1
|
Ruby L, Jayaprakasam VS, Fernandes MC, Paroder V. Advances in the Imaging of Esophageal and Gastroesophageal Junction Malignancies. Hematol Oncol Clin North Am 2024; 38:711-730. [PMID: 38575457 DOI: 10.1016/j.hoc.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Accurate imaging is key for the diagnosis and treatment of esophageal and gastroesophageal junction cancers . Current imaging modalities, such as computed tomography (CT) and 18F-FDG (2-deoxy-2-[18F]fluoro-D-glucose) positron emission tomography (PET)/CT, have limitations in accurately staging these cancers. MRI shows promise for T staging and residual disease assessment. Novel PET tracers, like FAPI, FLT, and hypoxia markers, offer potential improvements in diagnostic accuracy. 18F-FDG PET/MRI combines metabolic and anatomic information, enhancing disease evaluation. Radiomics and artificial intelligence hold promise for early detection, treatment planning, and response assessment. Theranostic nanoparticles and personalized medicine approaches offer new avenues for cancer therapy.
Collapse
Affiliation(s)
- Lisa Ruby
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Vetri Sudar Jayaprakasam
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Maria Clara Fernandes
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Viktoriya Paroder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
2
|
Mittal S, Mallia MB. Molecular imaging of tumor hypoxia: Evolution of nitroimidazole radiopharmaceuticals and insights for future development. Bioorg Chem 2023; 139:106687. [PMID: 37406518 DOI: 10.1016/j.bioorg.2023.106687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
Though growing evidence has been collected in support of the concept of dose escalation based on the molecular level images indicating hypoxic tumor sub-volumes that could be radio-resistant, validation of the concept is still a work in progress. Molecular imaging of tumor hypoxia using radiopharmaceuticals is expected to provide the required input to plan dose escalation through Image Guided Radiation Therapy (IGRT) to kill/control the radio-resistant hypoxic tumor cells. The success of the IGRT, therefore, is heavily dependent on the quality of images obtained using the radiopharmaceutical and the extent to which the image represents the true hypoxic status of the tumor in spite of the heterogeneous nature of tumor hypoxia. Available literature on radiopharmaceuticals for imaging hypoxia is highly skewed in favor of nitroimidazole as the pharmacophore given their ability to undergo oxygen dependent reduction in hypoxic cells. In this context, present review on nitroimidazole radiopharmaceuticals would be immensely helpful to the researchers to obtain a birds-eye view on what has been achieved so far and what can be tried differently to obtain a better hypoxia imaging agent. The review also covers various methods of radiolabeling that could be utilized for developing radiotracers for hypoxia targeting applications.
Collapse
Affiliation(s)
- Sweety Mittal
- Radiopharmaceuticals Division, Bhabha Atomic Research Center, Mumbai 400085, India.
| | - Madhava B Mallia
- Radiopharmaceuticals Division, Bhabha Atomic Research Center, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
3
|
Abstract
Hypoxia (oxygen deprivation) occurs in most solid malignancies, albeit with considerable heterogeneity. Hypoxia is associated with an aggressive cancer phenotype by promotion of genomic instability, evasion of anti-cancer therapies including radiotherapy and enhancement of metastatic risk. Therefore, hypoxia results in poor cancer outcomes. Targeting hypoxia to improve cancer outcomes is an attractive therapeutic strategy. Hypoxia-targeted dose painting escalates radiotherapy dose to hypoxic sub-volumes, as quantified and spatially mapped using hypoxia imaging. This therapeutic approach could overcome hypoxia-induced radioresistance and improve patient outcomes without the need for hypoxia-targeted drugs. This article will review the premise and underpinning evidence for personalized hypoxia-targeted dose painting. It will present data on relevant hypoxia imaging biomarkers, highlight the challenges and potential benefit of this approach and provide recommendations for future research priorities in this field. Personalized hypoxia-based radiotherapy de-escalation strategies will also be addressed.
Collapse
Affiliation(s)
- Ahmed Salem
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, Hashemite University, Zarqa, Jordan; Division of Cancer Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
Perez RC, Kim D, Maxwell AWP, Camacho JC. Functional Imaging of Hypoxia: PET and MRI. Cancers (Basel) 2023; 15:3336. [PMID: 37444446 DOI: 10.3390/cancers15133336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Molecular and functional imaging have critical roles in cancer care. Existing evidence suggests that noninvasive detection of hypoxia within a particular type of cancer can provide new information regarding the relationship between hypoxia, cancer aggressiveness and altered therapeutic responses. Following the identification of hypoxia inducible factor (HIF), significant progress in understanding the regulation of hypoxia-induced genes has been made. These advances have provided the ability to therapeutically target HIF and tumor-associated hypoxia. Therefore, by utilizing the molecular basis of hypoxia, hypoxia-based theranostic strategies are in the process of being developed which will further personalize care for cancer patients. The aim of this review is to provide an overview of the significance of tumor hypoxia and its relevance in cancer management as well as to lay out the role of imaging in detecting hypoxia within the context of cancer.
Collapse
Affiliation(s)
- Ryan C Perez
- Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - DaeHee Kim
- Department of Diagnostic Imaging, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Aaron W P Maxwell
- Department of Diagnostic Imaging, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Juan C Camacho
- Department of Clinical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| |
Collapse
|
5
|
Abou Khouzam R, Lehn JM, Mayr H, Clavien PA, Wallace MB, Ducreux M, Limani P, Chouaib S. Hypoxia, a Targetable Culprit to Counter Pancreatic Cancer Resistance to Therapy. Cancers (Basel) 2023; 15:cancers15041235. [PMID: 36831579 PMCID: PMC9953896 DOI: 10.3390/cancers15041235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, and it is a disease of dismal prognosis. While immunotherapy has revolutionized the treatment of various solid tumors, it has achieved little success in PDAC. Hypoxia within the stroma-rich tumor microenvironment is associated with resistance to therapies and promotes angiogenesis, giving rise to a chaotic and leaky vasculature that is inefficient at shuttling oxygen and nutrients. Hypoxia and its downstream effectors have been implicated in immune resistance and could be contributing to the lack of response to immunotherapy experienced by patients with PDAC. Paradoxically, increasing evidence has shown hypoxia to augment genomic instability and mutagenesis in cancer, suggesting that hypoxic tumor cells could have increased production of neoantigens that can potentially enable their clearance by cytotoxic immune cells. Strategies aimed at relieving this condition have been on the rise, and one such approach opts for normalizing the tumor vasculature to reverse hypoxia and its downstream support of tumor pathogenesis. An important consideration for the successful implementation of such strategies in the clinic is that not all PDACs are equally hypoxic, therefore hypoxia-detection approaches should be integrated to enable optimal patient selection for achieving improved patient outcomes.
Collapse
Affiliation(s)
- Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
| | - Jean-Marie Lehn
- Institut de Science et d’Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 Allée Gaspard Monge, F-67000 Strasbourg, France
| | - Hemma Mayr
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Pierre-Alain Clavien
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Michael Bradley Wallace
- Gastroenterology, Mayo Clinic, Jacksonville, FL 32224, USA
- Division of Gastroenterology and Hepatology, Sheikh Shakhbout Medical City, Abu Dhabi P.O. Box 11001, United Arab Emirates
| | - Michel Ducreux
- Department of Cancer Medicine, Gustave Roussy Cancer Institute, F-94805 Villejuif, France
| | - Perparim Limani
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Correspondence: (P.L.); (S.C.); Tel.: +41-78-859-68-07 (P.L.); +33-(0)1-42-11-45-47 (S.C.)
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, F-94805 Villejuif, France
- Correspondence: (P.L.); (S.C.); Tel.: +41-78-859-68-07 (P.L.); +33-(0)1-42-11-45-47 (S.C.)
| |
Collapse
|
6
|
Gallez B. The Role of Imaging Biomarkers to Guide Pharmacological Interventions Targeting Tumor Hypoxia. Front Pharmacol 2022; 13:853568. [PMID: 35910347 PMCID: PMC9335493 DOI: 10.3389/fphar.2022.853568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a common feature of solid tumors that contributes to angiogenesis, invasiveness, metastasis, altered metabolism and genomic instability. As hypoxia is a major actor in tumor progression and resistance to radiotherapy, chemotherapy and immunotherapy, multiple approaches have emerged to target tumor hypoxia. It includes among others pharmacological interventions designed to alleviate tumor hypoxia at the time of radiation therapy, prodrugs that are selectively activated in hypoxic cells or inhibitors of molecular targets involved in hypoxic cell survival (i.e., hypoxia inducible factors HIFs, PI3K/AKT/mTOR pathway, unfolded protein response). While numerous strategies were successful in pre-clinical models, their translation in the clinical practice has been disappointing so far. This therapeutic failure often results from the absence of appropriate stratification of patients that could benefit from targeted interventions. Companion diagnostics may help at different levels of the research and development, and in matching a patient to a specific intervention targeting hypoxia. In this review, we discuss the relative merits of the existing hypoxia biomarkers, their current status and the challenges for their future validation as companion diagnostics adapted to the nature of the intervention.
Collapse
Affiliation(s)
- Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
7
|
PET imaging of pancreatic cancer. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00207-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
8
|
Huang Y, Fan J, Li Y, Fu S, Chen Y, Wu J. Imaging of Tumor Hypoxia With Radionuclide-Labeled Tracers for PET. Front Oncol 2021; 11:731503. [PMID: 34557414 PMCID: PMC8454408 DOI: 10.3389/fonc.2021.731503] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/19/2021] [Indexed: 01/27/2023] Open
Abstract
The hypoxic state in a solid tumor refers to the internal hypoxic environment that appears as the tumor volume increases (the maximum radius exceeds 180-200 microns). This state can promote angiogenesis, destroy the balance of the cell’s internal environment, and lead to resistance to radiotherapy and chemotherapy, as well as poor prognostic factors such as metastasis and recurrence. Therefore, accurate quantification, mapping, and monitoring of hypoxia, targeted therapy, and improvement of tumor hypoxia are of great significance for tumor treatment and improving patient survival. Despite many years of development, PET-based hypoxia imaging is still the most widely used evaluation method. This article provides a comprehensive overview of tumor hypoxia imaging using radionuclide-labeled PET tracers. We introduced the mechanism of tumor hypoxia and the reasons leading to the poor prognosis, and more comprehensively included the past, recent and ongoing studies of PET radiotracers for tumor hypoxia imaging. At the same time, the advantages and disadvantages of mainstream methods for detecting tumor hypoxia are summarized.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Junying Fan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Yue Chen
- Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, China.,Nuclear Medicine and Molecular Imaging key Laboratory of Sichuan Province, Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| |
Collapse
|
9
|
Elamir AM, Stanescu T, Shessel A, Tadic T, Yeung I, Letourneau D, Kim J, Lukovic J, Dawson LA, Wong R, Barry A, Brierley J, Gallinger S, Knox J, O'Kane G, Dhani N, Hosni A, Taylor E. Simulated dose painting of hypoxic sub-volumes in pancreatic cancer stereotactic body radiotherapy. Phys Med Biol 2021; 66. [PMID: 34438383 DOI: 10.1088/1361-6560/ac215c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/26/2021] [Indexed: 12/26/2022]
Abstract
Dose painting of hypoxic tumour sub-volumes using positron-emission tomography (PET) has been shown to improve tumour controlin silicoin several sites, predominantly head and neck and lung cancers. Pancreatic cancer presents a more stringent challenge, given its proximity to critical gastro-intestinal organs-at-risk (OARs), anatomic motion, and impediments to reliable PET hypoxia quantification. A radiobiological model was developed to estimate clonogen survival fraction (SF), using18F-fluoroazomycin arabinoside PET (FAZA PET) images from ten patients with unresectable pancreatic ductal adenocarcinoma to quantify oxygen enhancement effects. For each patient, four simulated five-fraction stereotactic body radiotherapy (SBRT) plans were generated: (1) a standard SBRT plan aiming to cover the planning target volume with 40 Gy, (2) dose painting plans delivering escalated doses to a maximum of three FAZA-avid hypoxic sub-volumes, (3) dose painting plans with simulated spacer separating the duodenum and pancreatic head, and (4), plans with integrated boosts to geometric contractions of the gross tumour volume (GTV). All plans saturated at least one OAR dose limit. SF was calculated for each plan and sensitivity of SF to simulated hypoxia quantification errors was evaluated. Dose painting resulted in a 55% reduction in SF as compared to standard SBRT; 78% with spacer. Integrated boosts to hypoxia-blind geometric contractions resulted in a 41% reduction in SF. The reduction in SF for dose-painting plans persisted for all hypoxia quantification parameters studied, including registration and rigid motion errors that resulted in shifts and rotations of the GTV and hypoxic sub-volumes by as much as 1 cm and 10 degrees. Although proximity to OARs ultimately limited dose escalation, with estimated SFs (∼10-5) well above levels required to completely ablate a ∼10 cm3tumour, dose painting robustly reduced clonogen survival when accounting for expected treatment and imaging uncertainties and thus, may improve local response and associated morbidity.
Collapse
Affiliation(s)
- Ahmed M Elamir
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Teodor Stanescu
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Andrea Shessel
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada
| | - Tony Tadic
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Ivan Yeung
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Stronach Regional Cancer Centre, Southlake Regional Health Centre, Newmarket, Canada
| | - Daniel Letourneau
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - John Kim
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Jelena Lukovic
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Laura A Dawson
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Rebecca Wong
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Aisling Barry
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - James Brierley
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Steven Gallinger
- Ontario Institute for Cancer Research, PanCuRx Translational Research Initiative, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada
| | - Jennifer Knox
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Grainne O'Kane
- Ontario Institute for Cancer Research, PanCuRx Translational Research Initiative, Toronto, Canada.,Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Neesha Dhani
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Ali Hosni
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Edward Taylor
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
King R, Hayes C, Donohoe CL, Dunne MR, Davern M, Donlon NE. Hypoxia and its impact on the tumour microenvironment of gastroesophageal cancers. World J Gastrointest Oncol 2021; 13:312-331. [PMID: 34040696 PMCID: PMC8131902 DOI: 10.4251/wjgo.v13.i5.312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/24/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
The malfeasant role of the hypoxic tumour microenvironment (TME) in cancer progression was recognized decades ago but the exact mechanisms that augment the hallmarks of cancer and promote treatment resistance continue to be elucidated. Gastroesophageal cancers (GOCs) represent a major burden of worldwide disease, responsible for the deaths of over 1 million people annually. Disentangling the impact of hypoxia in GOCs enables a better overall understanding of the disease pathogenesis while shining a light on novel therapeutic strategies and facilitating precision treatment approaches with the ultimate goal of improving outcomes for patients with these diseases. This review discusses the underlying principles and processes of the hypoxic response and the effect of hypoxia in promoting the hallmarks of cancer in the context of GOCs. We focus on its bidirectional influence on inflammation and how it drives angiogenesis, innate and adaptive immune evasion, metastasis, and the reprogramming of cellular bioenergetics. The contribution of the hypoxic GOC TME to treatment resistance is examined and a brief overview of the pharmacodynamics of hypoxia-targeted therapeutics is given. The principal methods that are used in measuring hypoxia and how they may enhance prognostication or provide rationale for individually tailored management in the case of tumours with significant hypoxic regions are also discussed.
Collapse
Affiliation(s)
- Ross King
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Conall Hayes
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Claire L Donohoe
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Margaret R Dunne
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Maria Davern
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| | - Noel E Donlon
- Department of Surgery, St. James’s Hospital Campus, Trinity Translational Medicine Institute, Dublin D8, Ireland
| |
Collapse
|
11
|
Gutsche R, Scheins J, Kocher M, Bousabarah K, Fink GR, Shah NJ, Langen KJ, Galldiks N, Lohmann P. Evaluation of FET PET Radiomics Feature Repeatability in Glioma Patients. Cancers (Basel) 2021; 13:cancers13040647. [PMID: 33562803 PMCID: PMC7915742 DOI: 10.3390/cancers13040647] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Initial studies suggested the additional diagnostic value of amino acid positron emission tomography (PET) radiomics using the tracer O-(2-[18F]fluoroethyl)-L-tyrosine (FET) in brain tumor patient management. However, to ensure the reliable performance of the generated FET PET radiomics models for clinical diagnostics, repeatability of radiomics features is essential. Hence, we assessed the impact of brain tumor volumes and key molecular alterations such as an isocitrate dehydrogenase (IDH) mutation on the repeatability of FET PET radiomics features in 50 newly diagnosed glioma patients. In a test–retest approach based on routinely acquired FET PET scans, we identified 297 repeatable features. The IDH genotype did not affect feature repeatability. Moreover, these robust features were able to differentiate patients with IDH-wildtype glioma from those with an IDH mutation. Our results suggest that robust radiomics features can be obtained from routinely acquired FET PET scans, which are valuable for further standardization of radiomics analyses in neurooncology. Abstract Amino acid PET using the tracer O-(2-[18F]fluoroethyl)-L-tyrosine (FET) has attracted considerable interest in neurooncology. Furthermore, initial studies suggested the additional diagnostic value of FET PET radiomics in brain tumor patient management. However, the conclusiveness of radiomics models strongly depends on feature generalizability. We here evaluated the repeatability of feature-based FET PET radiomics. A test–retest analysis based on equivalent but statistically independent subsamples of FET PET images was performed in 50 newly diagnosed and histomolecularly characterized glioma patients. A total of 1,302 radiomics features were calculated from semi-automatically segmented tumor volumes-of-interest (VOIs). Furthermore, to investigate the influence of the spatial resolution of PET on repeatability, spherical VOIs of different sizes were positioned in the tumor and healthy brain tissue. Feature repeatability was assessed by calculating the intraclass correlation coefficient (ICC). To further investigate the influence of the isocitrate dehydrogenase (IDH) genotype on feature repeatability, a hierarchical cluster analysis was performed. For tumor VOIs, 73% of first-order features and 71% of features extracted from the gray level co-occurrence matrix showed high repeatability (ICC 95% confidence interval, 0.91–1.00). In the largest spherical tumor VOIs, 67% of features showed high repeatability, significantly decreasing towards smaller VOIs. The IDH genotype did not affect feature repeatability. Based on 297 repeatable features, two clusters were identified separating patients with IDH-wildtype glioma from those with an IDH mutation. Our results suggest that robust features can be obtained from routinely acquired FET PET scans, which are valuable for further standardization of radiomics analyses in neurooncology.
Collapse
Affiliation(s)
- Robin Gutsche
- Research Center Juelich, Institute of Neuroscience and Medicine (INM-3, -4, -11), 52425 Juelich, Germany; (R.G.); (J.S.); (M.K.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- RWTH Aachen University, 52062 Aachen, Germany
| | - Jürgen Scheins
- Research Center Juelich, Institute of Neuroscience and Medicine (INM-3, -4, -11), 52425 Juelich, Germany; (R.G.); (J.S.); (M.K.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
| | - Martin Kocher
- Research Center Juelich, Institute of Neuroscience and Medicine (INM-3, -4, -11), 52425 Juelich, Germany; (R.G.); (J.S.); (M.K.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
- Center for Integrated Oncology (CIO), Universities Aachen, Bonn, Duesseldorf and Cologne, 50937 Cologne, Germany
| | - Khaled Bousabarah
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Gereon R. Fink
- Research Center Juelich, Institute of Neuroscience and Medicine (INM-3, -4, -11), 52425 Juelich, Germany; (R.G.); (J.S.); (M.K.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Nadim J. Shah
- Research Center Juelich, Institute of Neuroscience and Medicine (INM-3, -4, -11), 52425 Juelich, Germany; (R.G.); (J.S.); (M.K.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- Department of Neurology, University Hospital RWTH Aachen, 52074 Aachen, Germany
- JARA-BRAIN-Translational Medicine, 52074 Aachen, Germany
| | - Karl-Josef Langen
- Research Center Juelich, Institute of Neuroscience and Medicine (INM-3, -4, -11), 52425 Juelich, Germany; (R.G.); (J.S.); (M.K.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- Department of Nuclear Medicine, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Center for Integrated Oncology (CIO), Universities Aachen, Bonn, Duesseldorf and Cologne, 52074 Aachen, Germany
| | - Norbert Galldiks
- Research Center Juelich, Institute of Neuroscience and Medicine (INM-3, -4, -11), 52425 Juelich, Germany; (R.G.); (J.S.); (M.K.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- Center for Integrated Oncology (CIO), Universities Aachen, Bonn, Duesseldorf and Cologne, 50937 Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Philipp Lohmann
- Research Center Juelich, Institute of Neuroscience and Medicine (INM-3, -4, -11), 52425 Juelich, Germany; (R.G.); (J.S.); (M.K.); (G.R.F.); (N.J.S.); (K.-J.L.); (N.G.)
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
- Correspondence:
| |
Collapse
|
12
|
Imaging Hypoxia. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00074-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
13
|
Sanduleanu S, Jochems A, Upadhaya T, Even AJG, Leijenaar RTH, Dankers FJWM, Klaassen R, Woodruff HC, Hatt M, Kaanders HJAM, Hamming-Vrieze O, van Laarhoven HWM, Subramiam RM, Huang SH, O'Sullivan B, Bratman SV, Dubois LJ, Miclea RL, Di Perri D, Geets X, Crispin-Ortuzar M, Apte A, Deasy JO, Oh JH, Lee NY, Humm JL, Schöder H, De Ruysscher D, Hoebers F, Lambin P. Non-invasive imaging prediction of tumor hypoxia: A novel developed and externally validated CT and FDG-PET-based radiomic signatures. Radiother Oncol 2020; 153:97-105. [PMID: 33137396 DOI: 10.1016/j.radonc.2020.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Tumor hypoxia increases resistance to radiotherapy and systemic therapy. Our aim was to develop and validate a disease-agnostic and disease-specific CT (+FDG-PET) based radiomics hypoxia classification signature. MATERIAL AND METHODS A total of 808 patients with imaging data were included: N = 100 training/N = 183 external validation cases for a disease-agnostic CT hypoxia classification signature, N = 76 training/N = 39 validation cases for the H&N CT signature and N = 62 training/N = 36 validation cases for the Lung CT signature. The primary gross tumor volumes (GTV) were manually defined by experts on CT. In order to dichotomize between hypoxic/well-oxygenated tumors a threshold of 20% was used for the [18F]-HX4-derived hypoxic fractions (HF). A random forest (RF)-based machine-learning classifier/regressor was trained to classify patients as hypoxia-positive/ negative based on radiomic features. RESULTS A 11 feature "disease-agnostic CT model" reached AUC's of respectively 0.78 (95% confidence interval [CI], 0.62-0.94), 0.82 (95% CI, 0.67-0.96) and 0.78 (95% CI, 0.67-0.89) in three external validation datasets. A "disease-agnostic FDG-PET model" reached an AUC of 0.73 (0.95% CI, 0.49-0.97) in validation by combining 5 features. The highest "lung-specific CT model" reached an AUC of 0.80 (0.95% CI, 0.65-0.95) in validation with 4 CT features, while the "H&N-specific CT model" reached an AUC of 0.84 (0.95% CI, 0.64-1.00) in validation with 15 CT features. A tumor volume-alone model was unable to significantly classify patients as hypoxia-positive/ negative. A significant survival split (P = 0.037) was found between CT-classified hypoxia strata in an external H&N cohort (n = 517), while 117 significant hypoxia gene-CT signature feature associations were found in an external lung cohort (n = 80). CONCLUSION The disease-specific radiomics signatures perform better than the disease agnostic ones. By identifying hypoxic patients our signatures have the potential to enrich interventional hypoxia-targeting trials.
Collapse
Affiliation(s)
- Sebastian Sanduleanu
- The-D-Lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, The Netherlands.
| | - Arthur Jochems
- The-D-Lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Taman Upadhaya
- Laboratory of Medical Information Processing (LaTIM), INSERM, UMR 1101, Univ Brest, France; Department of Radiation Oncology, University of California, 1600 Divisadero Street, CA 94115, San Francisco, United States
| | - Aniek J G Even
- The-D-Lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Ralph T H Leijenaar
- The-D-Lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Frank J W M Dankers
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, The Netherlands
| | - Remy Klaassen
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Henry C Woodruff
- The-D-Lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, The Netherlands; Department of Radiology and Nuclear Imaging, GROW - school for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Mathieu Hatt
- Laboratory of Medical Information Processing (LaTIM), INSERM, UMR 1101, Univ Brest, France
| | - Hans J A M Kaanders
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, The Netherlands
| | - Olga Hamming-Vrieze
- Department of Radiation Oncology, Antoni van Leeuwenhoek - Netherlands Cancer institute, Amsterdam, The Netherlands
| | - Hanneke W M van Laarhoven
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rathan M Subramiam
- Boston University School of Medicine, United States; Division of Nuclear Medicine, Russell H Morgan Department of Radiology and Radiologic Sciences, Johns Hopkins Medical Institutions, Baltimore, United States
| | - Shao Hui Huang
- Department of Radiation Oncology, Princess Margaret Cancer Center, University of Toronto, Canada
| | - Brian O'Sullivan
- Department of Radiation Oncology, Princess Margaret Cancer Center, University of Toronto, Canada
| | - Scott V Bratman
- Department of Radiation Oncology, Princess Margaret Cancer Center, University of Toronto, Canada
| | - Ludwig J Dubois
- Department of Precision Medicine, The M-LAB, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, The Netherlands
| | - Razvan L Miclea
- Department of Radiology and Nuclear Imaging, GROW - school for Oncology, Maastricht University Medical Centre+, The Netherlands
| | - Dario Di Perri
- Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Belgium; Department of Radiation Oncology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Xavier Geets
- Center of Molecular Imaging, Radiotherapy and Oncology (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Belgium; Department of Radiation Oncology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Mireia Crispin-Ortuzar
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States; Cancer Research UK Cambridge Institute, University of Cambridge, UK
| | - Aditya Apte
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Jung Hun Oh
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - John L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, The Netherlands
| | - Frank Hoebers
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, The Netherlands
| | - Philippe Lambin
- The-D-Lab, Dpt of Precision Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, The Netherlands; Department of Radiology and Nuclear Imaging, GROW - school for Oncology, Maastricht University Medical Centre+, The Netherlands
| |
Collapse
|
14
|
Liu D, Steins A, Klaassen R, van der Zalm AP, Bennink RJ, van Tienhoven G, Besselink MG, Bijlsma MF, van Laarhoven HWM. Soluble Compounds Released by Hypoxic Stroma Confer Invasive Properties to Pancreatic Ductal Adenocarcinoma. Biomedicines 2020; 8:biomedicines8110444. [PMID: 33105540 PMCID: PMC7690284 DOI: 10.3390/biomedicines8110444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by abundant stroma and a hypoxic microenvironment. Pancreatic stellate cells (PSC) are activated by hypoxia and promote excessive desmoplasia, further contributing to the development of hypoxia. We aimed to explore how hypoxia and stroma interact to contribute to invasive growth in PDAC. [18F]HX4 PET/CT was found to be a feasible non-invasive method to assess tumor hypoxia in 42 patients and correlated with HIF1α immunohistochemistry in matched surgical specimens. [18F]HX4 uptake and HIF1α were strong prognostic markers for overall survival. Co-culture and medium transfer experiments demonstrated that hypoxic PSCs and their supernatant induce upregulation of mesenchymal markers in tumor cells, and that hypoxia-induced stromal factors drive invasive growth in hypoxic PDACs. Through stepwise selection, stromal MMP10 was identified as the most likely candidate responsible for this. In conclusion, hypoxia-activated PSCs promote the invasiveness of PDAC through paracrine signaling. The identification of PSC-derived MMP10 may provide a lead to develop novel stroma-targeting therapies.
Collapse
Affiliation(s)
- Dajia Liu
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, UMC, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.L.); (A.S.); (R.K.); (A.P.v.d.Z.)
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Anne Steins
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, UMC, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.L.); (A.S.); (R.K.); (A.P.v.d.Z.)
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Remy Klaassen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, UMC, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.L.); (A.S.); (R.K.); (A.P.v.d.Z.)
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Amber P. van der Zalm
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, UMC, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.L.); (A.S.); (R.K.); (A.P.v.d.Z.)
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| | - Roel J. Bennink
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Geertjan van Tienhoven
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Marc G. Besselink
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Maarten F. Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, UMC, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.L.); (A.S.); (R.K.); (A.P.v.d.Z.)
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-(0)20-5664824
| | - Hanneke W. M. van Laarhoven
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
15
|
Klaassen R, Steins A, Gurney‐Champion OJ, Bijlsma MF, van Tienhoven G, Engelbrecht MRW, van Eijck CHJ, Suker M, Wilmink JW, Besselink MG, Busch OR, de Boer OJ, van de Vijver MJ, Hooijer GKJ, Verheij J, Stoker J, Nederveen AJ, van Laarhoven HWM. Pathological validation and prognostic potential of quantitative MRI in the characterization of pancreas cancer: preliminary experience. Mol Oncol 2020; 14:2176-2189. [PMID: 32285559 PMCID: PMC7463316 DOI: 10.1002/1878-0261.12688] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/19/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022] Open
Abstract
Patient stratification based on biological variation in pancreatic ductal adenocarcinoma (PDAC) subtypes could help to improve clinical outcome. However, noninvasive assessment of the entire tumor microenvironment remains challenging. In this study, we investigate the biological basis of dynamic contrast-enhanced (DCE), intravoxel incoherent motion (IVIM), and R2*-derived magnetic resonance imaging (MRI) parameters for the noninvasive characterization of the PDAC tumor microenvironment and evaluate their prognostic potential in PDAC patients. Patients diagnosed with treatment-naïve resectable PDAC underwent MRI. After resection, a whole-mount tumor slice was analyzed for collagen fraction, vessel density, and hypoxia and matched to the MRI parameter maps. MRI parameters were correlated to immunohistochemistry-derived tissue characteristics and evaluated for prognostic potential. Thirty patients were included of whom 21 underwent resection with whole-mount histology available in 15 patients. DCE Ktrans and ve , ADC, and IVIM D correlated with collagen fraction. DCE kep and IVIM f correlated with vessel density and R2* with tissue hypoxia. Based on MRI, two main PDAC phenotypes could be distinguished; a stroma-high phenotype demonstrating high vessel density and high collagen fraction and a stroma-low phenotype demonstrating low vessel density and low collagen fraction. Patients with the stroma-high phenotype (high kep and high IVIM D, n = 8) showed longer overall survival (not reached vs. 14 months, P = 0.001, HR = 9.1, P = 0.004) and disease-free survival (not reached vs. 2 months, P < 0.001, HR 9.3, P = 0.003) compared to the other patients (n = 22). Median follow-up was 41 (95% CI: 36-46) months. MRI was able to accurately characterize tumor collagen fraction, vessel density, and hypoxia in PDAC. Based on imaging parameters, a subgroup of patients with significantly better prognosis could be identified. These first results indicate that stratification-based MRI-derived biomarkers could help to tailor treatment and improve clinical outcome and warrant further research.
Collapse
Affiliation(s)
- Remy Klaassen
- Department of Medical OncologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
- Laboratory for Experimental Oncology and RadiobiologyCenter for Experimental and Molecular MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
| | - Anne Steins
- Department of Medical OncologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
- Laboratory for Experimental Oncology and RadiobiologyCenter for Experimental and Molecular MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
| | - Oliver J. Gurney‐Champion
- Department of Radiology & Nuclear MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
- Department of Radiation OncologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
| | - Maarten F. Bijlsma
- Laboratory for Experimental Oncology and RadiobiologyCenter for Experimental and Molecular MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
- Oncode InstituteAmsterdamThe Netherlands
| | - Geertjan van Tienhoven
- Department of Radiation OncologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
| | - Marc R. W. Engelbrecht
- Department of Radiology & Nuclear MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
| | | | - Mustafa Suker
- Department of SurgeryErasmus Medical CenterRotterdamThe Netherlands
| | - Johanna W. Wilmink
- Department of Medical OncologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
| | - Marc G. Besselink
- Department of SurgeryCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
| | - Olivier R. Busch
- Department of SurgeryCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
| | - Onno J. de Boer
- Department of PathologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
| | - Marc J. van de Vijver
- Department of PathologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
| | - Gerrit K. J. Hooijer
- Department of PathologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
| | - Joanne Verheij
- Department of PathologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
| | - Jaap Stoker
- Department of Radiology & Nuclear MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
| | - Aart J. Nederveen
- Department of Radiology & Nuclear MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamThe Netherlands
| | | |
Collapse
|
16
|
Sanduleanu S, van der Wiel AM, Lieverse RI, Marcus D, Ibrahim A, Primakov S, Wu G, Theys J, Yaromina A, Dubois LJ, Lambin P. Hypoxia PET Imaging with [18F]-HX4-A Promising Next-Generation Tracer. Cancers (Basel) 2020; 12:cancers12051322. [PMID: 32455922 PMCID: PMC7280995 DOI: 10.3390/cancers12051322] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/04/2023] Open
Abstract
Hypoxia—a common feature of the majority of solid tumors—is a negative prognostic factor, as it is associated with invasion, metastasis and therapy resistance. To date, a variety of methods are available for the assessment of tumor hypoxia, including the use of positron emission tomography (PET). A plethora of hypoxia PET tracers, each with its own strengths and limitations, has been developed and successfully validated, thereby providing useful prognostic or predictive information. The current review focusses on [18F]-HX4, a promising next-generation hypoxia PET tracer. After a brief history of its development, we discuss and compare its characteristics with other hypoxia PET tracers and provide an update on its progression into the clinic. Lastly, we address the potential applications of assessing tumor hypoxia using [18F]-HX4, with a focus on improving patient-tailored therapies.
Collapse
Affiliation(s)
- Sebastian Sanduleanu
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
- Correspondence:
| | - Alexander M.A. van der Wiel
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
| | - Relinde I.Y. Lieverse
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
| | - Damiënne Marcus
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
| | - Abdalla Ibrahim
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
- Department of Radiology and Nuclear Medicine, GROW—School for Oncology and Developmental Biology, Maastricht University Medical Centre+, 6229 Maastricht, The Netherlands
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Hospital Center Universitaire De Liege, 4030 Liege, Belgium
- Department of Nuclear Medicine and Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen University, 52074 Aachen, Germany
| | - Sergey Primakov
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
| | - Guangyao Wu
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
| | - Jan Theys
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
| | - Ala Yaromina
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
| | - Ludwig J. Dubois
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
| | - Philippe Lambin
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6211 Maastricht, The Netherlands; (A.M.A.v.d.W.); (R.I.Y.L.); (D.M.); (A.I.); (S.P.); (G.W.); (J.T.); (A.Y.); (L.J.D.); (P.L.)
- Department of Radiology and Nuclear Medicine, GROW—School for Oncology and Developmental Biology, Maastricht University Medical Centre+, 6229 Maastricht, The Netherlands
| |
Collapse
|
17
|
Yu W, Qiao F, Su X, Zhang D, Wang H, Jiang J, Xu H. 18F-HX4/18F-FMISO-based micro PET for imaging of tumor hypoxia and radiotherapy-associated changes in mice. Biomed Pharmacother 2019; 119:109454. [DOI: 10.1016/j.biopha.2019.109454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 10/26/2022] Open
|
18
|
Spiegelberg L, van Hoof SJ, Biemans R, Lieuwes NG, Marcus D, Niemans R, Theys J, Yaromina A, Lambin P, Verhaegen F, Dubois LJ. Evofosfamide sensitizes esophageal carcinomas to radiation without increasing normal tissue toxicity. Radiother Oncol 2019; 141:247-255. [PMID: 31431383 PMCID: PMC6913516 DOI: 10.1016/j.radonc.2019.06.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Esophageal cancer incidence is increasing and is rarely curable. Hypoxic tumor areas cause resistance to conventional therapies, making them susceptible for treatment with hypoxia-activated prodrugs (HAPs). We investigated in vivo whether the HAP evofosfamide (TH-302) could increase the therapeutic ratio by sensitizing esophageal carcinomas to radiotherapy without increasing normal tissue toxicity. MATERIALS AND METHODS To assess therapeutic efficacy, growth of xenografted esophageal squamous cell (OE21) or adeno (OE19) carcinomas was monitored after treatment with TH-302 (50 mg/kg, QD5) and irradiation (sham or 10 Gy). Short- and long-term toxicity was assessed in a gut mucosa and lung fibrosis irradiation model, sensitive to acute and late radiation injury respectively. Mice were injected with TH-302 (50 mg/kg, QD5) and the abdominal area (sham, 8 or 10 Gy) or the upper part of the right lung (sham, 20 Gy) was irradiated. Damage to normal tissues was assessed 84 hours later by histology and blood plasma citrulline levels (gut) and for up to 1 year by non-invasive micro CT imaging (lung). RESULTS The combination treatment of TH-302 with radiotherapy resulted in significant tumor growth delay in OE19 (P = 0.02) and OE21 (P = 0.03) carcinomas, compared to radiotherapy only. Irradiation resulted in a dose-dependent decrease of crypt survival (P < 0.001), mucosal surface area (P < 0.01) and citrulline levels (P < 0.001) in both tumor and non-tumor bearing animals. On the long-term, irradiation increased CT density in the lung, indicating fibrosis, over time. TH-302 did not influence the radiation-induced short-term and long-term toxicity, confirmed by histological evaluation. CONCLUSION The combination of TH-302 and radiotherapy might be a promising approach to improve the therapeutic index for esophageal cancer patients.
Collapse
Affiliation(s)
- Linda Spiegelberg
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Stefan J van Hoof
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Rianne Biemans
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Natasja G Lieuwes
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Damiënne Marcus
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Raymon Niemans
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Jan Theys
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Ala Yaromina
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Philippe Lambin
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Ludwig J Dubois
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
19
|
Synthesis and bioevaluation of novel radioiodinated PEG-modified 2-nitroimidazole derivatives for tumor hypoxia imaging. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06649-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Panda A, Garg I, Johnson GB, Truty MJ, Halfdanarson TR, Goenka AH. Molecular radionuclide imaging of pancreatic neoplasms. Lancet Gastroenterol Hepatol 2019; 4:559-570. [DOI: 10.1016/s2468-1253(19)30081-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023]
|
21
|
Yamane T, Aikawa M, Yasuda M, Fukushima K, Seto A, Okamoto K, Koyama I, Kuji I. [ 18F]FMISO PET/CT as a preoperative prognostic factor in patients with pancreatic cancer. EJNMMI Res 2019; 9:39. [PMID: 31073705 PMCID: PMC6509312 DOI: 10.1186/s13550-019-0507-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/15/2019] [Indexed: 12/31/2022] Open
Abstract
Background While [18F]fluoromisonidazole (FMISO), a representative PET tracer to detect hypoxia, is reported to be able to prospect the prognosis after treatment for various types of cancers, the relation is unclear for pancreatic cancer. The aim of this study is to assess the feasibility of [18F]FMISO PET/CT as a preoperative prognostic factor in patients with pancreatic cancer. Methods Patients with pancreatic cancer who had been initially planned for surgery received [18F]FMISO PET/CT. Peak standardized uptake value (SUV) of the pancreatic tumor was divided by SUVpeak of the aorta, and tumor blood ratio using SUVpeak (TBRpeak) was calculated. After preoperative examination, surgeons finally decided the operability of the patients. TBRpeak was compared with hypoxia-inducible factor (HIF)-1α immunohistochemistry when the tissues were available. Furthermore, correlation of TBRpeak with the recurrence-free survival and the overall survival were evaluated by Kaplan-Meyer methods. Results We analyzed 25 patients with pancreatic adenocarcinoma (11 women and 14 men, median age, 73 years; range, 58–81 years), and observed for 39–1101 days (median, 369 days). Nine cases (36.0%) were identified as visually positive of pancreatic cancer on [18F]FMISO PET/CT images. TBRpeak of the negative cases was significantly lower than that of the positive cases (median 1.08, interquartile range (IQR) 1.02–1.15 vs median 1.50, IQR 1.25–1.73, p < 0.001), and the cutoff TBRpeak was calculated as 1.24. Five patients were finally considered inoperable. There was no significant difference in TBRpeak of inoperable and operable patients (median 1.48, IQR 1.06–1.98 vs median 1.12, IQR 1.05–1.21, p = 0.10). There was no significant difference between TBRpeak and HIF-1α expression (p = 0.22). The patients were dichotomized by the TBRpeak cutoff, and the higher group showed significantly shorter recurrence-free survival than the other (median 218 vs 441 days, p = 0.002). As for overall survival of 20 cases of operated patients, the higher TBRpeak group showed significantly shorter overall survival than the other (median survival, 415 vs > 1000 days, p = 0.04). Conclusions [18F]FMISO PET/CT has the possibility to be a preoperative prognostic factor in patients with pancreatic cancer. Electronic supplementary material The online version of this article (10.1186/s13550-019-0507-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomohiko Yamane
- Department of Nuclear Medicine, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, 350-1108, Japan.
| | - Masayasu Aikawa
- Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, 350-1108, Japan
| | - Masanori Yasuda
- Department of Diagnostic Pathology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, 350-1108, Japan
| | - Kenji Fukushima
- Department of Nuclear Medicine, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, 350-1108, Japan
| | - Akira Seto
- Department of Nuclear Medicine, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, 350-1108, Japan
| | - Koujun Okamoto
- Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, 350-1108, Japan
| | - Isamu Koyama
- Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, 350-1108, Japan
| | - Ichiei Kuji
- Department of Nuclear Medicine, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, 350-1108, Japan
| |
Collapse
|
22
|
Tao R, Ager B, Lloyd S, Torgeson A, Denney M, Gaffney D, Kharofa J, Lin SH, Koong AC, Anzai Y, Hoffman JM. Hypoxia imaging in upper gastrointestinal tumors and application to radiation therapy. J Gastrointest Oncol 2018; 9:1044-1053. [PMID: 30603123 DOI: 10.21037/jgo.2018.09.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Survival for upper gastrointestinal tumors remains poor, likely in part due to treatment resistance associated with intratumoral hypoxia. In this review, we highlight advances in nuclear medicine imaging that allow for characterization of in vivo tumor hypoxia in esophageal, pancreatic, and liver cancers. Strategies for adaptive radiotherapy in upper gastrointestinal tumors are proposed that would apply information gained through hypoxia imaging to the creation of personalized radiotherapy treatment plans able to overcome hypoxia-induced treatment resistance, minimize treatment-related toxicities, and improve patient outcomes.
Collapse
Affiliation(s)
- Randa Tao
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Bryan Ager
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Shane Lloyd
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Anna Torgeson
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Michelle Denney
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - David Gaffney
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jordan Kharofa
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Albert C Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yoshimi Anzai
- Department of Radiology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - John M Hoffman
- Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
23
|
Cornelissen B, Knight JC, Mukherjee S, Evangelista L, Xavier C, Caobelli F, Del Vecchio S, Rbah-Vidal L, Barbet J, de Jong M, van Leeuwen FWB. Translational molecular imaging in exocrine pancreatic cancer. Eur J Nucl Med Mol Imaging 2018; 45:2442-2455. [PMID: 30225616 PMCID: PMC6208802 DOI: 10.1007/s00259-018-4146-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023]
Abstract
Effective treatment for pancreatic cancer remains challenging, particularly the treatment of pancreatic ductal adenocarcinoma (PDAC), which makes up more than 95% of all pancreatic cancers. Late diagnosis and failure of chemotherapy and radiotherapy are all too common, and many patients die soon after diagnosis. Here, we make the case for the increased use of molecular imaging in PDAC preclinical research and in patient management.
Collapse
Affiliation(s)
- Bart Cornelissen
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, Oxford, UK.
| | - James C Knight
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, Oxford, UK
| | - Somnath Mukherjee
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford University, Oxford, UK
| | | | | | - Federico Caobelli
- Department of Radiology, Universitätsspital Basel, Basel, Switzerland
| | | | - Latifa Rbah-Vidal
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Jacques Barbet
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Marion de Jong
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
24
|
Abstract
PET/MR imaging has the potential to markedly alter pancreatic care in both the malignant, and premalignant states with the ability to perform robust, high-resolution, quantitative molecular imaging. The ability of PET/MR imaging to monitor disease processes, potentially correct for motion in the upper abdomen, and provide novel biomarkers that may be a combination of MR imaging and PET biomarkers, offers a unique, precise interrogation of the pancreatic milieu going forward.
Collapse
Affiliation(s)
- Nadine Mallak
- Department of Diagnostic Radiology, Oregon Health & Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, M391, San Francisco, CA 94158, USA
| | - Alexander R Guimaraes
- Department of Diagnostic Radiology, Oregon Health & Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
25
|
Grkovski M, Fanchon L, Pillarsetty NVK, Russell J, Humm JL. 18F-fluoromisonidazole predicts evofosfamide uptake in pancreatic tumor model. EJNMMI Res 2018; 8:53. [PMID: 29916085 PMCID: PMC6005997 DOI: 10.1186/s13550-018-0409-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/06/2018] [Indexed: 01/20/2023] Open
Abstract
Background Quantitative imaging can facilitate patient stratification in clinical trials. The hypoxia-activated prodrug evofosfamide recently failed a phase III trial in pancreatic cancer. However, the study did not attempt to select for patients with hypoxic tumors. We tested the ability of 18F-fluoromisonidazole to predict evofosfamide uptake in an orthotopic xenograft model (BxPC3). Methods Two forms of evofosfamide were used: (1) labeled on the active moiety (3H) and (2) on the hypoxia targeting nitroimidazole group (14C). Tumor uptake of evofosfamide and 18F-fluoromisonidazole was counted ex vivo. Autoradiography of 14C and 18F coupled with pimonidazole immunohistochemistry revealed the spatial distributions of prodrug, radiotracer, and hypoxia. Results There was significant individual variation in 18F-fluoromisonidazole uptake, and a significant correlation between normalized 18F-fluoromisonidazole and both 3H-labeled and 14C-labeled evofosfamide. 18F-fluoromisonidazole and 14C-evofosfamide both localized in hypoxic regions as identified by pimonidazole. Conclusion 18F-fluoromisonidazole predicts evofosfamide uptake in a preclinical pancreatic tumor model.
Collapse
Affiliation(s)
- Milan Grkovski
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Louise Fanchon
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | | | - James Russell
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - John L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
26
|
Bulens P, Thomas M, Deroose CM, Haustermans K. PET imaging in adaptive radiotherapy of gastrointestinal tumors. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2018; 62:385-403. [PMID: 29869484 DOI: 10.23736/s1824-4785.18.03081-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Radiotherapy is a cornerstone in the multimodality treatment of several gastrointestinal (GI) tumors. Positron-emission tomography (PET) has an established role in the diagnosis, response assessment and (re-)staging of these tumors. Nevertheless, the value of PET in adaptive radiotherapy remains unclear. This review focuses on the role of PET in adaptive radiotherapy, i.e. during the treatment course and in the delineation process. EVIDENCE ACQUISITION The MEDLINE database was searched for the terms ("Radiotherapy"[Mesh] AND "Positron-Emission Tomography"[Mesh] AND one of the site-specific keywords, yielding a total of 1710 articles. After abstract selection, 27 papers were identified for esophageal neoplasms, 1 for gastric neoplasms, 9 for pancreatic neoplasms, 6 for liver neoplasms, 1 for biliary tract neoplasms, none for colonic neoplasms, 15 for rectal neoplasms and 12 for anus neoplasms. EVIDENCE SYNTHESIS The use of PET for truly adaptive radiotherapy during treatment for GI tumors has barely been investigated, in contrast to the potential of the PET-defined metabolic tumor volume for optimization of the target volume. The optimized target definition seems useful for treatment individualization such as focal boosting strategies in esophageal, pancreatic and anorectal cancer. Nevertheless, for all GI tumors, further investigation is needed. CONCLUSIONS In general, too little data are available to conclude on the role of PET imaging during radiotherapy for ART strategies in GI cancer. On the other hand, based on the available evidence, the use of biological imaging for target volume adaptation seems promising and could pave the road towards individualized treatment strategies.
Collapse
Affiliation(s)
- Philippe Bulens
- Department of Oncology, KU Leuven-University of Leuven, Leuven, Belgium.,Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Melissa Thomas
- Department of Oncology, KU Leuven-University of Leuven, Leuven, Belgium.,Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Christophe M Deroose
- Department of Imaging & Pathology, KU Leuven-University of Leuven, Leuven, Belgium.,Department of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Karin Haustermans
- Department of Oncology, KU Leuven-University of Leuven, Leuven, Belgium - .,Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Marcu LG, Moghaddasi L, Bezak E. Imaging of Tumor Characteristics and Molecular Pathways With PET: Developments Over the Last Decade Toward Personalized Cancer Therapy. Int J Radiat Oncol Biol Phys 2018; 102:1165-1182. [PMID: 29907486 DOI: 10.1016/j.ijrobp.2018.04.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/09/2018] [Accepted: 04/19/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE Improvements in personalized therapy are made possible by the advances in molecular biology that led to developments in molecular imaging, allowing highly specific in vivo imaging of biological processes. Positron emission tomography (PET) is the most specific and sensitive imaging technique for in vivo molecular targets and pathways, offering quantification and evaluation of functional properties of the targeted anatomy. MATERIALS AND METHODS This work is an integrative research review that summarizes and evaluates the accumulated current status of knowledge of recent advances in PET imaging for cancer diagnosis and treatment, concentrating on novel radiotracers and evaluating their advantages and disadvantages in cancer characterization. Medline search was conducted, limited to English publications from 2007 onward. Identified manuscripts were evaluated for most recent developments in PET imaging of cancer hypoxia, angiogenesis, proliferation, and clonogenic cancer stem cells (CSC). RESULTS There is an expansion observed from purely metabolic-based PET imaging toward antibody-based PET to achieve more information on cancer characteristics to identify hypoxia, proangiogenic factors, CSC, and others. 64Cu-ATSM, for example, can be used both as a hypoxia and a CSC marker. CONCLUSIONS Progress in the field of functional imaging will possibly lead to more specific tumor targeting and personalized treatment, increasing tumor control and improving quality of life.
Collapse
Affiliation(s)
- Loredana Gabriela Marcu
- Faculty of Science, University of Oradea, Oradea, Romania; Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA, Australia
| | - Leyla Moghaddasi
- GenesisCare, Tennyson Centre, Adelaide SA, Australia; Department of Physics, University of Adelaide, Adelaide SA, Australia
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA, Australia; Department of Physics, University of Adelaide, Adelaide SA, Australia.
| |
Collapse
|
28
|
Klaassen R, Gurney-Champion OJ, Wilmink JW, Besselink MG, Engelbrecht MRW, Stoker J, Nederveen AJ, van Laarhoven HWM. Repeatability and correlations of dynamic contrast enhanced and T2* MRI in patients with advanced pancreatic ductal adenocarcinoma. Magn Reson Imaging 2018; 50:1-9. [PMID: 29476781 DOI: 10.1016/j.mri.2018.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/15/2018] [Accepted: 02/18/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND In current oncological practice of pancreatic ductal adenocarcinoma (PDAC), there is a great demand for response predictors and markers for early treatment evaluation. In this study, we investigated the repeatability and the interaction of dynamic contrast enhanced (DCE) and T2* MRI in patients with advanced PDAC to enable for such evaluation using these techniques. MATERIALS & METHODS 15 PDAC patients underwent two DCE, T2* and anatomical 3 T MRI sessions before start of treatment. Parametric maps were calculated for the transfer constant (Ktrans), rate constant (kep), extracellular extravascular space (ve) and perfusion fraction (vp). Quantitative R2* (1/T2*) maps were obtained from the multi-echo T2* images. Differences between normal and cancerous pancreas were determined using a Wilcoxon matched pairs test. Repeatability was obtained using Bland-Altman analysis and relations between DCE and T2*/R2* were observed by Spearman correlation and voxel-wise binned plots of tumor voxels. RESULTS PDAC Ktrans (p = 0.007), kep (p < 0.001), vp (p = 0.035) were lower and ve (p < 0.001) was higher compared to normal pancreas. The coefficient of variation between sessions was 21.8% for Ktrans, 9.9% for kep, 19.3% for ve, 18.2% for vp and 18.7% for R2*. Variation between patients ranged from 20.2% for kep to 43.6% for Ktrans. In the tumor both Ktrans (r = 0.56, p = 0.030) and ve (r = 0.54, p = 0.037) showed a positive correlation with T2*. Voxel wise analysis showed a steep increase in R2* for tumor voxels with lower Ktrans and ve. CONCLUSION We showed good repeatability of DCE and T2* related MRI parameters in advanced PDAC patients. Furthermore, we have illustrated the relation of DCE Ktrans and ve with tissue T2* and R2* indicating substantial value of these parameters for detecting tumor hypoxia in future studies. The results from our study pave the way for further response evaluation studies and patient selection based on DCE and T2* parameters.
Collapse
Affiliation(s)
- Remy Klaassen
- Cancer Center Amsterdam, Department of Medical Oncology, Academic Medical Center, Amsterdam, The Netherlands; Cancer Center Amsterdam, LEXOR (Laboratory for Experimental Oncology and Radiobiology), Academic Medical Center, Amsterdam, The Netherlands.
| | - Oliver J Gurney-Champion
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands; Department of Radiation Oncology, Academic Medical Center, Amsterdam, The Netherlands
| | - Johanna W Wilmink
- Cancer Center Amsterdam, Department of Medical Oncology, Academic Medical Center, Amsterdam, The Netherlands
| | - Marc G Besselink
- Department of Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | - Marc R W Engelbrecht
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Jaap Stoker
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Hanneke W M van Laarhoven
- Cancer Center Amsterdam, Department of Medical Oncology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Zhou X, Guo X, Chen M, Xie C, Jiang J. HIF-3α Promotes Metastatic Phenotypes in Pancreatic Cancer by Transcriptional Regulation of the RhoC-ROCK1 Signaling Pathway. Mol Cancer Res 2017; 16:124-134. [PMID: 28928287 DOI: 10.1158/1541-7786.mcr-17-0256] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/17/2017] [Accepted: 09/13/2017] [Indexed: 11/16/2022]
Abstract
Hypoxia contributes to pancreatic cancer progression and promotes its growth and invasion. Previous research principally focused on hypoxia-inducible factor-1 alpha (HIF-1α) and HIF-2α (HIF1A and EPAS1) as the major hypoxia-associated transcription factors in pancreatic cancer. However, the role of HIF-3α (HIF3A) has not been investigated. Therefore, HIF-1α, HIF-2α, and HIF-3α expression levels were measured under normoxic and hypoxic conditions. In addition, HIF-3α expression was measured in human pancreatic cancer tissue specimens and the impact of altered HIF-3α expression on cell invasion and migration was investigated in vitro and in vivo, as well as the underlying mechanisms. Under hypoxic conditions, HIF-3α expression was stimulated in pancreatic cancer cells to a greater degree than HIF-1α and HIF-2α expression. HIF-3α protein levels were also elevated in pancreatic cancer tissues and correlated with reduced survival and greater local invasion and distant metastasis, whereas knockdown of HIF-3α, under hypoxic conditions, suppressed pancreatic cancer cell invasion and migration. Under normoxia, HIF-3α overexpression promoted pancreatic cancer cell invasion and migration and stimulated F-actin polymerization. In summary, HIF-3α promotes pancreatic cancer cell invasion and metastasis in vivo and promotes pancreatic cancer cell invasion and metastasis by transcriptionally activating the RhoC-ROCK1 signaling pathway.Implications: HIF3α is overexpressed in pancreatic cancer, and targeting the HIF3α/RhoC-ROCK1 signaling pathway may be a novel therapeutic approach for the treatment of pancreatic cancer invasion and metastasis. Mol Cancer Res; 16(1); 124-34. ©2017 AACR.
Collapse
Affiliation(s)
- Xianfei Zhou
- Department of Hepatic-Biliary-Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Hepatic-Biliary-Pancreatic Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xingjun Guo
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meiyuan Chen
- Department of Hepatic-Biliary-Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chencheng Xie
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Jianxin Jiang
- Department of Hepatic-Biliary-Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| |
Collapse
|
30
|
Peerlings J, Van De Voorde L, Mitea C, Larue R, Yaromina A, Sandeleanu S, Spiegelberg L, Dubois L, Lambin P, Mottaghy FM. Hypoxia and hypoxia response-associated molecular markers in esophageal cancer: A systematic review. Methods 2017; 130:51-62. [PMID: 28705470 DOI: 10.1016/j.ymeth.2017.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/08/2017] [Accepted: 07/04/2017] [Indexed: 12/22/2022] Open
Abstract
PURPOSE In this systematic review, the existing evidence of available hypoxia-associated molecular response biomarkers in esophageal cancer (EC) patients is summarized and set into the context of the role of hypoxia in the prediction of esophageal cancer, treatment response and treatment outcome. METHODS A systematic literature search was performed in Web of Science, MEDLINE, and PubMed databases using the keywords: hypoxia, esophagus, cancer, treatment outcome and treatment response. Eligible publications were independently evaluated by two reviewers. In total, 22 out of 419 records were included for systematic review. The described search strategy was applied weekly, with the last update being performed on April 3rd, 2017. RESULTS In esophageal cancer, several (non-)invasive biomarkers for hypoxia could be identified. Independent prognostic factors for treatment response include HIF-1α, CA IX, GLUT-1 overexpression and elevated uptake of the PET-tracer 18F-fluoroerythronitroimidazole (18F-FETNIM). Hypoxia-associated molecular responses represents a clinically relevant phenomenon in esophageal cancer and detection of elevated levels of hypoxia-associated biomarkers and tends to be associated with poor treatment outcome (i.e., overall survival, disease-free survival, complete response and local control). CONCLUSION Evaluation of tumor micro-environmental conditions, such as intratumoral hypoxia, is important to predict treatment outcome and efficacy. Promising non-invasive imaging-techniques have been suggested to assess tumor hypoxia and hypoxia-associated molecular responses. However, extensive validation in EC is lacking. Hypoxia-associated markers that are independent prognostic factors could potentially provide targets for novel treatment strategies to improve treatment outcome. For personalized hypoxia-guided treatment, safe and reliable makers for tumor hypoxia are needed to select suitable patients.
Collapse
Affiliation(s)
- Jurgen Peerlings
- MAASTRO Clinic, Department of Radiation Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| | - Lien Van De Voorde
- MAASTRO Clinic, Department of Radiation Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Cristina Mitea
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ruben Larue
- MAASTRO Clinic, Department of Radiation Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ala Yaromina
- MAASTRO Clinic, Department of Radiation Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Sebastian Sandeleanu
- MAASTRO Clinic, Department of Radiation Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Linda Spiegelberg
- MAASTRO Clinic, Department of Radiation Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ludwig Dubois
- MAASTRO Clinic, Department of Radiation Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Philippe Lambin
- MAASTRO Clinic, Department of Radiation Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Felix M Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands; Department of Nuclear Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| |
Collapse
|
31
|
Lindblom E, Dasu A, Uhrdin J, Even A, van Elmpt W, Lambin P, Wersäll P, Toma-Dasu I. Defining the hypoxic target volume based on positron emission tomography for image guided radiotherapy - the influence of the choice of the reference region and conversion function. Acta Oncol 2017; 56:819-825. [PMID: 28464740 DOI: 10.1080/0284186x.2017.1293289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Hypoxia imaged by positron emission tomography (PET) is a potential target for optimization in radiotherapy. However, the implementation of this approach with respect to the conversion of intensities in the images into oxygenation and radiosensitivity maps is not straightforward. This study investigated the feasibility of applying two conversion approaches previously derived for 18F-labeled fluoromisonidazole (18F-FMISO)-PET images for the hypoxia tracer 18F-flortanidazole (18F-HX4). MATERIAL AND METHODS Ten non-small-cell lung cancer patients imaged with 18F-HX4 before the start of radiotherapy were considered in this study. PET image uptake was normalized to a well-oxygenated reference region and subsequently linear and non-linear conversions were used to determine tissue oxygenations maps. These were subsequently used to delineate hypoxic volumes based partial oxygen pressure (pO2) thresholds. The results were compared to hypoxic volumes segmented using a tissue-to-background ratio of 1.4 for 18F-HX4 uptake. RESULTS While the linear conversion function was not found to result in realistic oxygenation maps, the non-linear function resulted in reasonably sized sub-volumes in good agreement with uptake-based segmented volumes for a limited range of pO2 thresholds. However, the pO2 values corresponding to this range were significantly higher than what is normally considered as hypoxia. The similarity in size, shape, and relative location between uptake-based sub-volumes and volumes based on the conversion to pO2 suggests that the relationship between uptake and pO2 is similar for 18F-FMISO and 18F-HX4, but that the model parameters need to be adjusted for the latter. CONCLUSIONS A non-linear conversion function between uptake and oxygen partial pressure for 18F-FMISO-PET could be applied to 18F-HX4 images to delineate hypoxic sub-volumes of similar size, shape, and relative location as based directly on the uptake. In order to apply the model for e.g., dose-painting, new parameters need to be derived for the accurate calculation of dose-modifying factors for this tracer.
Collapse
Affiliation(s)
- Emely Lindblom
- Medical Radiation Physics, Department of Physics, Stockholm University, Stockholm, Sweden
| | - Alexandru Dasu
- The Skandion Clinic, Uppsala, Sweden
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | | | - Aniek Even
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Philippe Lambin
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Peter Wersäll
- Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Iuliana Toma-Dasu
- Medical Radiation Physics, Department of Physics, Stockholm University, Stockholm, Sweden
- Medical Radiation Physics, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Chen GZ, Zhu HC, Dai WS, Zeng XN, Luo JH, Sun XC. The mechanisms of radioresistance in esophageal squamous cell carcinoma and current strategies in radiosensitivity. J Thorac Dis 2017; 9:849-859. [PMID: 28449496 PMCID: PMC5394057 DOI: 10.21037/jtd.2017.03.23] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/19/2017] [Indexed: 12/21/2022]
Abstract
Esophageal cancer is the eighth most common cancer and the sixth leading cause of cancer-related death worldwide. Surgery is the primary form of treatment, but the survival is poor, especially for patients with locally advanced esophageal cancer. Radiotherapy has been a critical treatment option that may be combined with chemotherapy in patients with unresectable esophageal cancer. However, resistance to chemoradiotherapy might result in treatment failures and cancer relapse. This review will mainly focus on the possible cellular mechanisms and tumor-associated microenvironmental (TAM) factors that result in radioresistance in patients with esophageal cancer. In addition, current strategies to increase radiosensitivity, including targeted therapy and the use of radiosensitive biomarkers in clinical treatment, are discussed in this review.
Collapse
Affiliation(s)
- Guang-Zong Chen
- Department of Radiation Oncology, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Hong-Cheng Zhu
- Department of Radiation Oncology, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Wang-Shu Dai
- Department of Radiation Oncology, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xiao-Ning Zeng
- Department of Respiratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jin-Hua Luo
- Department of Thoracic Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xin-Chen Sun
- Department of Radiation Oncology, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
33
|
Leszczynska KB, Dobrynin G, Leslie RE, Ient J, Boumelha AJ, Senra JM, Hawkins MA, Maughan T, Mukherjee S, Hammond EM. Preclinical testing of an Atr inhibitor demonstrates improved response to standard therapies for esophageal cancer. Radiother Oncol 2016; 121:232-238. [PMID: 27839769 PMCID: PMC5154234 DOI: 10.1016/j.radonc.2016.10.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/22/2016] [Accepted: 10/26/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Esophageal cancer has a persistently low 5-year survival rate and has recently been classified as a cancer of unmet need by Cancer Research UK. Consequently, new approaches to therapy are urgently required. Here, we tested the hypothesis that an ATR inhibitor, VX-970, used in combination with standard therapies for esophageal cancer could improve treatment outcome. MATERIAL AND METHODS Using esophageal cancer cell lines we evaluated the efficacy of combining VX-970 with cisplatin and carboplatin in vitro and with radiation in vitro and in vivo. Radiation experiments were also carried out in hypoxic conditions to mimic the tumor microenvironment. RESULTS Combining VX-970 with cisplatin, carboplatin and radiation increased tumor cell kill in vitro. A significant tumor growth delay was observed when VX-970 was combined with radiotherapy in vivo. CONCLUSIONS VX-970 is an effective chemo/radiosensitizer which could be readily integrated in the current treatment paradigm to improve the treatment response in esophageal cancer and we plan to test it prospectively in the forthcoming phase I dose escalation safety study combining the ATR inhibitor VX-970 with chemoradiotherapy in esophageal cancer (EudraCT number: 2015-003965-27).
Collapse
Affiliation(s)
- Katarzyna B Leszczynska
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, UK
| | - Greg Dobrynin
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, UK
| | - Rhea E Leslie
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, UK
| | - Jonathan Ient
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, UK
| | - Adam J Boumelha
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, UK
| | - Joana M Senra
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, UK
| | - Maria A Hawkins
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, UK
| | - Tim Maughan
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, UK
| | - Somnath Mukherjee
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, UK
| | - Ester M Hammond
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, UK.
| |
Collapse
|
34
|
Gerke O, Vilstrup MH, Segtnan EA, Halekoh U, Høilund-Carlsen PF. How to assess intra- and inter-observer agreement with quantitative PET using variance component analysis: a proposal for standardisation. BMC Med Imaging 2016; 16:54. [PMID: 27655353 PMCID: PMC5031256 DOI: 10.1186/s12880-016-0159-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/15/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Quantitative measurement procedures need to be accurate and precise to justify their clinical use. Precision reflects deviation of groups of measurement from another, often expressed as proportions of agreement, standard errors of measurement, coefficients of variation, or the Bland-Altman plot. We suggest variance component analysis (VCA) to estimate the influence of errors due to single elements of a PET scan (scanner, time point, observer, etc.) to express the composite uncertainty of repeated measurements and obtain relevant repeatability coefficients (RCs) which have a unique relation to Bland-Altman plots. Here, we present this approach for assessment of intra- and inter-observer variation with PET/CT exemplified with data from two clinical studies. METHODS In study 1, 30 patients were scanned pre-operatively for the assessment of ovarian cancer, and their scans were assessed twice by the same observer to study intra-observer agreement. In study 2, 14 patients with glioma were scanned up to five times. Resulting 49 scans were assessed by three observers to examine inter-observer agreement. Outcome variables were SUVmax in study 1 and cerebral total hemispheric glycolysis (THG) in study 2. RESULTS In study 1, we found a RC of 2.46 equalling half the width of the Bland-Altman limits of agreement. In study 2, the RC for identical conditions (same scanner, patient, time point, and observer) was 2392; allowing for different scanners increased the RC to 2543. Inter-observer differences were negligible compared to differences owing to other factors; between observer 1 and 2: -10 (95 % CI: -352 to 332) and between observer 1 vs 3: 28 (95 % CI: -313 to 370). CONCLUSIONS VCA is an appealing approach for weighing different sources of variation against each other, summarised as RCs. The involved linear mixed effects models require carefully considered sample sizes to account for the challenge of sufficiently accurately estimating variance components.
Collapse
Affiliation(s)
- Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark
- Centre of Health Economics Research, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Mie Holm Vilstrup
- Department of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark
| | - Eivind Antonsen Segtnan
- Department of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark
| | - Ulrich Halekoh
- Epidemiology, Biostatistics and Biodemography, University of Southern Denmark, J. B. Winsløws Vej 9b, 5000 Odense C, Denmark
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Winsløwparken 19, 5000 Odense C, Denmark
| |
Collapse
|
35
|
Yuan A, Wei J, Gaebler CP, Huang H, Olek D, Li G. A Novel Respiratory Motion Perturbation Model Adaptable to Patient Breathing Irregularities. Int J Radiat Oncol Biol Phys 2016; 96:1087-1096. [PMID: 27745981 DOI: 10.1016/j.ijrobp.2016.08.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/19/2016] [Accepted: 08/26/2016] [Indexed: 12/25/2022]
Abstract
PURPOSE To develop a physical, adaptive motion perturbation model to predict tumor motion using feedback from dynamic measurement of breathing conditions to compensate for breathing irregularities. METHODS AND MATERIALS A novel respiratory motion perturbation (RMP) model was developed to predict tumor motion variations caused by breathing irregularities. This model contained 2 terms: the initial tumor motion trajectory, measured from 4-dimensional computed tomography (4DCT) images, and motion perturbation, calculated from breathing variations in tidal volume (TV) and breathing pattern (BP). The motion perturbation was derived from the patient-specific anatomy, tumor-specific location, and time-dependent breathing variations. Ten patients were studied, and 2 amplitude-binned 4DCT images for each patient were acquired within 2 weeks. The motion trajectories of 40 corresponding bifurcation points in both 4DCT images of each patient were obtained using deformable image registration. An in-house 4D data processing toolbox was developed to calculate the TV and BP as functions of the breathing phase. The motion was predicted from the simulation 4DCT scan to the treatment 4DCT scan, and vice versa, resulting in 800 predictions. For comparison, noncorrected motion differences and the predictions from a published 5-dimensional model were used. RESULTS The average motion range in the superoinferior direction was 9.4 ± 4.4 mm, the average ΔTV ranged from 10 to 248 mm3 (-26% to 61%), and the ΔBP ranged from 0 to 0.2 (-71% to 333%) between the 2 4DCT scans. The mean noncorrected motion difference was 2.0 ± 2.8 mm between 2 4DCT motion trajectories. After applying the RMP model, the mean motion difference was reduced significantly to 1.2 ± 1.8 mm (P=.0018), a 40% improvement, similar to the 1.2 ± 1.8 mm (P=.72) predicted with the 5-dimensional model. CONCLUSIONS A novel physical RMP model was developed with an average accuracy of 1.2 ± 1.8 mm for interfraction motion prediction, similar to that of a published lung motion model. This physical RMP was analytically derived and is able to adapt to breathing irregularities. Further improvement of this RMP model is under investigation.
Collapse
Affiliation(s)
- Amy Yuan
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jie Wei
- Department of Computer Science, City College of New York, New York, New York
| | - Carl P Gaebler
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hailiang Huang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Devin Olek
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Guang Li
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
36
|
Larue RTHM, Van De Voorde L, Berbée M, van Elmpt WJC, Dubois LJ, Panth KM, Peeters SGJA, Claessens A, Schreurs WMJ, Nap M, Warmerdam FARM, Erdkamp FLG, Sosef MN, Lambin P. A phase 1 'window-of-opportunity' trial testing evofosfamide (TH-302), a tumour-selective hypoxia-activated cytotoxic prodrug, with preoperative chemoradiotherapy in oesophageal adenocarcinoma patients. BMC Cancer 2016; 16:644. [PMID: 27535748 PMCID: PMC4989456 DOI: 10.1186/s12885-016-2709-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/11/2016] [Indexed: 01/03/2023] Open
Abstract
Background Neo-adjuvant chemoradiotherapy followed by surgery is the standard treatment with curative intent for oesophageal cancer patients, with 5-year overall survival rates up to 50 %. However, patients’ quality of life is severely compromised by oesophagectomy, and eventually many patients die due to metastatic disease. Most solid tumours, including oesophageal cancer, contain hypoxic regions that are more resistant to chemoradiotherapy. The hypoxia-activated prodrug evofosfamide works as a DNA-alkylating agent under these hypoxic conditions, which directly kills hypoxic cancer cells and potentially minimizes resistance to conventional therapy. This drug has shown promising results in several clinical studies when combined with chemotherapy. Therefore, in this phase I study we investigate the safety of evofosfamide added to the chemoradiotherapy treatment of oesophageal cancer. Methods/Design A phase I, non-randomized, single-centre, open-label, 3 + 3 trial with repeated hypoxia PET imaging, will test the safety of evofosfamide in combination with neo-adjuvant chemoradiotherapy in potentially resectable oesophageal adenocarcinoma patients. Investigated dose levels range from 120 mg/m2 to 340 mg/m2. Evofosfamide will be administered one week before the start of chemoradiotherapy (CROSS-regimen) and repeated weekly up to a total of six doses. PET/CT acquisitions with hypoxia tracer 18F-HX4 will be made before and after the first administration of evofosfamide, allowing early assessment of changes in hypoxia, accompanied with blood sampling to measure hypoxia blood biomarkers. Oesophagectomy will be performed according to standard clinical practice. Higher grade and uncommon non-haematological, haematological, and post-operative toxicities are the primary endpoints according to the CTCAEv4.0 and Clavien-Dindo classifications. Secondary endpoints are reduction in hypoxic fraction based on 18F-HX4 imaging, pathological complete response, histopathological negative circumferential resection margin (R0) rate, local and distant recurrence rate, and progression free and overall survival. Discussion This is the first clinical trial testing evofosfamide in combination with chemoradiotherapy. The primary objective is to determine the dose limiting toxicity of this combined treatment and herewith to define the maximum tolerated dose and recommended phase 2 dose for future clinical studies. The addition of non-invasive repeated hypoxia imaging (‘window-of-opportunity’) enables us to identify the biologically effective dose. We believe this approach could also be used for other hypoxia targeted drugs. Trial registration ClinicalTrials.gov Identifier: NCT02598687.
Collapse
Affiliation(s)
- Ruben T H M Larue
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Lien Van De Voorde
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Maaike Berbée
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Wouter J C van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ludwig J Dubois
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Kranthi M Panth
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Sarah G J A Peeters
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Cancer Research UK & Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Ann Claessens
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Wendy M J Schreurs
- Department of Nuclear Medicine, Zuyderland Medical Centre, Sittard-Geleen/Heerlen, The Netherlands
| | - Marius Nap
- Department of Pathology, Zuyderland Medical Centre, Sittard-Geleen/Heerlen, The Netherlands
| | - Fabiënne A R M Warmerdam
- Department of Medical Oncology, Zuyderland Medical Centre, Sittard-Geleen/Heerlen, The Netherlands
| | - Frans L G Erdkamp
- Department of Medical Oncology, Zuyderland Medical Centre, Sittard-Geleen/Heerlen, The Netherlands
| | - Meindert N Sosef
- Department of Surgery, Zuyderland Medical Centre, Sittard-Geleen/Heerlen, The Netherlands.,Surgical Collaborative Network Limburg, Limburg, The Netherlands
| | - Philippe Lambin
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
37
|
Cui Y, Song J, Pollom E, Alagappan M, Shirato H, Chang DT, Koong AC, Li R. Quantitative Analysis of (18)F-Fluorodeoxyglucose Positron Emission Tomography Identifies Novel Prognostic Imaging Biomarkers in Locally Advanced Pancreatic Cancer Patients Treated With Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys 2016; 96:102-9. [PMID: 27511850 DOI: 10.1016/j.ijrobp.2016.04.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/16/2016] [Accepted: 04/27/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE To identify prognostic biomarkers in pancreatic cancer using high-throughput quantitative image analysis. METHODS AND MATERIALS In this institutional review board-approved study, we retrospectively analyzed images and outcomes for 139 locally advanced pancreatic cancer patients treated with stereotactic body radiation therapy (SBRT). The overall population was split into a training cohort (n=90) and a validation cohort (n=49) according to the time of treatment. We extracted quantitative imaging characteristics from pre-SBRT (18)F-fluorodeoxyglucose positron emission tomography, including statistical, morphologic, and texture features. A Cox proportional hazard regression model was built to predict overall survival (OS) in the training cohort using 162 robust image features. To avoid over-fitting, we applied the elastic net to obtain a sparse set of image features, whose linear combination constitutes a prognostic imaging signature. Univariate and multivariate Cox regression analyses were used to evaluate the association with OS, and concordance index (CI) was used to evaluate the survival prediction accuracy. RESULTS The prognostic imaging signature included 7 features characterizing different tumor phenotypes, including shape, intensity, and texture. On the validation cohort, univariate analysis showed that this prognostic signature was significantly associated with OS (P=.002, hazard ratio 2.74), which improved upon conventional imaging predictors including tumor volume, maximum standardized uptake value, and total legion glycolysis (P=.018-.028, hazard ratio 1.51-1.57). On multivariate analysis, the proposed signature was the only significant prognostic index (P=.037, hazard ratio 3.72) when adjusted for conventional imaging and clinical factors (P=.123-.870, hazard ratio 0.53-1.30). In terms of CI, the proposed signature scored 0.66 and was significantly better than competing prognostic indices (CI 0.48-0.64, Wilcoxon rank sum test P<1e-6). CONCLUSION Quantitative analysis identified novel (18)F-fluorodeoxyglucose positron emission tomography image features that showed improved prognostic value over conventional imaging metrics. If validated in large, prospective cohorts, the new prognostic signature might be used to identify patients for individualized risk-adaptive therapy.
Collapse
Affiliation(s)
- Yi Cui
- Department of Radiation Oncology, Stanford University, Palo Alto, California; Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Jie Song
- Department of Radiation Oncology, Stanford University, Palo Alto, California
| | - Erqi Pollom
- Department of Radiation Oncology, Stanford University, Palo Alto, California
| | | | - Hiroki Shirato
- Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Daniel T Chang
- Department of Radiation Oncology, Stanford University, Palo Alto, California; Stanford Cancer Institute, Stanford, California
| | - Albert C Koong
- Department of Radiation Oncology, Stanford University, Palo Alto, California; Stanford Cancer Institute, Stanford, California
| | - Ruijiang Li
- Department of Radiation Oncology, Stanford University, Palo Alto, California; Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan; Stanford Cancer Institute, Stanford, California.
| |
Collapse
|
38
|
Chan E, Arlinghaus LR, Cardin DB, Goff L, Berlin JD, Parikh A, Abramson RG, Yankeelov TE, Hiebert S, Merchant N, Bhaskara S, Chakravarthy AB. Phase I trial of vorinostat added to chemoradiation with capecitabine in pancreatic cancer. Radiother Oncol 2016; 119:312-8. [PMID: 27106554 DOI: 10.1016/j.radonc.2016.04.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/03/2016] [Accepted: 04/08/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND PURPOSE This single institution phase I trial determined the maximum tolerated dose (MTD) of concurrent vorinostat and capecitabine with radiation in non-metastatic pancreatic cancer. MATERIAL AND METHODS Twenty-one patients received escalating doses of vorinostat (100-400mg daily) during radiation. Capecitabine was given 1000mg q12 on the days of radiation. Radiation consisted of 30Gy in 10 fractions. Vorinostat dose escalation followed the standard 3+3 design. No dose escalation beyond 400mg vorinostat was planned. Diffusion-weighted (DW)-MRI pre- and post-treatment was used to evaluate in vivo tumor cellularity. RESULTS The MTD of vorinostat was 400mg. Dose limiting toxicities occurred in one patient each at dose levels 100mg, 300mg, and 400mg: 2 gastrointestinal toxicities and one thrombocytopenia. The most common adverse events were lymphopenia (76%) and nausea (14%). The apparent diffusion coefficient (ADC) increased in most tumors. Nineteen (90%) patients had stable disease, and two (10%) had progressive disease at time of surgery. Eleven patients underwent surgical exploration with four R0 resections and one R1 resection. Median overall survival was 1.1years (95% confidence interval 0.78-1.35). CONCLUSIONS The combination of vorinostat 400mg daily M-F and capecitabine 1000mg q12 M-F with radiation (30Gy in 10 fractions) was well tolerated with encouraging median overall survival.
Collapse
Affiliation(s)
- Emily Chan
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, United States
| | | | - Dana B Cardin
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, United States
| | - Laura Goff
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, United States
| | - Jordan D Berlin
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, United States
| | - Alexander Parikh
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, United States
| | | | - Thomas E Yankeelov
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, United States; Vanderbilt University Institute of Imaging Science, United States; Departments of Radiology and Radiological Sciences, Biomedical Engineering, Physics, and Cancer Biology, Vanderbilt University, United States
| | - Scott Hiebert
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, United States
| | - Nipun Merchant
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, UHealth - University of Miami Health System, United States
| | - Srividya Bhaskara
- Department of Radiation Oncology and Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, United States
| | | |
Collapse
|
39
|
Metran-Nascente C, Yeung I, Vines DC, Metser U, Dhani NC, Green D, Milosevic M, Jaffray D, Hedley DW. Measurement of Tumor Hypoxia in Patients with Advanced Pancreatic Cancer Based on 18F-Fluoroazomyin Arabinoside Uptake. J Nucl Med 2016; 57:361-6. [PMID: 26769863 DOI: 10.2967/jnumed.115.167650] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/23/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Pancreatic cancers are thought to be unusually hypoxic, which might sensitize them to drugs that are activated under hypoxic conditions. In order to develop this idea in the clinic, a minimally invasive technique for measuring the oxygenation status of pancreatic cancers is needed. METHODS We tested the potential for minimally invasive imaging of hypoxia in pancreatic cancer patients, using the 2-nitroimidazole PET tracer (18)F-fluoroazomycin arabinoside (or (18)F-1-α-D-[5-fluoro-5-deoxyarabinofuranosyl]-2-nitroimidazole [(18)F-FAZA]). Dynamic and static scans were obtained in 21 patients with either locally advanced or metastatic disease. The hypoxic fraction was determined in the 2-h static scans as the percentage of voxels with SUVs more than 3 SDs from the mean values obtained for skeletal muscle. RESULTS Hypoxia was detected in 15 of 20 evaluable patients, with the hypoxic fraction ranging from less than 5% to greater than 50%. Compartmental analysis of the dynamic scans allowed us to approximate the tumor perfusion as mL/min/g of tissue, a value that is independent of the extent of hypoxia derived from tracer uptake in the 2-h static scan. There was no significant correlation between tumor perfusion and hypoxia; nor did we see an association between tumor volume and hypoxia. CONCLUSION Although pancreatic cancers can be highly hypoxic, a substantial proportion appears to be well oxygenated. Therefore, we suggest that a minimally invasive technique such as the one described in this study be used for patient stratification in future clinical trials of hypoxia-targeting agents.
Collapse
Affiliation(s)
- Cristiane Metran-Nascente
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Ivan Yeung
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; and
| | - Douglass C Vines
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; and
| | - Ur Metser
- Department of Medical Imaging, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Neesha C Dhani
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - David Green
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; and
| | - Michael Milosevic
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; and
| | - David Jaffray
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; and
| | - David W Hedley
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
40
|
Zheng J, Klinz SG, De Souza R, Fitzgerald J, Jaffray DA. Longitudinal tumor hypoxia imaging with [(18)F]FAZA-PET provides early prediction of nanoliposomal irinotecan (nal-IRI) treatment activity. EJNMMI Res 2015; 5:57. [PMID: 26481012 PMCID: PMC4610963 DOI: 10.1186/s13550-015-0135-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/09/2015] [Indexed: 02/05/2023] Open
Abstract
Background Non-invasive measurement of tumor hypoxia has demonstrated potential for the evaluation of disease progression, as well as prediction and assessment of treatment outcome. [18F]fluoroazomycin arabinoside (FAZA) positron emission tomography (PET) has been identified as a robust method for quantification of hypoxia both preclinically and clinically. The goal of this investigation was to evaluate the feasibility and value of repeated FAZA-PET imaging to quantify hypoxia in tumors that received multi-dose chemotherapy. Methods FAZA-PET imaging was conducted over a 21-day period in a mouse xenograft model of HT-29 human colorectal carcinoma, following multi-dose chemotherapy treatment with irinotecan (CPT-11) or nanoliposomal irinotecan (nal-IRI, MM-398). Results Tumors treated with 10 mg/kg nal-IRI maintained significantly lower levels of hypoxia and smaller hypoxic fractions compared to tumors that received 50 mg/kg CPT-11. Specifically, differences in FAZA uptake were detectable 9 days before any significant differences in tumor volume were observed between the treatment groups. Conclusions These findings highlight the potential use of FAZA-PET as an early marker of treatment response following multi-dose chemotherapy. Electronic supplementary material The online version of this article (doi:10.1186/s13550-015-0135-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinzi Zheng
- TECHNA Institute for the Advancement of Technology for Health, University Health Network, 101 College Street, Rm 7-302, Toronto, Ontario, M5G 1L7, Canada. .,Department of Radiation Physics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. .,Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
| | | | - Raquel De Souza
- Department of Radiation Physics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - David A Jaffray
- TECHNA Institute for the Advancement of Technology for Health, University Health Network, 101 College Street, Rm 7-302, Toronto, Ontario, M5G 1L7, Canada.,Department of Radiation Physics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Multiparametric imaging of patient and tumour heterogeneity in non-small-cell lung cancer: quantification of tumour hypoxia, metabolism and perfusion. Eur J Nucl Med Mol Imaging 2015; 43:240-248. [PMID: 26338178 PMCID: PMC4700090 DOI: 10.1007/s00259-015-3169-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/06/2015] [Indexed: 02/07/2023]
Abstract
Purpose Multiple imaging techniques are nowadays available for clinical in-vivo visualization of tumour biology. FDG PET/CT identifies increased tumour metabolism, hypoxia PET visualizes tumour oxygenation and dynamic contrast-enhanced (DCE) CT characterizes vasculature and morphology. We explored the relationships among these biological features in patients with non-small-cell lung cancer (NSCLC) at both the patient level and the tumour subvolume level. Methods A group of 14 NSCLC patients from two ongoing clinical trials (NCT01024829 and NCT01210378) were scanned using FDG PET/CT, HX4 PET/CT and DCE CT prior to chemoradiotherapy. Standardized uptake values (SUV) in the primary tumour were calculated for the FDG and hypoxia HX4 PET/CT scans. For hypoxia imaging, the hypoxic volume, fraction and tumour-to-blood ratio (TBR) were also defined. Blood flow and blood volume were obtained from DCE CT imaging. A tumour subvolume analysis was used to quantify the spatial overlap between subvolumes. Results At the patient level, negative correlations were observed between blood flow and the hypoxia parameters (TBR >1.2): hypoxic volume (−0.65, p = 0.014), hypoxic fraction (−0.60, p = 0.025) and TBR (−0.56, p = 0.042). At the tumour subvolume level, hypoxic and metabolically active subvolumes showed an overlap of 53 ± 36 %. Overlap between hypoxic sub-volumes and those with high blood flow and blood volume was smaller: 15 ± 17 % and 28 ± 28 %, respectively. Half of the patients showed a spatial mismatch (overlap <5 %) between increased blood flow and hypoxia. Conclusion The biological imaging features defined in NSCLC tumours showed large interpatient and intratumour variability. There was overlap between hypoxic and metabolically active subvolumes in the majority of tumours, there was spatial mismatch between regions with high blood flow and those with increased hypoxia. Electronic supplementary material The online version of this article (doi:10.1007/s00259-015-3169-4) contains supplementary material, which is available to authorized users.
Collapse
|