1
|
Li H, Dong L, Bert C, Chang J, Flampouri S, Jee KW, Lin L, Moyers M, Mori S, Rottmann J, Tryggestad E, Vedam S. Report of AAPM Task Group 290: Respiratory motion management for particle therapy. Med Phys 2022; 49:e50-e81. [PMID: 35066871 PMCID: PMC9306777 DOI: 10.1002/mp.15470] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
Dose uncertainty induced by respiratory motion remains a major concern for treating thoracic and abdominal lesions using particle beams. This Task Group report reviews the impact of tumor motion and dosimetric considerations in particle radiotherapy, current motion‐management techniques, and limitations for different particle‐beam delivery modes (i.e., passive scattering, uniform scanning, and pencil‐beam scanning). Furthermore, the report provides guidance and risk analysis for quality assurance of the motion‐management procedures to ensure consistency and accuracy, and discusses future development and emerging motion‐management strategies. This report supplements previously published AAPM report TG76, and considers aspects of motion management that are crucial to the accurate and safe delivery of particle‐beam therapy. To that end, this report produces general recommendations for commissioning and facility‐specific dosimetric characterization, motion assessment, treatment planning, active and passive motion‐management techniques, image guidance and related decision‐making, monitoring throughout therapy, and recommendations for vendors. Key among these recommendations are that: (1) facilities should perform thorough planning studies (using retrospective data) and develop standard operating procedures that address all aspects of therapy for any treatment site involving respiratory motion; (2) a risk‐based methodology should be adopted for quality management and ongoing process improvement.
Collapse
Affiliation(s)
- Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph Bert
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Joe Chang
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stella Flampouri
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Kyung-Wook Jee
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Liyong Lin
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Michael Moyers
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Shinichiro Mori
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Joerg Rottmann
- Center for Proton Therapy, Proton Therapy Singapore, Proton Therapy Pte Ltd, Singapore
| | - Erik Tryggestad
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Sastry Vedam
- Department of Radiation Oncology, University of Maryland, Baltimore, USA
| |
Collapse
|
2
|
Comparison of different methods for lung immobilization in an animal model. Radiother Oncol 2020; 150:151-158. [PMID: 32580000 DOI: 10.1016/j.radonc.2020.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/17/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Respiratory-induced motion introduces uncertainties in the delivery of dose in radiotherapy treatments. Various methods are used clinically, e.g. breath-holding, while there is limited experience with other methods such as apneic oxygenation and high frequency jet ventilation (HFJV). This study aims to compare the latter approaches for lung immobilization and their clinical impact on gas exchange in an animal model. MATERIALS AND METHODS Two radiopaque tumor surrogate markers (TSM) were placed in the central (cTSM) and peripheral (dTSM) regions of the lungs in 9 anesthetized and muscle relaxed pigs undergoing 3 ventilatory interventions (1) HFJV at rates of 200 (JV200), 300 (JV300) and 400 (JV400) min-1; (2) apnea at continuous positive airway pressure (CPAP) levels of 0, 8 and 16 cmH2O; (3) conventional mechanical ventilation (CMV) as reference mode. cTSM and dTSM were visualized using fluoroscopy and their coordinates were computed. The ventilatory pattern was registered, and oxygen and carbon dioxide (pCO2) partial pressures were measured. RESULTS The highest range of TSM motion, and ventilation was found during CMV, the lowest during apnea. During HFJV the amount of motion varied inversely with increasing frequency. The reduction of TSM motion at JV300, JV400 and all CPAP levels came at the cost of increased pCO2, however the relatively low frequency of 200 min-1 for HFJV was the only ventilatory setting that enabled adequate CO2 removal. CONCLUSION In this model, HFJV at 200 min-1 was the best compromise between immobilization and gas exchange for sessions of 10-min duration.
Collapse
|
3
|
Percussion assisted radiation therapy in Hodgkin lymphoma allows a marked reduction in heart dose. Radiother Oncol 2020; 152:163-168. [PMID: 32448409 DOI: 10.1016/j.radonc.2019.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND PURPOSE Early-stage Hodgkin lymphoma (HL) is a highly curable disease but the treatment can induce late complications many years later. Irradiation of the healthy heart is inevitable during radiation treatment of mediastinal sites. We developed a novel method to induce a prolonged apnea-like state that can help decrease the dose to organs at risk during radiation therapy. We present the results of the first 8 HL patients treated routinely with percussion assisted radiation therapy (PART) in our clinic. MATERIAL AND METHODS We used a newly developed high-frequency non-invasive ventilation system to suppress respiratory motion for prolonged periods and push the heart away from the treated volume. RESULTS All 8 patients were able to rapidly learn the technique and had an advantage to be treated by PART. We lowered the mean heart dose by an average of 3 Gy with similar target coverage compared to a classical free breathing treatment plan. They were all treated for 15 radiotherapy sessions by PART without any notable side effects. CONCLUSIONS Percussion assisted radiation therapy can be used routinely to reduce the dose to the heart in Hodgkin lymphoma.
Collapse
|
4
|
Van Ooteghem G, Dasnoy-Sumell D, Lambrecht M, Reychler G, Liistro G, Sterpin E, Geets X. Mechanically-assisted non-invasive ventilation: A step forward to modulate and to improve the reproducibility of breathing-related motion in radiation therapy. Radiother Oncol 2019; 133:132-139. [PMID: 30935569 DOI: 10.1016/j.radonc.2018.12.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/27/2018] [Accepted: 12/27/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE When using highly conformal radiotherapy techniques, a stabilized breathing pattern could greatly benefit the treatment of mobile tumours. Therefore, we assessed the feasibility of Mechanically-assisted non-invasive ventilation (MANIV) on unsedated volunteers, and its ability to stabilize and modulate the breathing pattern over time. MATERIALS AND METHODS Twelve healthy volunteers underwent 2 sessions of dynamic MRI under 4 ventilation modes: spontaneous breathing (SP), volume-controlled mode (VC) that imposes regular breathing in physiologic conditions, shallow-controlled mode (SH) that intends to lower amplitudes while increasing the breathing rate, and slow-controlled mode (SL) that mimics end-inspiratory breath-holds. The last 3 modes were achieved under respirator without sedation. The motion of the diaphragm was tracked along the breathing cycles on MRI images and expressed in position, breathing amplitude, and breathing period for intra- and inter-session analyses. In addition, end-inspiratory breath-hold duration and position stability were analysed during the SL mode. RESULTS MANIV was well-tolerated by all volunteers, without adverse event. The MRI environment led to more discomfort than MANIV itself. Compared to SP, VC and SH modes improved the inter-session reproducibility of the amplitude (by 43% and 47% respectively) and significantly stabilized the intra- and inter-session breathing rate (p < 0.001). Compared to VC, SH mode significantly reduced the intra-session mean amplitude (36%) (p < 0.002), its variability (42%) (p < 0.001), and the intra-session baseline shift (26%) (p < 0.001). The SL mode achieved end-inspiratory plateaus lasting more than 10 s. CONCLUSION MANIV offers exciting perspectives for motion management. It improves its intra- and inter-session reproducibility and should facilitate respiratory tracking, gating or margin techniques for both photon and proton treatments.
Collapse
Affiliation(s)
- Geneviève Van Ooteghem
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium; Cliniques Universitaires Saint Luc, Department of Radiation Oncology, Brussels, Belgium.
| | - Damien Dasnoy-Sumell
- Université Catholique de Louvain, ImagX-R, Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Louvain-La-Neuve, Belgium.
| | - Maarten Lambrecht
- University Hospitals Leuven Gasthuisberg, Department of Radiation Oncology, Leuven, Belgium; Katholieke Universiteit Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium.
| | - Grégory Reychler
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ENT & Dermatologie, Brussels, Belgium.
| | - Giuseppe Liistro
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ENT & Dermatologie, Brussels, Belgium.
| | - Edmond Sterpin
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium; Katholieke Universiteit Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium.
| | - Xavier Geets
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium; Cliniques Universitaires Saint Luc, Department of Radiation Oncology, Brussels, Belgium.
| |
Collapse
|
5
|
Ringbæk TP, Weber U, Santiago A, Iancu G, Wittig A, Grzanka L, Bassler N, Engenhart-Cabillic R, Zink K. Validation of new 2D ripple filters in proton treatments of spherical geometries and non-small cell lung carcinoma cases. Phys Med Biol 2018; 63:245020. [PMID: 30523868 DOI: 10.1088/1361-6560/aaede9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A ripple filter (RiFi) is a passive energy modulator used in scanned particle therapy to broaden the Bragg peak, thus lowering the number of accelerator energies required for homogeneous target coverage, which significantly reduces the irradiation time. As we have previously shown, a new 6 mm thick RiFi with 2D groove shapes produced with 3D printing can be used in carbon ion treatments with a similar target coverage and only a marginally worse planning conformity compared to treatments with in-use 3 mm thick RiFis of an older 1D design. Where RiFis are normally not used with protons due to larger scattering and straggling effects, this new design would be beneficial in proton therapy too. Measurements of proton Bragg curves and lateral beam profiles were carried out for different RiFi designs and thicknesses as well as for no RiFi at the Heidelberg Ionenstrahl-Therapiezentrum. Base data for proton treatment planning were generated with the Monte Carlo code SHIELD-HIT12A with and without the 2D 6 mm RiFi. Plans on spherical targets in water were calculated with TRiP98 for a systematic RiFi performance analysis and for comparisons with carbon ion plans for the same respective energy depth step sizes. Plans for 9 stage I static non small cell lung cancer patients were calculated with Eclipse 13.7.15. Dose-volume-histograms, spatial dose distributions and dosimetric indexes were used for plan evaluation. Measurements confirm the functionality of the new 2D RiFi design, which reduces the beam spot size compared to 1D RiFis of the same thickness. Planning studies show that a 6 mm thick 2D RiFi could be used in proton therapy to lower the irradiation time. Although slightly worse planning conformity and dose homogeneity were found for plans with the RiFi compared to plans without, satisfactory results within the planning objective were obtained for all cases.
Collapse
Affiliation(s)
- Toke Printz Ringbæk
- University of Applied Science, Gießen-Friedberg, Germany. Department of Radiotherapy and Radiation Oncology, Philipps University, Marburg, Germany. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Molitoris JK, Diwanji T, Snider JW, Mossahebi S, Samanta S, Badiyan SN, Simone CB, Mohindra P. Advances in the use of motion management and image guidance in radiation therapy treatment for lung cancer. J Thorac Dis 2018; 10:S2437-S2450. [PMID: 30206490 PMCID: PMC6123191 DOI: 10.21037/jtd.2018.01.155] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 01/26/2018] [Indexed: 12/22/2022]
Abstract
The development of advanced radiation technologies, including intensity-modulated radiation therapy (IMRT), stereotactic body radiation therapy (SBRT) and proton therapy, has resulted in increasingly conformal radiation treatments. Recent evidence for the importance of minimizing dose to normal critical structures including the heart and lungs has led to incorporation of these advanced treatment modalities into radiation therapy (RT) for non-small cell lung cancer (NSCLC). While such technologies have allowed for improved dose delivery, implementation requires improved target accuracy with treatments, placing increasing importance on evaluating tumor motion at the time of planning and verifying tumor position at the time of treatment. In this review article, we describe issues and updates related both to motion management and image guidance in the treatment of NSCLC.
Collapse
Affiliation(s)
- Jason K. Molitoris
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tejan Diwanji
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - James W. Snider
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology, Maryland Proton Treatment Center, University of Maryland, Baltimore, MD, USA
| | - Sina Mossahebi
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology, Maryland Proton Treatment Center, University of Maryland, Baltimore, MD, USA
| | - Santanu Samanta
- Department of Radiation Oncology, Maryland Proton Treatment Center, University of Maryland, Baltimore, MD, USA
| | - Shahed N. Badiyan
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology, Maryland Proton Treatment Center, University of Maryland, Baltimore, MD, USA
| | - Charles B. Simone
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology, Maryland Proton Treatment Center, University of Maryland, Baltimore, MD, USA
| | - Pranshu Mohindra
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology, Maryland Proton Treatment Center, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
7
|
Effect of continuous positive airway pressure administration during lung stereotactic ablative radiotherapy: a comparative planning study. Strahlenther Onkol 2018; 194:591-599. [DOI: 10.1007/s00066-018-1278-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/29/2018] [Indexed: 12/25/2022]
|
8
|
Henry T, Bassler N, Ureba A, Tsubouchi T, Valdman A, Siegbahn A. Development of an interlaced-crossfiring geometry for proton grid therapy. Acta Oncol 2017; 56:1437-1443. [PMID: 28826311 DOI: 10.1080/0284186x.2017.1350287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Grid therapy has in the past normally been performed with single field photon-beam grids. In this work, we evaluated a method to deliver grid therapy based on interlacing and crossfiring grids of mm-wide proton beamlets over a target volume, by Monte Carlo simulations. MATERIAL AND METHODS Dose profiles for single mm-wide proton beamlets (1, 2 and 3 mm FWHM) in water were simulated with the Monte Carlo code TOPAS. Thereafter, grids of proton beamlets were directed toward a cubic target volume, located at the center of a water tank. The aim was to deliver a nearly homogeneous dose to the target, while creating high dose heterogeneity in the normal tissue, i.e., high gradients between valley and peak doses in the grids, down to the close vicinity of the target. RESULTS The relative increase of the beam width with depth was largest for the smallest beams (+6.9 mm for 1 mm wide and 150 MeV proton beamlets). Satisfying dose coverage of the cubic target volume (σ < ±5%) was obtained with the interlaced-crossfiring setup, while keeping the grid pattern of the dose distribution down to the target (valley-to-peak dose ratio <0.5 less than 1 cm before the target). Center-to-center distances around 7-8 mm between the beams were found to give the best compromise between target dose homogeneity and low peak doses outside of the target. CONCLUSIONS A nearly homogeneous dose distribution can be obtained in a target volume by crossfiring grids of mm-wide proton-beamlets, while maintaining the grid pattern of the dose distribution at large depths in the normal tissue, close to the target volume. We expect that the use of this method will increase the tumor control probability and improve the normal tissue sparing in grid therapy.
Collapse
Affiliation(s)
- Thomas Henry
- Medical Radiation Physics, Department of Physics, Stockholm University, Stockholm, Sweden
| | - Niels Bassler
- Medical Radiation Physics, Department of Physics, Stockholm University, Stockholm, Sweden
| | - Ana Ureba
- Medical Radiation Physics, Department of Physics, Stockholm University, Stockholm, Sweden
| | - Toshiro Tsubouchi
- Department of Radiation Oncology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Alexander Valdman
- Department of Oncology and Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Albert Siegbahn
- Medical Radiation Physics, Department of Physics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
9
|
Ringbæk TP, Weber U, Santiago A, Simeonov Y, Fritz P, Krämer M, Wittig A, Bassler N, Engenhart-Cabillic R, Zink K. Dosimetric comparisons of carbon ion treatment plans for 1D and 2D ripple filters with variable thicknesses. Phys Med Biol 2016; 61:4327-41. [DOI: 10.1088/0031-9155/61/11/4327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Baumann M, Overgaard J. Bridging the valley of death: The new Radiotherapy & Oncology section “First in man – Translational innovations in radiation oncology”. Radiother Oncol 2016; 118:217-9. [DOI: 10.1016/j.radonc.2016.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 12/31/2022]
|
11
|
Santiago A, Fritz P, Mühlnickel W, Engenhart-Cabillic R, Wittig A. Changes in the radiological depth correlate with dosimetric deterioration in particle therapy for stage I NSCLC patients under high frequency jet ventilation. Acta Oncol 2015; 54:1631-7. [PMID: 26228661 DOI: 10.3109/0284186x.2015.1067716] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Particle dose distributions are highly sensitive to anatomy changes in the beam path, which may lead to substantial dosimetric deviations. Robust planning and dedicated image guidance together with strategies for online decision making to counteract dosimetric deterioration are thus mandatory. We aimed to develop methods to quantify anatomical discrepancies as depicted by repeated computed tomography (CT) imaging and to test whether they can predict deviations in target coverage. MATERIAL AND METHODS Dedicated software tools allowed for voxel-based calculations of changes in the water equivalent path length (WEPL) in beam directions. We prepared proton and carbon ion plans with different coplanar beam angle settings on a series of lung cancer patients, for which planning and localization CT scans under high frequency jet ventilation (HFJV) for tumor fixation were performed. We investigated the reproducibility of target coverage between the optimized and recalculated treatment plans. We then studied how different raster scan and planning settings influence the robustness. Finally, we carried out a systematic analysis of the variations in the WEPL along different coplanar beam angles to find beam directions, which could minimize such variations. RESULTS The Spearman's correlations for the GTV ΔV95 and ΔV98 with the ΔWEPL for the proton plans with a 0° and -45° two-field configuration were 0.701 (p = 0.02) and 0.719 (p = 0.08), respectively. For beam configurations 0° and -90°, or 0° and + 45°, with lower ΔWEPL, the correlations were no significant. The same trends were observed for the carbon ion plans. Increased beam spot overlap reduced dosimetric deterioration in case of large ΔWEPL. CONCLUSION Software tools for fast online analysis of WEPL changes might help supporting clinical decision making of image guidance. Raster scan and treatment planning settings can help to compensate for anatomical deviations.
Collapse
Affiliation(s)
- Alina Santiago
- a Philipps-University Marburg and University Hospital Giessen and Marburg , Department of Radiotherapy and Radiation Oncology , Marburg , Germany
| | - Peter Fritz
- b St Marien-Krankenhaus , Department of Radiotherapy , Siegen , Germany
| | - Werner Mühlnickel
- b St Marien-Krankenhaus , Department of Radiotherapy , Siegen , Germany
| | - Rita Engenhart-Cabillic
- a Philipps-University Marburg and University Hospital Giessen and Marburg , Department of Radiotherapy and Radiation Oncology , Marburg , Germany
| | - Andrea Wittig
- a Philipps-University Marburg and University Hospital Giessen and Marburg , Department of Radiotherapy and Radiation Oncology , Marburg , Germany
| |
Collapse
|
12
|
Casares-Magaz O, Toftegaard J, Muren LP, Kallehauge JF, Bassler N, Poulsen PR, Petersen JBB. A method for selection of beam angles robust to intra-fractional motion in proton therapy of lung cancer. Acta Oncol 2014; 53:1058-63. [PMID: 24975371 DOI: 10.3109/0284186x.2014.927586] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Proton therapy offers the potential for sparing the normal tissue surrounding the target. However, due to well-defined proton ranges around the Bragg peak, dose deposition is more sensitive to changes in the water equivalent path length (WEPL) than with photons. In this study, we assess WEPL variations caused by breathing-induced motion for all possible beam angles in a series of lung cancer patients. By studying the association between measures for WEPL variation and breathing-induced target dose degradation we aimed to develop and explore a tool to identify beam angles that are robust to patient-specific patterns of intra-fractional motion. MATERIAL AND METHODS Using four-dimensional computed tomography (4DCT) images of three lung cancer patients we evaluated the impact of the WEPL changes on target dose coverage for a series of coplanar single-beam plans. The plans were optimised for the internal target volume (ITV) at the maximum intensity projection (MIP) CT for every 3° gantry interval. The plans were transferred to the ten 4DCT phases and the average reduction in ITV V₉₅ over the ten phases, relative to the original MIP CT calculation, was quantified. The target dose reduction was associated with the mean difference between the WEPL and the phase-averaged WEPL computed for all beam rays across all possible gantry-couch angle combinations. RESULTS The gantry-couch angle maps showed areas of both high and low WEPL variation, with overall quite similar patterns yet with individual differences reflecting differences in tumour position and breathing-induced motion. The coplanar plans showed a strong association between WEPL changes and ITV V₉₅ reduction, with a correlation coefficient ranging between 0.92 and 0.98 for the three patients (p < 0.01). CONCLUSION We have presented a 4DCT-based method to quantify WEPL changes during the breathing cycle. The method identified proton field gantry-couch angle combinations that were either sensitive or robust to WEPL changes. WEPL variations along the beam path were associated with target under-dosage.
Collapse
Affiliation(s)
- Oscar Casares-Magaz
- Department of Medical Physics, Aarhus University/Aarhus University Hospital , Aarhus , Denmark
| | | | | | | | | | | | | |
Collapse
|
13
|
Chi A, Nguyen NP, Komaki R. The potential role of respiratory motion management and image guidance in the reduction of severe toxicities following stereotactic ablative radiation therapy for patients with centrally located early stage non-small cell lung cancer or lung metastases. Front Oncol 2014; 4:151. [PMID: 25009800 PMCID: PMC4070060 DOI: 10.3389/fonc.2014.00151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 05/30/2014] [Indexed: 12/25/2022] Open
Abstract
Image guidance allows delivery of very high doses of radiation over a few fractions, known as stereotactic ablative radiotherapy (SABR). This treatment is associated with excellent outcome for early stage non-small cell lung cancer and metastases to the lungs. In the delivery of SABR, central location constantly poses a challenge due to the difficulty of adequately sparing critical thoracic structures that are immediately adjacent to the tumor if an ablative dose of radiation is to be delivered to the tumor target. As of current, various respiratory motion management and image guidance strategies can be used to ensure accurate tumor target localization prior and/or during daily treatment, which allows for maximal and safe reduction of set up margins. The incorporation of both may lead to the most optimal normal tissue sparing and the most accurate SABR delivery. Here, the clinical outcome, treatment related toxicities, and the pertinent respiratory motion management/image guidance strategies reported in the current literature on SABR for central lung tumors are reviewed.
Collapse
Affiliation(s)
- Alexander Chi
- Department of Radiation Oncology, Mary Babb Randolph Cancer Center of West Virginia University , Morgantown, WV , USA
| | | | - Ritsuko Komaki
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center , Houston, TX , USA
| |
Collapse
|