital Freiburg, Freiburg, Germany
| | - Martin Kocher
- Institute of Neuroscience and Medicine (INM-3,-4), Research Center Juelich, Juelich, Germany.,Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3,-4), Research Center Juelich, Juelich, Germany.,Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Düsseldorf, Cologne and Aachen, Germany.,Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, University Hospital Copenhagen, Copenhagen, Denmark
| | - Giuseppe Minniti
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.,IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Christina Tsien
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Frederic Dhermain
- Department of Radiation Therapy, Institut de Cancerologie Gustave Roussy, Villejuif, France
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA.,Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Michael Weller
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Jörg-Christian Tonn
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
7
|
Furtak J, Rakowska J, Szylberg T, Harat M, Małkowski B, Harat M. Glioma Biopsy Based on Hybrid Dual Time-Point FET-PET/MRI-A Proof of Concept Study. Front Neurol 2021; 12:634609. [PMID: 34046002 PMCID: PMC8144440 DOI: 10.3389/fneur.2021.634609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Neuroimaging based on O-[2-(18F)fluoroethyl]-l-tyrosine (FET)-PET provides additional information on tumor grade and extent compared with MRI. Dynamic PET for biopsy target selection further improves results but is often clinically impractical. Static FET-PET performed at two time-points may be a good compromise, but data on this approach are limited. The aim of this study was to compare the histology of lesions obtained from two challenging glioma patients with targets selected based on hybrid dual time-point FET-PET/MRI. Five neuronavigated tumor biopsies were performed in two difficult cases of suspected glioma. Lesions with (T1-CE) and without contrast enhancement (T1 and T2-FLAIR) on MRI were selected. Dual time-point FET-PET imaging was performed 5–15 min (PET10) and 45–60 min (PET60) after radionuclide injection. The most informative FET-PET/MRI images were coregistered with MRI in time of biopsy planning. Five biopsy targets (three from high uptake and two from moderate uptake FET areas) thought to represent the most malignant sites and tumor extent were selected. Histopathological findings were compared with FET-PET and MRI images. Increased FET uptake in the area of non-CE locations on MRI correlated well with high-grade gliomas localized as far as 3 cm from T1-CE foci. Selecting a target in the motor cortex based on FET kinetics defined by dual time-point PET resulted in a grade IV diagnosis after previous negative biopsies based on MRI. An additional grade III diagnosis was obtained from an area of glioma infiltration with moderate FET uptake (between 1 and 1.25 SUV). These findings seem to show that dual time-point FET-PET-based biopsies can provide additional and clinically useful information for glioma diagnosis. Selection of targets based on dual time-point images may be useful for determining the most malignant tumor areas and may therefore be useful for resection and radiotherapy planning.
Collapse
Affiliation(s)
- Jacek Furtak
- Department of Neurosurgery, 10th Military Research Hospital, Bydgoszcz, Poland
| | - Józefina Rakowska
- Department of Neurosurgery, 10th Military Research Hospital, Bydgoszcz, Poland
| | - Tadeusz Szylberg
- Department of Pathomorphology, 10th Military Research Hospital, Bydgoszcz, Poland
| | - Marek Harat
- Department of Neurosurgery, 10th Military Research Hospital, Bydgoszcz, Poland.,Department of Neurosurgery and Neurology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Bogdan Małkowski
- Department of Positron Emission Tomography and Molecular Imaging, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.,Department of Nuclear Medicine, Franciszek Lukaszczyk Oncology Center, Bydgoszcz, Poland
| | - Maciej Harat
- Department of Oncology and Brachytherapy, Faculty of Medicine, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.,Department of Neurooncology and Radiosurgery, Franciszek Lukaszczyk Oncology Center, Bydgoszcz, Poland
| |
Collapse
|
8
|
Castellano A, Bailo M, Cicone F, Carideo L, Quartuccio N, Mortini P, Falini A, Cascini GL, Minniti G. Advanced Imaging Techniques for Radiotherapy Planning of Gliomas. Cancers (Basel) 2021; 13:cancers13051063. [PMID: 33802292 PMCID: PMC7959155 DOI: 10.3390/cancers13051063] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
The accuracy of target delineation in radiation treatment (RT) planning of cerebral gliomas is crucial to achieve high tumor control, while minimizing treatment-related toxicity. Conventional magnetic resonance imaging (MRI), including contrast-enhanced T1-weighted and fluid-attenuated inversion recovery (FLAIR) sequences, represents the current standard imaging modality for target volume delineation of gliomas. However, conventional sequences have limited capability to discriminate treatment-related changes from viable tumors, owing to the low specificity of increased blood-brain barrier permeability and peritumoral edema. Advanced physiology-based MRI techniques, such as MR spectroscopy, diffusion MRI and perfusion MRI, have been developed for the biological characterization of gliomas and may circumvent these limitations, providing additional metabolic, structural, and hemodynamic information for treatment planning and monitoring. Radionuclide imaging techniques, such as positron emission tomography (PET) with amino acid radiopharmaceuticals, are also increasingly used in the workup of primary brain tumors, and their integration in RT planning is being evaluated in specialized centers. This review focuses on the basic principles and clinical results of advanced MRI and PET imaging techniques that have promise as a complement to RT planning of gliomas.
Collapse
Affiliation(s)
- Antonella Castellano
- Neuroradiology Unit, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (A.C.); (A.F.)
| | - Michele Bailo
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (M.B.); (P.M.)
| | - Francesco Cicone
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, and Nuclear Medicine Unit, University Hospital “Mater Domini”, 88100 Catanzaro, Italy;
- Correspondence: ; Tel.: +39-0-961-369-4155
| | - Luciano Carideo
- National Cancer Institute, G. Pascale Foundation, 80131 Naples, Italy;
| | - Natale Quartuccio
- A.R.N.A.S. Ospedale Civico Di Cristina Benfratelli, 90144 Palermo, Italy;
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (M.B.); (P.M.)
| | - Andrea Falini
- Neuroradiology Unit, IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, 20132 Milan, Italy; (A.C.); (A.F.)
| | - Giuseppe Lucio Cascini
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, and Nuclear Medicine Unit, University Hospital “Mater Domini”, 88100 Catanzaro, Italy;
| | - Giuseppe Minniti
- Radiation Oncology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, 53100 Siena, Italy;
- IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| |
Collapse
|
9
|
Decazes P, Hinault P, Veresezan O, Thureau S, Gouel P, Vera P. Trimodality PET/CT/MRI and Radiotherapy: A Mini-Review. Front Oncol 2021; 10:614008. [PMID: 33614497 PMCID: PMC7890017 DOI: 10.3389/fonc.2020.614008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Computed tomography (CT) has revolutionized external radiotherapy by making it possible to visualize and segment the tumors and the organs at risk in a three-dimensional way. However, if CT is a now a standard, it presents some limitations, notably concerning tumor characterization and delineation. Its association with functional and anatomical images, that are positron emission tomography (PET) and magnetic resonance imaging (MRI), surpasses its limits. This association can be in the form of a trimodality PET/CT/MRI. The objective of this mini-review is to describe the process of performing this PET/CT/MRI trimodality for radiotherapy and its potential clinical applications. Trimodality can be performed in two ways, either a PET/MRI fused to a planning CT (possibly with a pseudo-CT generated from the MRI for the planning), or a PET/CT fused to an MRI and then registered to a planning CT (possibly the CT of PET/CT if calibrated for radiotherapy). These examinations should be performed in the treatment position, and in the second case, a patient transfer system can be used between the PET/CT and MRI to limit movement. If trimodality requires adapted equipment, notably compatible MRI equipment with high-performance dedicated coils, it allows the advantages of the three techniques to be combined with a synergistic effect while limiting their disadvantages when carried out separately. Trimodality is already possible in clinical routine and can have a high clinical impact and good inter-observer agreement, notably for head and neck cancers, brain tumor, prostate cancer, cervical cancer.
Collapse
Affiliation(s)
- Pierre Decazes
- Nuclear Medicine Department, Henri Becquerel Cancer Center, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| | | | - Ovidiu Veresezan
- Radiotherapy Department, Henri Becquerel Cancer Center, Rouen, France
| | - Sébastien Thureau
- Nuclear Medicine Department, Henri Becquerel Cancer Center, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
- Radiotherapy Department, Henri Becquerel Cancer Center, Rouen, France
| | - Pierrick Gouel
- Nuclear Medicine Department, Henri Becquerel Cancer Center, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| | - Pierre Vera
- Nuclear Medicine Department, Henri Becquerel Cancer Center, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| |
Collapse
|
10
|
Zhang Y, Wang J. Research progress on radiotherapy technology and dose fraction scheme for advanced gliomas. Transl Cancer Res 2020; 9:7642-7651. [PMID: 35117363 PMCID: PMC8799171 DOI: 10.21037/tcr-20-1891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/28/2020] [Indexed: 11/06/2022]
Abstract
Glioma is the most common central malignant tumor. High-grade glioma (HGG) has high malignancy and a short median survival. Complete surgical resection and comprehensive treatment with postoperative radiotherapy and chemotherapy is the recommended treatment for HGGs at present in clinic. Postoperative radiotherapy can reduce the local recurrence rate and prolong the survival time of patients. In recent years, researchers have made some progress on different radiotherapy technologies and dose fraction schemes. With the continuous development of medical technology, different groups of people should choose different dose fraction schemes, in order to realize the individualization of treatment schemes, and provide more benefits to patients. At present, the optimal radiotherapy dose, the fraction model, and how to achieve individualized radiotherapy remains unclear. In view of the poor prognosis of this disease, patients should be encouraged to participate in properly conducted experimental studies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Radiation Oncology, Peking University International Hospital, Beijing, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
11
|
Fibroblast Activation Protein (FAP) specific PET for advanced target volume delineation in glioblastoma. Radiother Oncol 2020; 150:159-163. [PMID: 32598977 DOI: 10.1016/j.radonc.2020.06.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 11/21/2022]
Abstract
Fibroblast Activation Protein (FAP)-specific Positron Emission Tomography (PET) has shown promising results in various cancers. This pilot study compares FAP-specific PET to MRI for treatment planning in 13 Glioblastoma patients. The resulting incongruent volumes could provide additional information for radiotherapy or biopsy planning.
Collapse
|
12
|
Dissaux G, Dissaux B, Kabbaj OE, Gujral DM, Pradier O, Salaün PY, Seizeur R, Bourhis D, Ben Salem D, Querellou S, Schick U. Radiotherapy target volume definition in newly diagnosed high grade glioma using 18F-FET PET imaging and multiparametric perfusion MRI: A prospective study (IMAGG). Radiother Oncol 2020; 150:164-171. [PMID: 32580001 DOI: 10.1016/j.radonc.2020.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE The aim of this study was to prospectively investigate tumor volume delineation by amino acid PET and multiparametric perfusion magnetic resonance imaging (MRI) in patients with newly diagnosed, untreated high grade glioma (HGG). MATERIALS AND METHODS Thirty patients with histologically confirmed HGG underwent O-(2-[18F]-fluoroethyl)-l-tyrosine (18F-FET) positron emission tomography (PET), conventional Magnetic Resonance Imaging (MRI) as contrast-enhanced (CE) and fluid-attenuated inversion recovery (FLAIR) and multiparametric MRI as relative cerebral blood volume (rCBV) and permeability estimation map (K2). Areas of MRI volumes were semi-automatically segmented. The percentage overlap volumes, Dice and Jaccard spatial similarity coefficients (OV, DSC, JSC) were calculated. RESULTS The 18F-FET tumor volume was significantly larger than the CE volume (median 43.5 mL (2.5-124.9) vs. 23.8 mL (1.4-80.3), p = 0.005). The OV between 18F-FET uptake and CE volume was low (median OV 0.59 (0.10-1)), as well as spatial similarity (median DSC 0.52 (0.07-0.78); median JSC 0.35 (0.03-0.64)). Twenty-five patients demonstrated both rCBV and CE on MRI: The median rCBV tumor volume was significantly smaller than the median CE volume (p < 0.001). The OV was high (median 0.83 (0.54-1)), but the spatial similarity was low (median DSC 0.45 (0.04-0.83); median JSC 0.29 (0.07-0.71)). Twenty-eight patients demonstrated both K2 and CE on MRI. The median K2 tumor volume was not significantly larger than the median CE volume. The OV was high (median OV 0.90 (0.61-1)), and the spatial similarity was moderate (median DSC 0.75 (0.01-0.83); median JSC 0.60 (0.11-0.89)). CONCLUSION We demonstrated that multiparametric perfusion MRI volumes (rCBV, K2) were highly correlated with CE T1 gadolinium volumes whereas 18F-FET PET provided complementary information, suggesting that the metabolically active tumor volume in patients with newly diagnosed untreated HGG is critically underestimated by contrast enhanced MRI. 18F-FET PET imaging may help to improve target volume delineation accuracy for radiotherapy planning.
Collapse
Affiliation(s)
- Gurvan Dissaux
- Radiation Oncology Department, University Hospital, Brest, France; Université de Bretagne Occidentale, Brest, France; LaTIM, INSERM 1101, Brest, France.
| | - Brieg Dissaux
- Radiology Department, University Hospital, Brest, France; EA 3878 GETBO IFR 148, Brest, France; Université de Bretagne Occidentale, Brest, France
| | - Osman El Kabbaj
- Radiation Oncology Department, University Hospital, Brest, France
| | - Dorothy M Gujral
- Clinical Oncology Department, Imperial College Healthcare NHS Trust, Charing Cross Hospital, Hammersmith, London, United Kingdom; Department of Cancer and Surgery, Imperial College London, London, United Kingdom
| | - Olivier Pradier
- Radiation Oncology Department, University Hospital, Brest, France; Université de Bretagne Occidentale, Brest, France; LaTIM, INSERM 1101, Brest, France
| | - Pierre-Yves Salaün
- Nuclear Medicine Department, University Hospital, Brest, France; EA 3878 GETBO IFR 148, Brest, France; Université de Bretagne Occidentale, Brest, France
| | - Romuald Seizeur
- Neurosurgery Department, University Hospital, Brest, France; Université de Bretagne Occidentale, Brest, France; LaTIM, INSERM 1101, Brest, France
| | - David Bourhis
- Nuclear Medicine Department, University Hospital, Brest, France; EA 3878 GETBO IFR 148, Brest, France; Université de Bretagne Occidentale, Brest, France
| | - Douraied Ben Salem
- Radiology Department, University Hospital, Brest, France; Université de Bretagne Occidentale, Brest, France; LaTIM, INSERM 1101, Brest, France
| | - Solène Querellou
- Nuclear Medicine Department, University Hospital, Brest, France; EA 3878 GETBO IFR 148, Brest, France; Université de Bretagne Occidentale, Brest, France
| | - Ulrike Schick
- Radiation Oncology Department, University Hospital, Brest, France; Université de Bretagne Occidentale, Brest, France; LaTIM, INSERM 1101, Brest, France
| |
Collapse
|
13
|
Kong L, Wu J, Gao J, Qiu X, Yang J, Hu J, Hu W, Mao Y, Lu JJ. Particle radiation therapy in the management of malignant glioma: Early experience at the Shanghai Proton and Heavy Ion Center. Cancer 2020; 126:2802-2810. [PMID: 32167589 PMCID: PMC7317504 DOI: 10.1002/cncr.32828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/20/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
Background The objective of this study was to evaluate the outcomes of patients with high‐grade glioma who received treatment with particle radiotherapy. Methods Between June 2015 and October 2018, 50 consecutive and nonselected patients with glioblastoma multiforme (n = 34) or anaplastic glioma (n = 16) were treated at the Shanghai Proton and Heavy Ion Center. Twenty‐four patients received proton radiotherapy (at a dose of 60 gray‐equivalents in 30 daily fractions), and 26 patients received proton radiotherapy plus a carbon‐ion radiotherapy (CIRT) boost in various dose‐escalating schemes. All patients received temozolomide because of their age or their O‐6‐methylguanine‐DNA methyltransferase (MGMT) promoter methylation status. Progression‐free survival (PFS) and overall survival (OS) rates, as well as treatment‐induced toxicities, were analyzed. Results At a median follow‐up of 14.3 months (range, 4.8‐39.6 months), the 12‐month and 18‐month OS rates were 87.8% (95% CI, 77.6%‐98.0%) and 72.8% (95% CI, 56.7%‐88.9%), respectively, and the 12‐month and 18‐month PFS rates were 74.2% (95% CI, 60.9%‐87.5%) and 59.8% (95% CI, 43.1%‐76.5%), respectively. Univariate analyses revealed that age (>50 vs ≤50 years), World Health Organization grade (3 vs 4), and Karnofsky performance status (>80 vs ≤80) were significant prognosticators for OS, and IDH mutation and World Health Organization grade were significant for predicting PFS. Furthermore, MGMT promoter methylation, performance status, and age showed a trend toward predicting PFS. No significant predictive factors for PFS or OS were identified in multivariate analyses. Twenty‐nine patients experienced grade 1 treatment‐related acute adverse effects, and 11 developed grade 1 (n = 6) or grade 2 (n = 5) late adverse effect of radiation‐induced brain necrosis. No grade 3, 4, or 5 toxicities were observed. Conclusions Particle radiotherapy produced 18‐month OS and PFS rates of 72.8% and 59.8%, respectively, with acceptable adverse effects in patients with high‐grade glioma. Particle radiotherapy at a dose ≥60 gray‐equivalents appears to be safe and potentially effective. Particle radiotherapy with concurrent temozolomide could potentially produce better outcomes than conventional radiotherapy plus temozolomide. Particle radiotherapy to a dose of ≥60 gray‐equivalents with concurrent temozolomide is safe for patients with high‐grade glioma.
Collapse
Affiliation(s)
- Lin Kong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jinsong Wu
- Department of Neurosurgery, Fudan University Shanghai Huashan Hospital, Shanghai, China
| | - Jing Gao
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Xianxin Qiu
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Jing Yang
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Jiyi Hu
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Weixu Hu
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Fudan University Shanghai Huashan Hospital, Shanghai, China
| | - Jiade J Lu
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| |
Collapse
|
14
|
Nöth U, Tichy J, Tritt S, Bähr O, Deichmann R, Hattingen E. Quantitative T1 mapping indicates tumor infiltration beyond the enhancing part of glioblastomas. NMR IN BIOMEDICINE 2020; 33:e4242. [PMID: 31880005 DOI: 10.1002/nbm.4242] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to evaluate whether maps of quantitative T1 (qT1) differences induced by a gadolinium-based contrast agent (CA) are better suited than conventional T1-weighted (T1w) MR images for detecting infiltration inside and beyond the peritumoral edema of glioblastomas. Conventional T1w images and qT1 maps were obtained before and after gadolinium-based CA administration in 33 patients with glioblastoma before therapy. The following data were calculated: (i) absolute qT1-difference maps (qT1 pre-CA - qT1 post-CA), (ii) relative qT1-difference maps, (iii) absolute and (iv) relative differences of conventional T1w images acquired pre- and post-CA. The values of these four datasets were compared in four different regions: (a) the enhancing tumor, (b) the peritumoral edema, (c) a 5 mm zone around the pathology (defined as the sum of regions a and b), and (d) the contralateral normal appearing brain tissue. Additionally, absolute qT1-difference maps (displayed with linear gray scaling) were visually compared with respective conventional difference images. The enhancing tumor was visible both in the difference of conventional pre- and post-CA T1w images and in the absolute qT1-difference maps, whereas only the latter showed elevated values in the peritumoral edema and in some cases even beyond. Mean absolute qT1-difference values were significantly higher (P < 0.01) in the enhancing tumor (838 ± 210 ms), the peritumoral edema (123 ± 74 ms) and in the 5 mm zone around the pathology (81 ± 31 ms) than in normal appearing tissue (32 ± 35 ms). In summary, absolute qT1-difference maps-in contrast to the difference of T1w images-of untreated glioblastomas appear to be able to visualize CA leakage, and thus might indicate tumor cell infiltration in the edema region and beyond. Therefore, the absolute qT1-difference maps are potentially useful for treatment planning.
Collapse
Affiliation(s)
- Ulrike Nöth
- Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| | - Julia Tichy
- Dr Senckenberg Institute of Neurooncology, Goethe University, Frankfurt am Main, Germany
| | - Stephanie Tritt
- Institute of Neuroradiology, Goethe University, Frankfurt am Main, Germany
| | - Oliver Bähr
- Dr Senckenberg Institute of Neurooncology, Goethe University, Frankfurt am Main, Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| | - Elke Hattingen
- Institute of Neuroradiology, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Lu J, Kong L. Particle radiation therapy in the management of adult high-grade glioma: A narrative review. GLIOMA 2020. [DOI: 10.4103/glioma.glioma_30_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
16
|
Seidensaal K, Harrabi SB, Debus J. Molecular Imaging for Particle Therapy: Current Approach and Future Directions. Recent Results Cancer Res 2020; 216:865-879. [PMID: 32594410 DOI: 10.1007/978-3-030-42618-7_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
During the last decades, radiation oncology has been subject to a number of technological innovations. Particle therapy has evolved in parallel to the modern high-precision photon radiotherapy techniques and offers a superior dose distribution with decreased integral dose to healthy tissues. With advancing precision of treatment, the necessity for accurate and confident target volume delineation is rising. When morphological imaging reaches its limitations, molecular imaging can provide valuable information.
Collapse
Affiliation(s)
- Katharina Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Semi Ben Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
17
|
Diehl CD, Schwendner MJ, Sollmann N, Oechsner M, Meyer B, Combs SE, Krieg SM. Application of presurgical navigated transcranial magnetic stimulation motor mapping for adjuvant radiotherapy planning in patients with high-grade gliomas. Radiother Oncol 2019; 138:30-37. [DOI: 10.1016/j.radonc.2019.04.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/17/2019] [Accepted: 04/24/2019] [Indexed: 12/25/2022]
|
18
|
Lipkova J, Angelikopoulos P, Wu S, Alberts E, Wiestler B, Diehl C, Preibisch C, Pyka T, Combs SE, Hadjidoukas P, Van Leemput K, Koumoutsakos P, Lowengrub J, Menze B. Personalized Radiotherapy Design for Glioblastoma: Integrating Mathematical Tumor Models, Multimodal Scans, and Bayesian Inference. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:1875-1884. [PMID: 30835219 PMCID: PMC7170051 DOI: 10.1109/tmi.2019.2902044] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Glioblastoma (GBM) is a highly invasive brain tumor, whose cells infiltrate surrounding normal brain tissue beyond the lesion outlines visible in the current medical scans. These infiltrative cells are treated mainly by radiotherapy. Existing radiotherapy plans for brain tumors derive from population studies and scarcely account for patient-specific conditions. Here, we provide a Bayesian machine learning framework for the rational design of improved, personalized radiotherapy plans using mathematical modeling and patient multimodal medical scans. Our method, for the first time, integrates complementary information from high-resolution MRI scans and highly specific FET-PET metabolic maps to infer tumor cell density in GBM patients. The Bayesian framework quantifies imaging and modeling uncertainties and predicts patient-specific tumor cell density with credible intervals. The proposed methodology relies only on data acquired at a single time point and, thus, is applicable to standard clinical settings. An initial clinical population study shows that the radiotherapy plans generated from the inferred tumor cell infiltration maps spare more healthy tissue thereby reducing radiation toxicity while yielding comparable accuracy with standard radiotherapy protocols. Moreover, the inferred regions of high tumor cell densities coincide with the tumor radioresistant areas, providing guidance for personalized dose-escalation. The proposed integration of multimodal scans and mathematical modeling provides a robust, non-invasive tool to assist personalized radiotherapy design.
Collapse
|
19
|
Kruser TJ, Bosch WR, Badiyan SN, Bovi JA, Ghia AJ, Kim MM, Solanki AA, Sachdev S, Tsien C, Wang TJC, Mehta MP, McMullen KP. NRG brain tumor specialists consensus guidelines for glioblastoma contouring. J Neurooncol 2019; 143:157-166. [PMID: 30888558 DOI: 10.1007/s11060-019-03152-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 03/11/2019] [Indexed: 01/19/2023]
Abstract
INTRODUCTION NRG protocols for glioblastoma allow for clinical target volume (CTV) reductions at natural barriers; however, literature examining CTV contouring and the relevant white matter pathways is lacking. This study proposes consensus CTV guidelines, with a focus on areas of controversy while highlighting common errors in glioblastoma target delineation. METHODS Ten academic radiation oncologists specializing in brain tumor treatment contoured CTVs on four glioblastoma cases. CTV expansions were based on NRG trial guidelines. Contour consensus was assessed and summarized by kappa statistics. A meeting was held to discuss the mathematically averaged contours and form consensus contours and recommendations. RESULTS Contours of the cavity plus enhancement (mean kappa 0.69) and T2-FLAIR signal (mean kappa 0.74) showed moderate to substantial agreement. Experts were asked to trim off anatomic barriers while respecting pathways of spread to develop their CTVs. Submitted CTV_4600 (mean kappa 0.80) and CTV_6000 (mean kappa 0.81) contours showed substantial to near perfect agreement. Simultaneous truth and performance level estimation (STAPLE) contours were then reviewed and modified by group consensus. Anatomic trimming reduced the amount of total brain tissue planned for radiation targeting by a 13.6% (range 8.7-17.9%) mean proportional reduction. Areas for close scrutiny of target delineation were described, with accompanying recommendations. CONCLUSIONS Consensus contouring guidelines were established based on expert contours. Careful delineation of anatomic pathways and barriers to spread can spare radiation to uninvolved tissue without compromising target coverage. Further study is necessary to accurately define optimal target volumes beyond isometric expansion techniques for individual patients.
Collapse
Affiliation(s)
- Tim J Kruser
- Department of Radiation Oncology, Northwestern Memorial Hospital, 251 E Huron St, LC-178, Galter Pavilion, Chicago, IL, 60611, USA.
| | - Walter R Bosch
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Shahed N Badiyan
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Joseph A Bovi
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amol J Ghia
- Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan Hospital, Ann Arbor, MI, USA
| | - Abhishek A Solanki
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Sean Sachdev
- Department of Radiation Oncology, Northwestern Memorial Hospital, 251 E Huron St, LC-178, Galter Pavilion, Chicago, IL, 60611, USA
| | - Christina Tsien
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Tony J C Wang
- Department of Radiation Oncology, Columbia University Medical Center, New York, NY, USA
| | | | | |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The aim of this study was to give an update on the emerging role of PET using radiolabelled amino acids in the diagnostic workup and management of patients with cerebral gliomas and brain metastases. RECENT FINDINGS Numerous studies have demonstrated the potential of PET using radiolabelled amino acids for differential diagnosis of brain tumours, delineation of tumour extent for treatment planning and biopsy guidance, differentiation between tumour progression and recurrence versus treatment-related changes, and for monitoring of therapy. The Response Assessment in Neuro-Oncology (RANO) working group - an international effort to develop new standardized response criteria for clinical trials in brain tumours - has recently recommended the use of amino acid PET imaging for brain tumour management in addition to MRI at every stage of disease. With the introduction of F-18 labelled amino acids, a broader clinical application has become possible, but is still hampered by the lack of regulatory approval and of reimbursement in many countries. SUMMARY PET using radiolabelled amino acids is a rapidly evolving method that can significantly enhance the diagnostic value of MRI in brain tumours. Current developments suggest that this imaging technique will become an indispensable tool in neuro-oncological centres in the near future.
Collapse
|
21
|
Rausch I, Zitterl A, Berroterán-Infante N, Rischka L, Prayer D, Fenchel M, Sareshgi RA, Haug AR, Hacker M, Beyer T, Traub-Weidinger T. Dynamic [18F]FET-PET/MRI using standard MRI-based attenuation correction methods. Eur Radiol 2019; 29:4276-4285. [PMID: 30635757 PMCID: PMC6610265 DOI: 10.1007/s00330-018-5942-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/14/2018] [Accepted: 11/30/2018] [Indexed: 11/30/2022]
Abstract
AIM To assess if tumour grading based on dynamic [18F]FET positron emission tomography/magnetic resonance imaging (PET/MRI) studies is affected by different MRI-based attenuation correction (AC) methods. METHODS Twenty-four patients with suspected brain tumours underwent dynamic [18F]FET-PET/MRI examinations and subsequent low-dose computed tomography (CT) scans of the head. The dynamic PET data was reconstructed using the following AC methods: standard Dixon-based AC and ultra-short echo time MRI-based AC (MR-AC) and a model-based AC approach. All data were reconstructed also using CT-based AC (reference). For all lesions and reconstructions, time-activity curves (TACs) and time to peak (TTP) were extracted using different region-of-interest (ROI) and volume-of-interest (VOI) definitions. According to the most common evaluation approaches, TACs were categorised into two or three distinct curve patterns. Changes in TTP and TAC patterns compared to PET using CT-based AC were reported. RESULTS In the majority of cases, TAC patterns did not change. However, TAC pattern changes as well as changes in TTP were observed in up to 8% and 17% of the cases when using different MR-AC methods and ROI/VOI definitions, respectively. However, these changes in TTP and TAC pattern were attributed to different delineations of the ROIs/VOIs in PET corrected with different AC methods. CONCLUSION PET/MRI using different MR-AC methods can be used for the assessment of TAC patterns in dynamic [18F]FET studies, as long as a meaningful delineation of the area of interest within the tumour is ensured. KEY POINTS • PET/MRI using different MR-AC methods can be used for dynamic [18F]FET studies. • A meaningful segmentation of the area of interest needs to be ensured, mandating a visual validation of the delineation by an experienced reader.
Collapse
Affiliation(s)
- Ivo Rausch
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Andreas Zitterl
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Neydher Berroterán-Infante
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Lucas Rischka
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Daniela Prayer
- Division of Neuroradiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Reza A Sareshgi
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.,Division of Radiology-Technique, University of Applied Science, Vienna, Austria
| | - Alexander R Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Thomas Beyer
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
22
|
Press RH, Zhong J, Gurbani SS, Weinberg BD, Eaton BR, Shim H, Shu HKG. The Role of Standard and Advanced Imaging for the Management of Brain Malignancies From a Radiation Oncology Standpoint. Neurosurgery 2018; 85:165-179. [DOI: 10.1093/neuros/nyy461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/30/2018] [Indexed: 01/20/2023] Open
Abstract
Abstract
Radiation therapy (RT) plays a critical role in the overall management of many central nervous system (CNS) tumors. Advances in RT treatment planning, with techniques such as intensity modulated radiation therapy, volumetric modulated arc therapy, and stereotactic radiosurgery, now allow the delivery of highly conformal dose with great precision. These techniques rely on high-resolution 3-dimensional anatomical imaging modalities such as computed tomography or magnetic resonance imaging (MRI) scans to accurately and reliably define CNS targets and normal tissue avoidance structures. The integration of cross-sectional imaging into radiation oncology has directly translated into improvements in the therapeutic window of RT, and the union between radiation oncology and imaging is only expected to grow stronger. In addition, advanced imaging modalities including diffusion, perfusion, and spectroscopic MRIs as well as positron emission tomography (PET) scans with novel tracers are being utilized to provide additional insight into tumor biology and behavior beyond anatomy. Together, these standard and advanced imaging modalities hold significant potential to improve future RT delivery and response assessment. In this review, we will discuss the current utilization of standard/advanced imaging for CNS tumors from a radiation oncology perspective as well as the implications of novel MRI and PET modalities currently under investigation.
Collapse
Affiliation(s)
- Robert H Press
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Jim Zhong
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Saumya S Gurbani
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Brent D Weinberg
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Bree R Eaton
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Hyunsuk Shim
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Hui-Kuo G Shu
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| |
Collapse
|
23
|
Influence of volumetric modulated arc therapy and FET-PET scanning on treatment outcomes for glioblastoma patients. Radiother Oncol 2018; 130:149-155. [PMID: 30446316 DOI: 10.1016/j.radonc.2018.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/26/2018] [Accepted: 10/01/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND We sought to assess the influence of the clinical introduction of new radiotherapy technologies on glioblastoma patients' outcomes. METHODS Newly diagnosed glioblastoma patients treated with 60 Gy and temozolomide (2005-2014) were analyzed. The patients' GTV and CTV were defined based on MR (n = 521) or FET-PET/MR (n = 190), and were treated using conformal radiotherapy (CRT, n = 159) or image-guided volumetric modulated arc therapy with hippocampal sparing (IG-VMAT, n = 362). Progression-free survival (PFS) was assessed using the McDonald criteria. Associations between clinical data, dosimetry data, treatment technology, for PFS and overall survival (OS) were explored. RESULTS The PFS (7 months) and OS (15 months) were unaffected by CRT, IG-VMAT and FET-PET technology. Mean brain dose was correlated with tumor volume, and was lower for IG-VMAT vs. CRT (p < 0.001). Larger mean brain dose was associated with inferior PFS (univariate/multivariate Cox models, p < 0.001) and OS (univariate, p < 0.001). Multivariate Cox models revealed association of larger mean brainstem dose (p < 0.001), BTV (p = 0.045), steroid use at baseline (p = 0.003), age (p = 0.019) and MGMT status (p = 0.022) with lower OS. CONCLUSIONS Introduction of hippocampal-sparing IG-VMAT technology appeared to be safe, and may have reduced toxicity and cognitive impairment. Larger mean brain dose was strongly associated with inferior PFS and OS.
Collapse
|
24
|
Lohmann P, Stavrinou P, Lipke K, Bauer EK, Ceccon G, Werner JM, Neumaier B, Fink GR, Shah NJ, Langen KJ, Galldiks N. FET PET reveals considerable spatial differences in tumour burden compared to conventional MRI in newly diagnosed glioblastoma. Eur J Nucl Med Mol Imaging 2018; 46:591-602. [PMID: 30327856 DOI: 10.1007/s00259-018-4188-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/03/2018] [Indexed: 01/02/2023]
Abstract
PURPOSE Areas of contrast enhancement (CE) on MRI are usually the target for resection or radiotherapy target volume definition in glioblastomas. However, the solid tumour mass may extend beyond areas of CE. Amino acid PET can detect parts of the tumour that show no CE. We systematically investigated tumour volumes delineated by amino acid PET and MRI in patients with newly diagnosed, untreated glioblastoma. METHODS Preoperatively, 50 patients with neuropathologically confirmed glioblastoma underwent O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) PET, and fluid-attenuated inversion recovery (FLAIR) and contrast-enhanced MRI. Areas of CE were manually segmented. FET PET tumour volumes were segmented using a tumour-to-brain ratio of ≥1.6. The percentage overlap volumes, and Dice and Jaccard spatial similarity coefficients (DSC, JSC) were calculated. FLAIR images were evaluated visually. RESULTS In 43 patients (86%), the FET tumour volume was significantly larger than the CE volume (21.5 ± 14.3 mL vs. 9.4 ± 11.3 mL; P < 0.001). Forty patients (80%) showed both increased uptake of FET and CE. In these 40 patients, the spatial similarity between FET uptake and CE was low (mean DSC 0.39 ± 0.21, mean JSC 0.26 ± 0.16). Ten patients (20%) showed no CE, and one of these patients showed no FET uptake. In five patients (10%), increased FET uptake was present outside areas of FLAIR hyperintensity. CONCLUSION Our results show that the metabolically active tumour volume delineated by FET PET is significantly larger than tumour volume delineated by CE. Furthermore, the results strongly suggest that the information derived from both imaging modalities should be integrated into the management of patients with newly diagnosed glioblastoma.
Collapse
Affiliation(s)
- Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, 52425, Juelich, Germany.
| | | | - Katharina Lipke
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, 52425, Juelich, Germany
| | - Elena K Bauer
- Department of Neurology, University of Cologne, Cologne, Germany
| | - Garry Ceccon
- Department of Neurology, University of Cologne, Cologne, Germany
| | | | - Bernd Neumaier
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, 52425, Juelich, Germany
| | - Gereon R Fink
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, 52425, Juelich, Germany.,Department of Neurology, University of Cologne, Cologne, Germany
| | - Nadim J Shah
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, 52425, Juelich, Germany.,Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, 52425, Juelich, Germany.,Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, 52425, Juelich, Germany.,Department of Neurology, University of Cologne, Cologne, Germany.,Center of Integrated Oncology (CIO), Universities of Cologne and Bonn, Cologne, Germany
| |
Collapse
|
25
|
Debus C, Afshar-Oromieh A, Floca R, Ingrisch M, Knoll M, Debus J, Haberkorn U, Abdollahi A. Feasibility and robustness of dynamic 18F-FET PET based tracer kinetic models applied to patients with recurrent high-grade glioma prior to carbon ion irradiation. Sci Rep 2018; 8:14760. [PMID: 30283013 PMCID: PMC6170489 DOI: 10.1038/s41598-018-33034-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/07/2018] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to analyze the robustness and diagnostic value of different compartment models for dynamic 18F-FET PET in recurrent high-grade glioma (HGG). Dynamic 18F-FET PET data of patients with recurrent WHO grade III (n:7) and WHO grade IV (n: 9) tumors undergoing re-irradiation with carbon ions were analyzed by voxelwise fitting of the time-activity curves with a simplified and an extended one-tissue compartment model (1TCM) and a two-tissue compartment model (2TCM), respectively. A simulation study was conducted to assess robustness and precision of the 2TCM. Parameter maps showed enhanced detail on tumor substructure. Neglecting the blood volume VB in the 1TCM yields insufficient results. Parameter K1 from both 1TCM and 2TCM showed correlation with overall patient survival after carbon ion irradiation (p = 0.043 and 0.036, respectively). The 2TCM yields realistic estimates for tumor blood volume, which was found to be significantly higher in WHO IV compared to WHO III (p = 0.031). Simulations on the 2TCM showed that K1 yields good accuracy and robustness while k2 showed lowest stability of all parameters. The 1TCM provides the best compromise between parameter stability and model accuracy; however application of the 2TCM is still feasible and provides a more accurate representation of tracer-kinetics at the cost of reduced robustness. Detailed tracer kinetic analysis of 18F-FET PET with compartment models holds valuable information on tumor substructures and provides additional diagnostic and prognostic value.
Collapse
Affiliation(s)
- Charlotte Debus
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Division of Molecular and Translational Radiation Oncology, Heidelberg University Medical School, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ralf Floca
- Division of Molecular and Translational Radiation Oncology, Heidelberg University Medical School, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Ingrisch
- Department of Radiology, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Maximilian Knoll
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg University Medical School, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg University Medical School, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg University Medical School, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
26
|
Kazda T, Pafundi DH, Kraling A, Bradley T, Lowe VJ, Brinkmann DH, Laack NN. Dosimetric impact of amino acid positron emission tomography imaging for target delineation in radiation treatment planning for high-grade gliomas. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2018; 6:94-100. [PMID: 33458396 PMCID: PMC7807641 DOI: 10.1016/j.phro.2018.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 11/18/2022]
Abstract
Background and purpose The amino-acid positron emission tomography (PET) tracer 3,4-dihydroxy-6-[18F] fluoro-l-phenylalanine (18F-DOPA) has increased sensitivity for detecting regions of biologically aggressive tumors compared to T1 contrast-enhanced (T1-CE) magnetic resonance imaging (MRI). We performed dosimetric evaluation of treatment plans prepared with and without inclusion of 18F-DOPA-based biological target volume (BTV) evaluating its role in guiding radiotherapy of grade III/IV gliomas. Materials and methods Eight patients (five T1-CE, three non-contrast-enhancing [NCE]) were included in our study. MRI only-guided anatomic plans and MRI+18FDOPA-PET-guided biologic plans were prepared for each patient, and dosimetric data for target volumes and organs at risk (OAR) were compared. High-dose BTV60Gy was defined as regions with tumor to normal brain (T/N) >2.0, while low-dose BTV51Gy was initially based on T/N >1.3, but refined per Nuclear Medicine expert. Results For T1-CE tumors, planning target volumes (PTV) were larger than MRI-only anatomic target volumes. Despite increases in size of both gross target volumes and PTV, with volumetric-modulated arc therapy planning, no increase of dose to OAR was observed while maintaining similar target dose coverage. For NCE tumors, MRI+18F-DOPA PET biologic imaging identified a sub-region of the large, T2-FLAIR abnormal signal which may allow a smaller volume to receive the high dose (60 Gy) radiation. Conclusions For T1-CE tumors, PTVs were larger than MRI-only anatomic target volumes with no increase of dose to OARs. Therefore, MRI+18F-DOPA PET-based biologic treatment planning appears feasible in patients with high-grade gliomas.
Collapse
Affiliation(s)
- Tomas Kazda
- Department of Radiation Oncology, Faculty of Medicine Masaryk University and Masaryk Memorial Cancer Institute, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Deanna H. Pafundi
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Alan Kraling
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Thomas Bradley
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Val J. Lowe
- Department of Nuclear Medicine, Mayo Clinic, Rochester, MN, United States
| | - Debra H. Brinkmann
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Nadia N. Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
- Corresponding author at: Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905,United States.
| |
Collapse
|
27
|
Impact of 18F-FET PET on Target Volume Definition and Tumor Progression of Recurrent High Grade Glioma Treated with Carbon-Ion Radiotherapy. Sci Rep 2018; 8:7201. [PMID: 29740097 PMCID: PMC5940831 DOI: 10.1038/s41598-018-25350-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 04/17/2018] [Indexed: 11/26/2022] Open
Abstract
High-precision radiotherapy (HPR) of recurrent high grade glioma (HGG) requires accurate spatial allocation of these infiltrative tumors. We investigated the impact of 18F-FET PET on tumor delineation and progression of recurrent HGG after HPR with carbon ions. T1 contrast enhanced MRI and 18F-FET-PET scans of 26 HGG patients were fused with radiotherapy planning volumes. PET-positive (PET+) tumor volumes using different isocontours (I%) were systematically investigated and compared with MRI-derived gross tumor volumes (GTV). Standardized uptake ratios (SUR) were further correlated with GTV and tumor progression patterns. In grade IV glioma, SUR > 2.92 significantly correlated with poor median overall survival (6.5 vs 13.1 months, p = 0.00016). We found no reliable SUR cut-off criteria for definition of PET+ volumes. Overall conformity between PET and MRI-based contours was low, with maximum conformities between 0.42–0.51 at I40%. The maximum sensitivity and specificity for PET+ volumes outside of GTV predicting tumor progression were 0.16 (I40%) and 0.52 (I50%), respectively. In 75% of cases, FLAIR hyperintense area covered over 80% of PET+ volumes. 18F-FET-PET derived SUR has a prognostic impact in grade IV glioma. The value of substantial mismatches between MRI-based GTV and PET+ volumes to improve tumor delineation in radiotherapy awaits further validation in randomized prospective trials.
Collapse
|
28
|
Verger A, Arbizu J, Law I. Role of amino-acid PET in high-grade gliomas: limitations and perspectives. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2018; 62:254-266. [PMID: 29696948 DOI: 10.23736/s1824-4785.18.03092-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Positron emission tomography (PET) using radiolabeled amino-acids was recently recommended by the Response Assessment in Neuro-Oncology (RANO) working group as an additional tool in the diagnostic assessment of brain tumors. The aim of this review is to summarize available literature data on the role of amino-acid PET imaging in high-grade gliomas (HGGs), with regard to diagnosis, treatment planning and follow-up of these tumors. Indeed, amino-acid PET applications are multiple throughout the evolution of HGGs. However, certain limitations such as lack of specificity, uncertain value for grading and prognostication or the limited data for treatment monitoring should to be taken into account, the latter of which are further developed in this review. Notwithstanding these limitations, amino-acid PET is becoming increasingly accessible in many nuclear medicine centers. Larger prospective cohort prospective studies are thus needed in order to increase the clinical value of this modality and enable its extended use to the largest number of patients.
Collapse
Affiliation(s)
- Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy, Lorraine University, Nancy, France - .,IADI, INSERM, Lorraine University, Nancy, France -
| | - Javier Arbizu
- Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Laukamp KR, Lindemann F, Weckesser M, Hesselmann V, Ligges S, Wölfer J, Jeibmann A, Zinnhardt B, Viel T, Schäfers M, Paulus W, Stummer W, Schober O, Jacobs AH. Multimodal Imaging of Patients With Gliomas Confirms 11C-MET PET as a Complementary Marker to MRI for Noninvasive Tumor Grading and Intraindividual Follow-Up After Therapy. Mol Imaging 2018; 16:1536012116687651. [PMID: 28654379 PMCID: PMC5470145 DOI: 10.1177/1536012116687651] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The value of combined L-( methyl-[11C]) methionine positron-emitting tomography (MET-PET) and magnetic resonance imaging (MRI) with regard to tumor extent, entity prediction, and therapy effects in clinical routine in patients with suspicion of a brain tumor was investigated. In n = 65 patients with histologically verified brain lesions n = 70 MET-PET and MRI (T1-weighted gadolinium-enhanced [T1w-Gd] and fluid-attenuated inversion recovery or T2-weighted [FLAIR/T2w]) examinations were performed. The computer software "visualization and analysis framework volume rendering engine (Voreen)" was used for analysis of extent and intersection of tumor compartments. Binary logistic regression models were developed to differentiate between World Health Organization (WHO) tumor types/grades. Tumor sizes as defined by thresholding based on tumor-to-background ratios were significantly different as determined by MET-PET (21.6 ± 36.8 cm3), T1w-Gd-MRI (3.9 ± 7.8 cm3), and FLAIR/T2-MRI (64.8 ± 60.4 cm3; P < .001). The MET-PET visualized tumor activity where MRI parameters were negative: PET positive tumor volume without Gd enhancement was 19.8 ± 35.0 cm3 and without changes in FLAIR/T2 10.3 ± 25.7 cm3. FLAIR/T2-MRI visualized greatest tumor extent with differences to MET-PET being greater in posttherapy (64.6 ± 62.7 cm3) than in newly diagnosed patients (20.5 ± 52.6 cm3). The binary logistic regression model differentiated between WHO tumor types (fibrillary astrocytoma II n = 10 from other gliomas n = 16) with an accuracy of 80.8% in patients at primary diagnosis. Combined PET and MRI improve the evaluation of tumor activity, extent, type/grade prediction, and therapy-induced changes in patients with glioma and serve information highly relevant for diagnosis and management.
Collapse
Affiliation(s)
- Kai R Laukamp
- 1 European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Munster, Germany.,2 Department of Radiology, University Hospital of Cologne, Cologne, Germany
| | - Florian Lindemann
- 3 Department of Computer Science, Visualization and Computer Graphics Research Group, Westfälische Wilhelms-Universität Münster, Munster, Germany
| | - Matthias Weckesser
- 4 Departments of Nuclear Medicine, Westfälische Wilhelms-Universität Münster, Munster, Germany
| | - Volker Hesselmann
- 5 Departments of Radiology, Westfälische Wilhelms-Universität Münster, Munster, Germany
| | - Sandra Ligges
- 6 Institute of Biostatistics and Clinical Research, Westfälische Wilhelms-Universität Münster, Munster, Germany
| | - Johannes Wölfer
- 7 Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Munster, Germany
| | - Astrid Jeibmann
- 8 Department of Neuropathology, Westfälische Wilhelms-Universität Münster, Munster, Germany
| | - Bastian Zinnhardt
- 1 European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Munster, Germany
| | - Thomas Viel
- 1 European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Munster, Germany
| | - Michael Schäfers
- 1 European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Munster, Germany.,4 Departments of Nuclear Medicine, Westfälische Wilhelms-Universität Münster, Munster, Germany.,9 Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Westfälische Wilhelms-Universität Münster, Munster, Germany
| | - Werner Paulus
- 8 Department of Neuropathology, Westfälische Wilhelms-Universität Münster, Munster, Germany.,9 Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Westfälische Wilhelms-Universität Münster, Munster, Germany
| | - Walter Stummer
- 7 Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Munster, Germany.,9 Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Westfälische Wilhelms-Universität Münster, Munster, Germany
| | - Otmar Schober
- 1 European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Munster, Germany.,4 Departments of Nuclear Medicine, Westfälische Wilhelms-Universität Münster, Munster, Germany.,9 Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Westfälische Wilhelms-Universität Münster, Munster, Germany
| | - Andreas H Jacobs
- 1 European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Munster, Germany.,4 Departments of Nuclear Medicine, Westfälische Wilhelms-Universität Münster, Munster, Germany.,9 Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), Westfälische Wilhelms-Universität Münster, Munster, Germany.,10 Department of Geriatric Medicine, Johanniter Hospital, Evangelische Kliniken, Bonn, Germany
| |
Collapse
|
30
|
Hayes AR, Jayamanne D, Hsiao E, Schembri GP, Bailey DL, Roach PJ, Khasraw M, Newey A, Wheeler HR, Back M. Utilizing 18F-fluoroethyltyrosine (FET) positron emission tomography (PET) to define suspected nonenhancing tumor for radiation therapy planning of glioblastoma. Pract Radiat Oncol 2018; 8:230-238. [PMID: 29730279 DOI: 10.1016/j.prro.2018.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/25/2018] [Indexed: 11/15/2022]
Abstract
AIM The authors sought to evaluate the impact of 18F-fluoroethyltyrosine (FET) positron emission tomography (PET) on radiation therapy planning for patients diagnosed with glioblastoma (GBM) and the presence of suspected nonenhancing tumors compared with standard magnetic resonance imaging (MRI). METHODS AND MATERIALS Patients with GBM and contrast-enhanced MRI scans showing regions suspicious of nonenhancing tumor underwent postoperative FET-PET before commencing radiation therapy. Two clinical target volumes (CTVs) were created using pre- and postoperative MRI: MRI fluid-attenuated inversion recovery (FLAIR) sequences (CTVFLAIR) and MRI contrast sequences with an expansion on the surgical cavity (CTVSx). FET-PET was used to create biological tumor volumes (BTVs) by encompassing FET-avid regions, forming BTVFLAIR and BTVSx. Volumetric analyses were conducted between CTVs and respective BTVs using Wilcoxon signed-rank tests. The volume increase with addition of FET was analyzed with respect to BTVFLAIR and BTVSx. Presence of focal gadolinium contrast enhancement within previously nonenhancing tumor or within the FET-avid region was noted on MRI scans at 1 and 3 months after radiation therapy. RESULTS Twenty-six patients were identified retrospectively from our database, of whom 24 had demonstrable FET uptake. The median CTVFLAIR, CTVSx, BTVFLAIR, and BTVSx were 57.1 mL (range, 1.1-217.4), 83.6 mL (range, 27.2-275.8), 62.8 mL (range, 1.1-307.3), and 94.7 mL (range, 27.2-285.5), respectively. When FET-PET was used, there was a mean increase in volume of 26.8% from CTVFLAIR to BTVFLAIR and 20.6% from CTVSx to BTVSx. A statistically significant difference was noted on Wilcoxon signed-rank test when assessing volumetric change between CTVFLAIR and BTVFLAIR (P < .0001) and CTVSx and BTVSx (P < .0001). Six of 24 patients (25%) with FET avidity before radiation therapy showed focal gadolinium enhancement within the radiation therapy portal. CONCLUSIONS FET-PET may help improve delineation of GBM in cases with a suspected nonenhancing component. This may result in improved radiation therapy target delineation and reduce the risk of potential geographical miss. SUMMARY We investigated the impact of 18F-fluoroethyltyrosine (FET) positron emission tomography (PET) on radiation therapy planning for patients diagnosed with glioblastoma (GBM) and a suspected nonenhancing tumor compared with standard magnetic resonance imaging. We performed volumetric analyses between clinical target volumes and respective biological target volumes using Wilcoxon signed-rank tests. FET-PET may help improve delineation of GBM in cases with a suspected nonenhancing component and reduce the risk of potential geographical miss.
Collapse
Affiliation(s)
- Aimee R Hayes
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Vital, Northern Translational Cancer Research Centre, St Leonards, NSW, Australia; Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia.
| | - Dasantha Jayamanne
- Department of Radiation Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Edward Hsiao
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Geoffrey P Schembri
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Dale L Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Vital, Northern Translational Cancer Research Centre, St Leonards, NSW, Australia; Faculty of Health Sciences, Cumberland Campus, The University of Sydney, Lidcombe, NSW, Australia
| | - Paul J Roach
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Mustafa Khasraw
- Sydney Vital, Northern Translational Cancer Research Centre, St Leonards, NSW, Australia; Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; Sydney Neuro-Oncology Group, North Shore Private Hospital, St Leonards, NSW, Australia
| | - Allison Newey
- Department of Radiology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Helen R Wheeler
- Sydney Vital, Northern Translational Cancer Research Centre, St Leonards, NSW, Australia; Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; Sydney Neuro-Oncology Group, North Shore Private Hospital, St Leonards, NSW, Australia
| | - Michael Back
- Sydney Vital, Northern Translational Cancer Research Centre, St Leonards, NSW, Australia; Department of Radiation Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; Sydney Neuro-Oncology Group, North Shore Private Hospital, St Leonards, NSW, Australia
| |
Collapse
|
31
|
Harat M, Małkowski B, Wiatrowska I, Makarewicz R, Roszkowski K. Relationship between Glioblastoma Dose Volume Parameters Measured by Dual Time Point Fluoroethylthyrosine-PET and Clinical Outcomes. Front Neurol 2018; 8:756. [PMID: 29403428 PMCID: PMC5786516 DOI: 10.3389/fneur.2017.00756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/29/2017] [Indexed: 12/03/2022] Open
Abstract
Glioblastoma multiforme (GBM) is highly invasive. Despite irradiation with wide margins, GBM usually recurs in-field. Recent in vitro data have suggested that progression might be promoted by sublethal irradiation. Fluoroethylthyrosine-PET (FET-PET) can be used to detect glioblastoma invasion not apparent on MRI. We therefore performed a retrospective analysis of a prospective clinical study to examine whether glioblastoma outcomes depend on dose volume parameters measured by MRI and FET-PET. Twenty-three patients were prospectively recruited to a study examining the role of dual time point FET-PET in the treatment planning of GBM radiotherapy. The dose delivered to the site of recurrence was subdivided into suboptimal-dose (SOD) and high-dose (HD) areas. Types of progression were defined for correlation with dosimetric parameters including V100% of gross tumor volume (GTV)PET, GTVPETMRI, and GTVMRI. The HD area did not cover the entire GTVPETMRI in any case. Recurrences were significantly more frequent in the SubD area (chi-squared test, p = 0.004). There was no relationship between increasing dose volume and progression. The V100% for GTVPET and progression-free survival (PFS) was positively correlated (Spearman’s rho 0.417; p = 0.038). Progression is more common in areas with suboptimal dosing. Dose heterogeneity within GTVPET may be responsible for shorter PFS.
Collapse
Affiliation(s)
- Maciej Harat
- Department of Radiotherapy, The Franciszek Lukaszczyk Oncology Centre, Bydgoszcz, Poland.,Department of Positron Emission Tomography and Molecular Imaging, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Bogdan Małkowski
- Department of Nuclear Medicine, The Franciszek Lukaszczyk Oncology Centre, Bydgoszcz, Poland.,Department of Medical Physics, The Franciszek Lukaszczyk Oncology Center, Bydgoszcz, Poland
| | - Izabela Wiatrowska
- Department of Oncology and Brachytherapy, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Roman Makarewicz
- Department of Positron Emission Tomography and Molecular Imaging, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland.,Department of Oncology and Brachytherapy, The Franciszek Lukaszczyk Oncology Centre, Bydgoszcz, Poland
| | - Krzysztof Roszkowski
- Department of Radiotherapy, The Franciszek Lukaszczyk Oncology Centre, Bydgoszcz, Poland.,Department of Oncology, Radiotherapy and Ginecologic Oncology, Faculty of Health Sciences, Nicolaus Copernicus University Toruń, Bydgoszcz, Poland
| |
Collapse
|
32
|
Imaging of amino acid transport in brain tumours: Positron emission tomography with O-(2-[ 18 F]fluoroethyl)- L -tyrosine (FET). Methods 2017; 130:124-134. [DOI: 10.1016/j.ymeth.2017.05.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/08/2017] [Accepted: 05/21/2017] [Indexed: 01/01/2023] Open
|
33
|
Binczyk F, Stjelties B, Weber C, Goetz M, Meier-Hein K, Meinzer HP, Bobek-Billewicz B, Tarnawski R, Polanska J. MiMSeg - an algorithm for automated detection of tumor tissue on NMR apparent diffusion coefficient maps. Inf Sci (N Y) 2017. [DOI: 10.1016/j.ins.2016.07.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Filss CP, Cicone F, Shah NJ, Galldiks N, Langen KJ. Amino acid PET and MR perfusion imaging in brain tumours. Clin Transl Imaging 2017; 5:209-223. [PMID: 28680873 PMCID: PMC5487907 DOI: 10.1007/s40336-017-0225-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/28/2017] [Indexed: 12/17/2022]
Abstract
Purpose Despite the excellent capacity of the conventional MRI to image brain tumours, problems remain in answering a number of critical diagnostic questions. To overcome these diagnostic shortcomings, PET using radiolabeled amino acids and perfusion-weighted imaging (PWI) are currently under clinical evaluation. The role of amino acid PET and PWI in different diagnostic challenges in brain tumours is controversial. Methods Based on the literature and experience of our centres in correlative imaging with PWI and PET using O-(2-[18F]fluoroethyl)-l-tyrosine or 3,4-dihydroxy-6-[18F]-fluoro-l-phenylalanine, the current role and shortcomings of amino acid PET and PWI in different diagnostic challenges in brain tumours are reviewed. Literature searches were performed on PubMed, and additional literature was retrieved from the reference lists of identified articles. In particular, all studies in which amino acid PET was directly compared with PWI were included. Results PWI is more readily available, but requires substantial expertise and is more sensitive to artifacts than amino acid PET. At initial diagnosis, PWI and amino acid PET can help to define a site for biopsy but amino acid PET appears to be more powerful to define the tumor extent. Both methods are helpful to differentiate progression or recurrence from unspecific posttherapeutic changes. Assessment of therapeutic efficacy can be achieved especially with amino acid PET, while the data with PWI are sparse. Conclusion Both PWI and amino acid PET add valuable diagnostic information to the conventional MRI in the assessment of patients with brain tumours, but further studies are necessary to explore the complementary nature of these two methods.
Collapse
Affiliation(s)
- Christian P Filss
- Institute of Neuroscience and Medicine (INM-3, INM-4), Forschungszentrum Jülich, Jülich, Germany.,Departments of Nuclear Medicine and Neurology, RWTH Aachen University Clinic, Aachen, Germany
| | - Francesco Cicone
- Unit of Nuclear Medicine, Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy.,Nuclear Medicine and Molecular Medicine Department, University Hospital of Lausanne, Lausanne, Switzerland
| | - Nadim Jon Shah
- Institute of Neuroscience and Medicine (INM-3, INM-4), Forschungszentrum Jülich, Jülich, Germany.,Departments of Nuclear Medicine and Neurology, RWTH Aachen University Clinic, Aachen, Germany.,JARA-Jülich Aachen Research Alliance, Jülich, Germany.,Monash Institute of Medical Engineering, Department of Electrical and Computer Systems Engineering, and Monash Biomedical Imaging, School of Psychological Sciences, Monash University, Melbourne, VIC Australia
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, INM-4), Forschungszentrum Jülich, Jülich, Germany.,Department of Neurology, University of Cologne, Cologne, Germany.,Center of Integrated Oncology (CIO), University of Cologne and Bonn, Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, INM-4), Forschungszentrum Jülich, Jülich, Germany.,Departments of Nuclear Medicine and Neurology, RWTH Aachen University Clinic, Aachen, Germany.,JARA-Jülich Aachen Research Alliance, Jülich, Germany
| |
Collapse
|
35
|
|
36
|
Abstract
A previous review published in 2012 demonstrated the role of clinical PET for diagnosis and management of brain tumors using mainly FDG, amino acid tracers, and 18F-fluorothymidine. This review provides an update on clinical PET studies, most of which are motivated by prediction of prognosis and planning and monitoring of therapy in gliomas. For FDG, there has been additional evidence supporting late scanning, and combination with 13N ammonia has yielded some promising results. Large neutral amino acid tracers have found widespread applications mostly based on 18F-labeled compounds fluoroethyltyrosine and fluorodopa for targeting biopsies, therapy planning and monitoring, and as outcome markers in clinical trials. 11C-alpha-methyltryptophan (AMT) has been proposed as an alternative to 11C-methionine, and there may also be a role for cyclic amino acid tracers. 18F-fluorothymidine has shown strengths for tumor grading and as an outcome marker. Studies using 18F-fluorocholine (FCH) and 68Ga-labeled compounds are promising but have not yet clearly defined their role. Studies on radiotherapy planning have explored the use of large neutral amino acid tracers to improve the delineation of tumor volume for irradiation and the use of hypoxia markers, in particular 18F-fluoromisonidazole. Many studies employed the combination of PET with advanced multimodal MR imaging methods, mostly demonstrating complementarity and some potential benefits of hybrid PET/MR.
Collapse
Affiliation(s)
- Karl Herholz
- The University of Manchester, Division of Neuroscience and Experimental Psychology Wolfson Molecular Imaging Centre, Manchester, England, United Kingdom.
| |
Collapse
|
37
|
Harat M, Małkowski B, Makarewicz R. Pre-irradiation tumour volumes defined by MRI and dual time-point FET-PET for the prediction of glioblastoma multiforme recurrence: A prospective study. Radiother Oncol 2016; 120:241-7. [PMID: 27378734 DOI: 10.1016/j.radonc.2016.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/07/2016] [Accepted: 06/12/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND PURPOSE The diagnostic accuracy of magnetic resonance imaging (MRI) for glioblastoma multiforme (GBM) is suboptimal. We analysed pre-treatment MRI- and dual time-point 18F-fluoroethylthyrosine-PET (FET-PET)-based target volumes and GBM recurrence patterns following radiotherapy with temozolomide. MATERIALS AND METHODS Thirty-four patients with primary GBM were treated according to MRI-based treatment volumes (GTVRM). Patients underwent dual time-point FET-PET scans prior to treatment, and biological tumour volumes (GTVPET) were contoured but not used for target definition. Progressions were classified based on location of primary GTVs. Volume and uniformity of MRI- vs. FET-PET/CT-derived GTVs and progression patterns assessed by MRI were analysed. RESULTS FET-based GTVs measured 10min after radionuclide injection (a.r.i.; median 37.3cm(3)) were larger than GTVs measured 60min a.r.i. (median 27.7cm(3)). GTVPET volumes were significantly larger than corresponding MRI-based GTVs. MRI and PET concordance for the identification of glioblastoma GTVs was poor (mean uniformity index 0.4). 74% of failures were inside primary GTVPET volumes, with no solitary progressions inside the MRI-defined margin +20mm but outside the GTVPET detected. CONCLUSIONS The size and geometry of GTVs differed in the majority of patients. The GTVPET volume depends on time after radionuclide injection. FET-PET better defined failure site than MRI alone.
Collapse
Affiliation(s)
- Maciej Harat
- Department of Radiotherapy, The Franciszek Lukaszczyk Oncology Center, Bydgoszcz, Poland; Department of Oncology and Brachytherapy, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland.
| | - Bogdan Małkowski
- Department of Positron Emission Tomography and Molecular Imaging, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland; Department of Nuclear Medicine, The Franciszek Lukaszczyk Oncology Center, Bydgoszcz, Poland
| | - Roman Makarewicz
- Department of Oncology and Brachytherapy, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland; Department of Oncology and Brachytherapy, The Franciszek Lukaszczyk Oncology Center, Bydgoszcz, Poland
| |
Collapse
|
38
|
Piroth MD, Galldiks N, Pinkawa M, Holy R, Stoffels G, Ermert J, Mottaghy FM, Shah NJ, Langen KJ, Eble MJ. Relapse patterns after radiochemotherapy of glioblastoma with FET PET-guided boost irradiation and simulation to optimize radiation target volume. Radiat Oncol 2016; 11:87. [PMID: 27342976 PMCID: PMC4920983 DOI: 10.1186/s13014-016-0665-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 06/23/2016] [Indexed: 12/14/2022] Open
Abstract
Background O-(2-18 F-fluoroethyl)-L-tyrosine-(FET)-PET may be helpful to improve the definition of radiation target volumes in glioblastomas compared with MRI. We analyzed the relapse patterns in FET-PET after a FET- and MRI-based integrated-boost intensity-modulated radiotherapy (IMRT) of glioblastomas to perform an optimized target volume definition. Methods A relapse pattern analysis was performed in 13 glioblastoma patients treated with radiochemotherapy within a prospective phase-II-study between 2008 and 2009. Radiotherapy was performed as an integrated-boost intensity-modulated radiotherapy (IB-IMRT). The prescribed dose was 72 Gy for the boost target volume, based on baseline FET-PET (FET-1) and 60 Gy for the MRI-based (MRI-1) standard target volume. The single doses were 2.4 and 2.0 Gy, respectively. Location and volume of recurrent tumors in FET-2 and MRI-2 were analyzed related to initial tumor, detected in baseline FET-1. Variable target volumes were created theoretically based on FET-1 to optimally cover recurrent tumor. Results The tumor volume overlap in FET and MRI was poor both at baseline (median 12 %; range 0–32) and at time of recurrence (13 %; 0–100). Recurrent tumor volume in FET-2 was localized to 39 % (12–91) in the initial tumor volume (FET-1). Over the time a shrinking (mean 12 (5–26) ml) and shifting (mean 6 (1–10 mm) of the resection cavity was seen. A simulated target volume based on active tumor in FET-1 with an additional safety margin of 7 mm around the FET-1 volume covered recurrent FET tumor volume (FET-2) significantly better than a corresponding target volume based on contrast enhancement in MRI-1 with a same safety margin of 7 mm (100 % (54–100) versus 85 % (0–100); p < 0.01). A simulated planning target volume (PTV), based on FET-1 and additional 7 mm margin plus 5 mm margin for setup-uncertainties was significantly smaller than the conventional, MR-based PTV applied in this study (median 160 (112–297) ml versus 231 (117–386) ml, p < 0.001). Conclusions In this small study recurrent tumor volume in FET-PET (FET-2) overlapped only to one third with the boost target volume, based on FET-1. The shrinking and shifting of the resection cavity may have an influence considering the limited overlap of initial and relapse tumor volume. A simulated target volume, based on FET-1 with 7 mm margin covered 100 % of relapse volume in median and led to a significantly reduced PTV, compared to MRI-based PTVs. This approach may achieve similar therapeutic efficacy but lower side effects offering a broader window to intensify concomitant systemic treatment focusing distant failures.
Collapse
Affiliation(s)
- Marc D Piroth
- Department of Radiation Oncology, University Hospital RWTH Aachen, Aachen, Germany. .,Jülich-Aachen Research Alliance (JARA) - Section JARA-Brain, Research Center Jülich, Jülich, Germany. .,Department of Radiation Oncology, HELIOS University Hospital Wuppertal, Witten/Herdecke University, Wuppertal, Germany.
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany.,Jülich-Aachen Research Alliance (JARA) - Section JARA-Brain, Research Center Jülich, Jülich, Germany.,Department of Neurology, University of Cologne, Cologne, Germany
| | - Michael Pinkawa
- Department of Radiation Oncology, University Hospital RWTH Aachen, Aachen, Germany.,Jülich-Aachen Research Alliance (JARA) - Section JARA-Brain, Research Center Jülich, Jülich, Germany
| | - Richard Holy
- Department of Radiation Oncology, University Hospital RWTH Aachen, Aachen, Germany.,Jülich-Aachen Research Alliance (JARA) - Section JARA-Brain, Research Center Jülich, Jülich, Germany.,Department of Radiation Oncology, HELIOS University Hospital Wuppertal, Witten/Herdecke University, Wuppertal, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany.,Jülich-Aachen Research Alliance (JARA) - Section JARA-Brain, Research Center Jülich, Jülich, Germany
| | - Johannes Ermert
- Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany.,Jülich-Aachen Research Alliance (JARA) - Section JARA-Brain, Research Center Jülich, Jülich, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany.,Jülich-Aachen Research Alliance (JARA) - Section JARA-Brain, Research Center Jülich, Jülich, Germany
| | - N Jon Shah
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany.,Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany.,Jülich-Aachen Research Alliance (JARA) - Section JARA-Brain, Research Center Jülich, Jülich, Germany
| | - Karl-Josef Langen
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany.,Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany.,Jülich-Aachen Research Alliance (JARA) - Section JARA-Brain, Research Center Jülich, Jülich, Germany
| | - Michael J Eble
- Department of Radiation Oncology, University Hospital RWTH Aachen, Aachen, Germany.,Jülich-Aachen Research Alliance (JARA) - Section JARA-Brain, Research Center Jülich, Jülich, Germany
| |
Collapse
|
39
|
Combs SE, Nüsslin F, Wilkens JJ. Individualized radiotherapy by combining high-end irradiation and magnetic resonance imaging. Strahlenther Onkol 2016; 192:209-15. [PMID: 26852244 DOI: 10.1007/s00066-016-0944-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/14/2016] [Indexed: 01/22/2023]
Abstract
Image-guided radiotherapy (IGRT) has been integrated into daily clinical routine and can today be considered the standard especially with high-dose radiotherapy. Currently imaging is based on MV- or kV-CT, which has clear limitations especially in soft-tissue contrast. Thus, combination of magnetic resonance (MR) imaging and high-end radiotherapy opens a new horizon. The intricate technical properties of MR imagers pose a challenge to technology when combined with radiation technology. Several solutions that are almost ready for routine clinical application have been developed. The clinical questions include dose-escalation strategies, monitoring of changes during treatment as well as imaging without additional radiation exposure during treatment.
Collapse
Affiliation(s)
- Stephanie E Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Germany. .,Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| | - Fridtjof Nüsslin
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Germany
| | - Jan J Wilkens
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Germany.,Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| |
Collapse
|
40
|
Niyazi M, Brada M, Chalmers AJ, Combs SE, Erridge SC, Fiorentino A, Grosu AL, Lagerwaard FJ, Minniti G, Mirimanoff RO, Ricardi U, Short SC, Weber DC, Belka C. ESTRO-ACROP guideline “target delineation of glioblastomas”. Radiother Oncol 2016; 118:35-42. [DOI: 10.1016/j.radonc.2015.12.003] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/13/2015] [Indexed: 11/26/2022]
|
41
|
Galldiks N, Langen KJ, Pope WB. From the clinician's point of view - What is the status quo of positron emission tomography in patients with brain tumors? Neuro Oncol 2015; 17:1434-44. [PMID: 26130743 DOI: 10.1093/neuonc/nov118] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/31/2015] [Indexed: 12/13/2022] Open
Abstract
The most common type of primary brain tumor is malignant glioma. Despite intensive therapeutic efforts, the majority of these neoplasms remain incurable. Imaging techniques are important for initial tumor detection and comprise indispensable tools for monitoring treatment. Structural imaging using contrast-enhanced MRI is the method of choice for brain tumor surveillance, but its capacity to differentiate tumor from nonspecific tissue changes can be limited, particularly with posttreatment gliomas. Metabolic imaging using positron-emission-tomography (PET) can provide relevant additional information, which may allow for better assessment of tumor burden in ambiguous cases. Specific PET tracers have addressed numerous molecular targets in the last decades, but only a few have achieved relevance in routine clinical practice. At present, PET studies using radiolabeled amino acids appear to improve clinical decision-making as these tracers can offer better delineation of tumor extent as well as improved targeting of biopsies, surgical interventions, and radiation therapy. Amino acid PET imaging also appears useful for distinguishing glioma recurrence or progression from postradiation treatment effects, particularly radiation necrosis and pseudoprogression, and provides information on histological grading and patient prognosis. In the last decade, the tracers O-(2-[(18)F]fluoroethyl)-L-tyrosine (FET) and 3,4-dihydroxy-6-[(18)F]-fluoro-L-phenylalanine (FDOPA) have been increasingly used for these indications. This review article focuses on these tracers and summarizes their recent applications for patients with brain tumors. Current uses of tracers other than FET and FDOPA are also discussed, and the most frequent practical questions regarding PET brain tumor imaging are reviewed.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, University of Cologne, Cologne, Germany (N.G.); Research Center Jülich, Institute of Neuroscience and Medicine, Jülich, Germany (N.G., K.-J.L.); Center of Integrated Oncology (CIO), University of Cologne, Cologne, Germany (N.G.); Department of Nuclear Medicine, University of Aachen, Germany (K.-J.L.); Department of Radiological Sciences, David Geffen School of Medicine at UCLA., Los Angeles (W.B.P.)
| | - Karl-Josef Langen
- Department of Neurology, University of Cologne, Cologne, Germany (N.G.); Research Center Jülich, Institute of Neuroscience and Medicine, Jülich, Germany (N.G., K.-J.L.); Center of Integrated Oncology (CIO), University of Cologne, Cologne, Germany (N.G.); Department of Nuclear Medicine, University of Aachen, Germany (K.-J.L.); Department of Radiological Sciences, David Geffen School of Medicine at UCLA., Los Angeles (W.B.P.)
| | - Whitney B Pope
- Department of Neurology, University of Cologne, Cologne, Germany (N.G.); Research Center Jülich, Institute of Neuroscience and Medicine, Jülich, Germany (N.G., K.-J.L.); Center of Integrated Oncology (CIO), University of Cologne, Cologne, Germany (N.G.); Department of Nuclear Medicine, University of Aachen, Germany (K.-J.L.); Department of Radiological Sciences, David Geffen School of Medicine at UCLA., Los Angeles (W.B.P.)
| |
Collapse
|
42
|
Thorwarth D. Functional imaging for radiotherapy treatment planning: current status and future directions-a review. Br J Radiol 2015; 88:20150056. [PMID: 25827209 PMCID: PMC4628531 DOI: 10.1259/bjr.20150056] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In recent years, radiotherapy (RT) has been subject to a number of technological innovations. Today, RT is extremely flexible, allowing irradiation of tumours with high doses, whilst also sparing normal tissues from doses. To make use of these additional degrees of freedom, integration of functional image information may play a key role (i) for better staging and tumour detection, (ii) for more accurate RT target volume delineation, (iii) to assess functional information about biological characteristics and individual radiation resistance and (iv) to apply personalized dose prescriptions. In this article, we discuss the current status and future directions of different clinically available functional imaging modalities; CT, MRI, positron emission tomography (PET) as well as the hybrid imaging techniques PET/CT and PET/MRI and their potential for individualized RT.
Collapse
Affiliation(s)
- D Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
43
|
Zhao F, Li M, Wang Z, Fu Z, Cui Y, Chen Z, Yu J. (18)F-Fluorothymidine PET-CT for resected malignant gliomas before radiotherapy: tumor extent according to proliferative activity compared with MRI. PLoS One 2015; 10:e0118769. [PMID: 25738617 PMCID: PMC4349865 DOI: 10.1371/journal.pone.0118769] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 01/06/2015] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE To compare the presence of post-operative residual disease by magnetic resonance imaging (MRI) and [18F]fluorothymidine (FLT)-positron emission tomography (PET)-computer tomography (CT) in patients with malignant glioma and to estimate the impact of 18F-FLT PET on the delineation of post-operative target volumes for radiotherapy (RT) planning. METHODS Nineteen patients with post-operative residual malignant gliomas were enrolled in this study. For each patient, 18F- FLT PET-CT and MRI were acquired in the same week, within 4 weeks after surgery but before the initiation of RT. The PET-CT and MRI data were co-registered based on mutual information. The residual tumor volume defined on the 18F-FLT PET (Vol-PET) was compared with that of gadolinium [Gd] enhancement on T1-weighted MRI (Vol-T1) and areas of hyperintensity on T2-weighted MRI (Vol-T2). RESULTS The mean Vol-PET (14.61 cm3) and Vol-T1 (13.60 cm3) were comparable and smaller than the mean Vol-T2 (32.93 cm3). The regions of 18F-FLT uptake exceeded the contrast enhancement and the hyperintense area on the MRI in 14 (73.68%) and 8 patients (42.11%), respectively. In 5 (26.32%) of the 19 patients, Vol-PET extended beyond 25 mm from the margin of Vol-T1; in 2 (10.53%) patients, Vol-PET extended 20 mm from the margin of Vol-T2. Vol-PET was detected up to 35 mm away from the edge of Vol-T1 and 24 mm away from the edge of Vol-T2. In 16 (84.21%) of the 19 patients, the Vol-T1 extended beyond the Vol-PET. In all of the patients, at least some of the Vol-T2 was located outside of the Vol-PET. CONCLUSIONS The volumes of post-operative residual tumor in patients with malignant glioma defined by 18F-FLT uptake on PET are not always consistent with the abnormalities shown on post-operative MRI. Incorporation of 18F-FLT-PET in tumor delineation may have the potential to improve the definition of target volume in post-operative radiotherapy.
Collapse
Affiliation(s)
- Fen Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan, China
- Key Laboratory of Radiation Oncology of Shandong Province, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Minghuan Li
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan, China
- Key Laboratory of Radiation Oncology of Shandong Province, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Zhiheng Wang
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Zheng Fu
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan, China
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Yunfeng Cui
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Zhaoqiu Chen
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan, China
- Department of radiology, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan, China
- Key Laboratory of Radiation Oncology of Shandong Province, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| |
Collapse
|
44
|
Advances in Magnetic Resonance Imaging and Positron Emission Tomography Imaging for Grading and Molecular Characterization of Glioma. Semin Radiat Oncol 2015; 25:164-71. [PMID: 26050586 DOI: 10.1016/j.semradonc.2015.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In recent years, the management of glioma has evolved significantly, reflecting our better understanding of the underlying mechanisms of tumor development, tumor progression, and treatment response. Glioma grade, along with a number of underlying molecular and genetic biomarkers, has been recognized as an important prognostic and predictive factor that can help guide the management of patients. This article highlights advances in magnetic resonance imaging (MRI), including diffusion-weighted imaging, diffusion tensor imaging, magnetic resonance spectroscopy, dynamic contrast-enhanced imaging, and perfusion MRI, as well as position emission tomography using various tracers including methyl-(11)C-l-methionine and O-(2-(18)F-fluoroethyl)-l-tyrosine. Use of multiparametric imaging data has improved the diagnostic strength of imaging, introduced the potential to noninvasively interrogate underlying molecular features of low-grade glioma and to guide local therapies such as surgery and radiotherapy.
Collapse
|
45
|
Hypofractionated stereotactic radiotherapy in combination with bevacizumab or fotemustine for patients with progressive malignant gliomas. J Neurooncol 2015; 122:559-66. [DOI: 10.1007/s11060-015-1745-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/16/2015] [Indexed: 01/16/2023]
|
46
|
Munck Af Rosenschold P, Costa J, Engelholm SA, Lundemann MJ, Law I, Ohlhues L, Engelholm S. Impact of [18F]-fluoro-ethyl-tyrosine PET imaging on target definition for radiation therapy of high-grade glioma. Neuro Oncol 2014; 17:757-63. [PMID: 25537018 DOI: 10.1093/neuonc/nou316] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 10/20/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND We sought to assess the impact of amino-acid (18)F-fluoro-ethyl-tyrosine (FET) positron emission tomography (PET) on the volumetric target definition for radiation therapy of high-grade glioma versus the current standard using MRI alone. Specifically, we investigated the influence of tumor grade, MR-defined tumor volume, and the extent of surgical resection on PET positivity. METHODS Fifty-four consecutive high-grade glioma patients (World Health Organization grades III-IV) with confirmed histology were scanned using FET-PET/CT and T1 and T2/fluid attenuated inversion recovery MRI. Gross tumor volume and clinical target volumes (CTVs) were defined in a blinded fashion based on MRI and subsequently PET, and volumetric analysis was performed. The extent of the surgical resection was reviewed using postoperative MRI. RESULTS Overall, for ∼ 90% of the patients, the PET-positive volumes were encompassed by T1 MRI with contrast-defined tumor plus a 20-mm margin. The tumor volume defined by PET was larger for glioma grade IV (P < .001) and smaller for patients with more extensive surgical resection (P = .004). The margin required to be added to the MRI-defined tumor in order to fully encompass the FET-PET positive volume tended to be larger for grade IV tumors (P = .018). CONCLUSION With an unchanged CTV margin and by including FET-PET for gross tumor volume definition, the CTV will increase moderately for most patients, and quite substantially for a minority of patients. Patients with grade IV glioma were found to be the primary candidates for PET-guided radiation therapy planning.
Collapse
Affiliation(s)
- Per Munck Af Rosenschold
- Department of Oncology, Section of Radiotherapy, Rigshospitalet, Copenhagen, Denmark (P.M.a.R., J.C., S.A.E., M.J.L., L.O.); Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark (P.M.a.R., M.J.L.); Department of Clinical Physiology, Nuclear Medicine, and PET, Rigshospitalet, Copenhagen, Denmark (I.L., J.C.); Section of Radiation Oncology, Skåne University Hospital, Lund, Sweden (S.E.)
| | - Junia Costa
- Department of Oncology, Section of Radiotherapy, Rigshospitalet, Copenhagen, Denmark (P.M.a.R., J.C., S.A.E., M.J.L., L.O.); Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark (P.M.a.R., M.J.L.); Department of Clinical Physiology, Nuclear Medicine, and PET, Rigshospitalet, Copenhagen, Denmark (I.L., J.C.); Section of Radiation Oncology, Skåne University Hospital, Lund, Sweden (S.E.)
| | - Svend Aage Engelholm
- Department of Oncology, Section of Radiotherapy, Rigshospitalet, Copenhagen, Denmark (P.M.a.R., J.C., S.A.E., M.J.L., L.O.); Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark (P.M.a.R., M.J.L.); Department of Clinical Physiology, Nuclear Medicine, and PET, Rigshospitalet, Copenhagen, Denmark (I.L., J.C.); Section of Radiation Oncology, Skåne University Hospital, Lund, Sweden (S.E.)
| | - Michael J Lundemann
- Department of Oncology, Section of Radiotherapy, Rigshospitalet, Copenhagen, Denmark (P.M.a.R., J.C., S.A.E., M.J.L., L.O.); Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark (P.M.a.R., M.J.L.); Department of Clinical Physiology, Nuclear Medicine, and PET, Rigshospitalet, Copenhagen, Denmark (I.L., J.C.); Section of Radiation Oncology, Skåne University Hospital, Lund, Sweden (S.E.)
| | - Ian Law
- Department of Oncology, Section of Radiotherapy, Rigshospitalet, Copenhagen, Denmark (P.M.a.R., J.C., S.A.E., M.J.L., L.O.); Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark (P.M.a.R., M.J.L.); Department of Clinical Physiology, Nuclear Medicine, and PET, Rigshospitalet, Copenhagen, Denmark (I.L., J.C.); Section of Radiation Oncology, Skåne University Hospital, Lund, Sweden (S.E.)
| | - Lars Ohlhues
- Department of Oncology, Section of Radiotherapy, Rigshospitalet, Copenhagen, Denmark (P.M.a.R., J.C., S.A.E., M.J.L., L.O.); Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark (P.M.a.R., M.J.L.); Department of Clinical Physiology, Nuclear Medicine, and PET, Rigshospitalet, Copenhagen, Denmark (I.L., J.C.); Section of Radiation Oncology, Skåne University Hospital, Lund, Sweden (S.E.)
| | - Silke Engelholm
- Department of Oncology, Section of Radiotherapy, Rigshospitalet, Copenhagen, Denmark (P.M.a.R., J.C., S.A.E., M.J.L., L.O.); Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark (P.M.a.R., M.J.L.); Department of Clinical Physiology, Nuclear Medicine, and PET, Rigshospitalet, Copenhagen, Denmark (I.L., J.C.); Section of Radiation Oncology, Skåne University Hospital, Lund, Sweden (S.E.)
| |
Collapse
|
47
|
Imaging biomarkers in primary brain tumours. Eur J Nucl Med Mol Imaging 2014; 42:597-612. [PMID: 25520293 DOI: 10.1007/s00259-014-2971-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/03/2014] [Indexed: 12/18/2022]
Abstract
We are getting used to referring to instrumentally detectable biological features in medical language as "imaging biomarkers". These two terms combined reflect the evolution of medical imaging during recent decades, and conceptually comprise the principle of noninvasive detection of internal processes that can become targets for supplementary therapeutic strategies. These targets in oncology include those biological pathways that are associated with several tumour features including independence from growth and growth-inhibitory signals, avoidance of apoptosis and immune system control, unlimited potential for replication, self-sufficiency in vascular supply and neoangiogenesis, acquired tissue invasiveness and metastatic diffusion. Concerning brain tumours, there have been major improvements in neurosurgical techniques and radiotherapy planning, and developments of novel target drugs, thus increasing the need for reproducible, noninvasive, quantitative imaging biomarkers. However, in this context, conventional radiological criteria may be inappropriate to determine the best therapeutic option and subsequently to assess response to therapy. Integration of molecular imaging for the evaluation of brain tumours has for this reason become necessary, and an important role in this setting is played by imaging biomarkers in PET and MRI. In the current review, we describe most relevant techniques and biomarkers used for imaging primary brain tumours in clinical practice, and discuss potential future developments from the experimental context.
Collapse
|
48
|
Revannasiddaiah S, Susheela SP, Kallur KG. Integration of methionine-PET into the radiotherapy planning process for high grade glioma: prospects against non-central and central failures. Radiother Oncol 2014; 113:296. [PMID: 25465730 DOI: 10.1016/j.radonc.2014.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/15/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Swaroop Revannasiddaiah
- Department of Radiotherapy, Government Medical College-Haldwani, Nainital, Uttarakhand 263139, India
| | - Sridhar P Susheela
- Department of Radiotherapy, HealthCare Global Bangalore Institute of Oncology, India
| | - Kumar G Kallur
- Department of Nuclear Medicine, HealthCare Global Bangalore Institute of Oncology, India
| |
Collapse
|
49
|
Navarria P, Reggiori G, Pessina F, Ascolese AM, Tomatis S, Mancosu P, Lobefalo F, Clerici E, Lopci E, Bizzi A, Grimaldi M, Chiti A, Simonelli M, Santoro A, Bello L, Scorsetti M. Investigation on the role of integrated PET/MRI for target volume definition and radiotherapy planning in patients with high grade glioma. Radiother Oncol 2014; 112:425-9. [PMID: 25308182 DOI: 10.1016/j.radonc.2014.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE To evaluate the impact of fluid-attenuated-inversion-recovery MRI (FLAIR/MRI) and Carbon-11-labeled-methionine PET (11C-MET-PET) on high grade glioma (HGG) tumor volume delineation for radiotherapy planning. MATERIAL AND METHODS Sixty-nine patients with HGG were evaluated. The clinical target volumes (CTV1, generated by adding a 10mm margin to FLAIRMRI area, CTV2 by adding a 20mm margin to enhanced T1MRI) and biological target volume (BTV) were delineated on pre-operative MRI images and 11CMETPET respectively. RESULTS The overlap between CTV1 and CTV2 showed a low correlation between the two volumes with CTV1 not always fully included into the CTV2. In all cases the whole BTV was included into the CTV1, while in 35/69 patients (50%) part of BTV was outside the CTV2 despite larger margins were added. In all cases recurrences were within the CTV1 volume and in 19/38 (50%) partially outside the CTV2. In all patients relapse corresponded to the BTV area. CONCLUSIONS Our data suggest that the target volume definition using FLAIR-MRI is more adequate compared to enhanced T1MRI. 11C-METPET uptake could help identify microscopic residual areas.
Collapse
Affiliation(s)
- Pierina Navarria
- Radiotherapy and Radiosurgery Department, Istituto Clinico Humanitas Cancer Center, Milan, Italy.
| | - Giacomo Reggiori
- Radiotherapy and Radiosurgery Department, Istituto Clinico Humanitas Cancer Center, Milan, Italy
| | - Federico Pessina
- Neurosurgical Oncology Department, Istituto Clinico Humanitas Cancer Center, Milan, Italy
| | - Anna Maria Ascolese
- Radiotherapy and Radiosurgery Department, Istituto Clinico Humanitas Cancer Center, Milan, Italy
| | - Stefano Tomatis
- Radiotherapy and Radiosurgery Department, Istituto Clinico Humanitas Cancer Center, Milan, Italy
| | - Pietro Mancosu
- Radiotherapy and Radiosurgery Department, Istituto Clinico Humanitas Cancer Center, Milan, Italy
| | - Francesca Lobefalo
- Radiotherapy and Radiosurgery Department, Istituto Clinico Humanitas Cancer Center, Milan, Italy
| | - Elena Clerici
- Radiotherapy and Radiosurgery Department, Istituto Clinico Humanitas Cancer Center, Milan, Italy
| | - Egesta Lopci
- Nuclear Medicine Department, Istituto Clinico Humanitas Cancer Center, Milan, Italy
| | - Alberto Bizzi
- Neuroradiology Department, Istituto Clinico Humanitas Cancer Center, Milan, Italy
| | - Marco Grimaldi
- Neuroradiology Department, Istituto Clinico Humanitas Cancer Center, Milan, Italy
| | - Arturo Chiti
- Nuclear Medicine Department, Istituto Clinico Humanitas Cancer Center, Milan, Italy
| | - Matteo Simonelli
- Oncology and Hematology Department, Istituto Clinico Humanitas Cancer Center, Milan, Italy
| | - Armando Santoro
- Oncology and Hematology Department, Istituto Clinico Humanitas Cancer Center, Milan, Italy
| | - Lorenzo Bello
- Neurosurgical Oncology Department, Istituto Clinico Humanitas Cancer Center, Milan, Italy
| | - Marta Scorsetti
- Radiotherapy and Radiosurgery Department, Istituto Clinico Humanitas Cancer Center, Milan, Italy
| |
Collapse
|
50
|
Dhermain F. Radiotherapy of high-grade gliomas: current standards and new concepts, innovations in imaging and radiotherapy, and new therapeutic approaches. CHINESE JOURNAL OF CANCER 2014; 33:16-24. [PMID: 24384237 PMCID: PMC3905086 DOI: 10.5732/cjc.013.10217] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The current standards in radiotherapy of high-grade gliomas (HGG) are based on anatomic imaging techniques, usually computed tomography (CT) scanning and magnetic resonance imaging (MRI). The guidelines vary depending on whether the HGG is a histological grade 3 anaplastic glioma (AG) or a grade 4 glioblastoma multiforme (GBM). For AG, T2-weighted MRI sequences plus the region of contrast enhancement in T1 are considered for the delineation of the gross tumor volume (GTV), and an isotropic expansion of 15 to 20 mm is recommended for the clinical target volume (CTV). For GBM, the Radiation Therapy Oncology Group favors a two-step technique, with an initial phase (CTV1) including any T2 hyperintensity area (edema) plus a 20 mm margin treated with up to 46 Gy in 23 fractions, followed by a reduction in CTV2 to the contrast enhancement region in T1 with an additional 25 mm margin. The European Organisation of Research and Treatment of Cancer recommends a single-phase technique with a unique GTV, which comprises the T1 contrast enhancement region plus a margin of 20 to 30 mm. A total dose of 60 Gy in 30 fractions is usually delivered for GBM, and a dose of 59.4 Gy in 33 fractions is typically given for AG. As more than 85% of HGGs recur in field, dose-escalation studies have shown that 70 to 75 Gy can be delivered in 6 weeks with relevant toxicities developing in < 10% of the patients. However, the only randomized dose-escalation trial, in which the boost dose was guided by conventional MRI, did not show any survival advantage of this treatment over the reference arm. HGGs are amongst the most infiltrative and heterogeneous tumors, and it was hypothesized that the most highly aggressive areas were missed; thus, better visualization of these high-risk regions for radiation boost could decrease the recurrence rate. Innovations in imaging and linear accelerators (LINAC) could help deliver the right doses of radiation to the right subvolumes according to the dose-painting concept. Advanced imaging techniques provide functional information on cellular density (diffusion MRI), angiogenesis (perfusion MRI), metabolic activity and cellular proliferation [positron emission tomography (PET) and magnetic resonance spectroscopy (MRS)]. All of these non-invasive techniques demonstrated good association between the images and histology, with up to 40% of HGGs functionally presenting a high activity within the non-contrast-enhanced areas in T1. New LINAC technologies, such as intensity-modulated and stereotactic radiotherapy, help to deliver a simultaneous integrated boost (SIB) > 60 Gy. Trials delivering a SIB into a biological GTV showed the feasibility of this treatment, but the final results, in terms of clinical benefits for HGG patients, are still pending. Many issues have been identified: the variety of MRI and PET machines (and amino-acid tracers), the heterogeneity of the protocols used for image acquisition and post-treatment, the geometric distortion and the unreliable algorithms for co-registration of brain anatomy with functional maps, and the semi-quiescent but highly invasive HGG cells. These issues could be solved by the homogenization of the protocols and software applications, the simultaneous acquisition of anatomic and functional images (PET-MRI machines), the combination of complementary imaging tools (perfusion and diffusion MRI), and the concomitant addition of some ad hoc targeted drugs against angiogenesis and invasiveness to chemoradiotherapy. The integration of these hybrid data will construct new synthetic metrics for fully individualized treatments.
Collapse
Affiliation(s)
- Frederic Dhermain
- Department of Radiation Oncology, Institut Gustave Roussy University Hospital, Villejuif 94805, France.
| |
Collapse
|