1
|
Chang S, Lv J, Wang X, Su J, Bian C, Zheng Z, Yu H, Bao J, Xin Y, Jiang X. Pathogenic mechanisms and latest therapeutic approaches for radiation-induced lung injury: A narrative review. Crit Rev Oncol Hematol 2024; 202:104461. [PMID: 39103129 DOI: 10.1016/j.critrevonc.2024.104461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024] Open
Abstract
The treatment of thoracic tumors with ionizing radiation can cause radiation-induced lung injury (RILI), which includes radiation pneumonitis and radiation-induced pulmonary fibrosis. Preventing RILI is crucial for controlling tumor growth and improving quality of life. However, the serious adverse effects of traditional RILI treatment methods remain a major obstacle, necessitating the development of novel treatment options that are both safe and effective. This review summarizes the molecular mechanisms of RILI and explores novel treatment options, including natural compounds, gene therapy, nanomaterials, and mesenchymal stem cells. These recent experimental approaches show potential as effective prevention and treatment options for RILI in clinical practice.
Collapse
Affiliation(s)
- Sitong Chang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Jincai Lv
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Xuanzhong Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Huiyuan Yu
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Jindian Bao
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Ying Xin
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Han C, Qiu J, Bai L, Liu T, Chen J, Wang H, Dang J. Pneumonitis Risk After Chemoradiotherapy With and Without Immunotherapy in Patients With Locally Advanced Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Int J Radiat Oncol Biol Phys 2024; 119:1179-1207. [PMID: 38360117 DOI: 10.1016/j.ijrobp.2024.01.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/28/2023] [Accepted: 01/28/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE Chemoradiotherapy (CRT) combined with immune checkpoint inhibitors (ICIs) is the standard of care for patients with unresectable and locally advanced non-small cell lung cancer. This study aimed to determine whether the addition of ICIs to CRT is associated with an increased risk of pneumonitis. METHODS AND MATERIALS The PubMed, Embase, Cochrane Library, and Web of Science databases were searched for eligible studies published between January 1, 2015, and July 31, 2023. The outcome of interest was the incidence rate of pneumonitis. A random-effects model was used for statistical analysis. RESULTS A total of 185 studies with 24,527 patients were included. The pooled rate of grade ≥2 pneumonitis for CRT plus ICIs was significantly higher than that for CRT alone (29.6%; 95% CI, 25.7%-33.6% vs 20.2%; 95% CI, 17.7%-22.8%; P < .0001) but not that of grade ≥3 (5.7%; 95% CI, 4.8%-6.6% vs 5.6%; 95% CI, 4.7%-6.5%; P = .64) or grade 5 (0.1%; 95% CI, 0.0%-0.2% vs 0.3%; 95% CI, 0.1%-0.4%; P = .68). The results from the subgroup analyses of prospective studies, retrospective studies, Asian and non-Asian studies, concurrent CRT (cCRT), and durvalumab consolidation were comparable to the overall results. However, CRT or cCRT plus PD-1 inhibitors not only significantly increased the incidence of grade ≥2 but also that of grade ≥3 pneumonitis compared to CRT alone or cCRT plus PD-L1 inhibitors. CONCLUSIONS Compared with CRT alone, durvalumab consolidation after CRT appears to be associated with a higher incidence of moderate pneumonitis and CRT plus PD-1 inhibitors with an increased risk of severe pneumonitis. Nevertheless, these findings are based on observational studies and need to be validated in future large head-to-head studies.
Collapse
Affiliation(s)
- Chong Han
- Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, China
| | - Jingping Qiu
- Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, China
| | - Lu Bai
- Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, China
| | - Tingting Liu
- Department of Radiation Oncology, Anshan Cancer Hospital, Anshan, China
| | - Jun Chen
- Department of Radiation Oncology, Shenyang Tenth People's Hospital, Shenyang, China
| | - He Wang
- Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, China
| | - Jun Dang
- Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Elshof J, Steenstra C, Niezink A, Wijkstra P, Wijsman R, Duiverman M. Continuous and bilevel positive airway pressure may improve radiotherapy delivery in patients with intra-thoracic tumors. Clin Transl Radiat Oncol 2024; 47:100784. [PMID: 38706725 PMCID: PMC11063599 DOI: 10.1016/j.ctro.2024.100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024] Open
Abstract
Background Minimizing tumor motion in radiotherapy for intra-thoracic tumors reduces side-effects by limiting radiation exposure to healthy tissue. Continuous or Bilevel Positive Airway Pressure (CPAP/BiPAP) could achieve this, since it could increase lung inflation and decrease tidal volume variability. We aim to identify the better CPAP/BiPAP setting for minimizing tumor motion. Methods In 10 patients (5 with lung cancer, 5 with other intra-thoracic tumors), CPAP/BiPAP was tested with the following settings for 10 min each: CPAP 5, 10 and 15 cmH2O and BiPAP 14/10 cmH2O with a lower (7 breaths/min) and higher back-up respiratory rate (BURR initially 1 breath/min above the spontaneous breathing frequency, with the option to adjust if the patient continued to initiate breaths). Electrical impedance tomography was used to analyse end-expiratory lung impedance (EELI) as an estimate of end-expiratory lung volume and tidal impedance variation (TIV) as an estimate of tidal volume. Results Nine out of ten patients tolerated all settings; one patient could not sustain CPAP-15. A significant difference in EELI was observed between settings (χ2 22.960, p < 0.001), with most increase during CPAP-15 (median (IQR) 1.03 (1.00 - 1.06), normalized to the EELI during spontaneous breathing). No significant differences in TIV and breathing variability were found between settings. Conclusions This study shows that the application of different settings of CPAP/BiPAP in patients with intra-thoracic tumors is feasible and tolerable. BiPAP with a higher BURR may offer the greatest potential for mitigating tumor motion among the applied settings, although further research investigating tumor motion should be conducted.
Collapse
Affiliation(s)
- J. Elshof
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - C.M. Steenstra
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - A.G.H. Niezink
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - P.J. Wijkstra
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - R. Wijsman
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M.L. Duiverman
- Department of Pulmonary Diseases/Home Mechanical Ventilation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Chen J, Chen K, OuYang M, Wang G, Bai P, You H. Evaluation of dose delivery based on deformed CT using a commercial software for lung cancer. Sci Rep 2024; 14:14470. [PMID: 38914766 PMCID: PMC11196743 DOI: 10.1038/s41598-024-65381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
This study employed a commercial software velocity to perform deformable registration and dose calculation on deformed CT images, aiming to assess the accuracy of dose delivery during the radiotherapy for lung cancers. A total of 20 patients with lung cancer were enrolled in this study. Adaptive CT (ACT) was generated by deformed the planning CT (pCT) to the CBCT of initial radiotherapy fraction, followed by contour propagation and dose recalculation. There was not significant difference between volumes of GTV and CTV calculated from the ACT and pCT. However, significant differences in dice similarity coefficient (DSC) and coverage ratio (CR) between GTV and CTV were observed, with lower values for GTV volumes below 15 cc. The mean differences in dose corresponding to 95% of the GTV, GTV-P, CTV, and CTV-P between ACT and pCT were - 0.32%, 4.52%, 2.17%, and 4.71%, respectively. For the dose corresponding to 99%, the discrepancies were - 0.18%, 8.35%, 1.92%, and 24.96%, respectively. These differences in dose primarily appeared at the edges of the target areas. Notably, a significant enhancement of dose corresponding to 1 cc for spinal cord was observed in ACT, compared with pCT. There was no statistical difference in the mean dose of lungs and heart. In general, for lung cancer patients, anatomical motion may result in both CTV and GTV moving outside the original irradiation region. The dose difference within the original target area was small, but the difference in the planning target area was considerable.
Collapse
Affiliation(s)
- Jihong Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China
| | - Kaiqiang Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China
| | - Min OuYang
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China
| | - Guohua Wang
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China
| | - Penggang Bai
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China
| | - Hongqiang You
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China.
| |
Collapse
|
5
|
Liu T, Li S, Ding S, Qiu J, Ren C, Chen J, Wang H, Wang X, Li G, He Z, Dang J. Comparison of post-chemoradiotherapy pneumonitis between Asian and non-Asian patients with locally advanced non-small cell lung cancer: a systematic review and meta-analysis. EClinicalMedicine 2023; 64:102246. [PMID: 37781162 PMCID: PMC10539643 DOI: 10.1016/j.eclinm.2023.102246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023] Open
Abstract
Background Pneumonitis is a common complication for patients with locally advanced non-small cell lung cancer undergoing definitive chemoradiotherapy (CRT). It remains unclear whether there is ethnic difference in the incidence of post-CRT pneumonitis. Methods PubMed, Embase, Cochrane Library, and Web of Science were searched for eligible studies from January 1, 2000 to April 30, 2023. The outcomes of interest were incidence rates of pneumonitis. The random-effect model was used for statistical analysis. This meta-analysis was registered with PROSPERO (CRD42023416490). Findings A total of 248 studies involving 28,267 patients were included. Among studies of CRT without immunotherapy, the pooled rates of pneumonitis for Asian patients were significantly higher than that for non-Asian patients (all grade: 66.8%, 95% CI: 59.2%-73.9% vs. 28.1%, 95% CI: 20.4%-36.4%; P < 0.0001; grade ≥2: 25.1%, 95% CI: 22.9%-27.3% vs. 14.9%, 95% CI: 12.0%-18.0%; P < 0.0001; grade ≥3: 6.5%, 95% CI: 5.6%-7.3% vs. 4.6%, 95% CI: 3.4%-5.9%; P = 0.015; grade 5: 0.6%, 95% CI: 0.3%-0.9% vs. 0.1%, 95% CI: 0.0%-0.2%; P < 0.0001). Regarding studies of CRT plus immunotherapy, Asian patients had higher rates of all-grade (74.8%, 95% CI: 63.7%-84.5% vs. 34.3%, 95% CI: 28.7%-40.2%; P < 0.0001) and grade ≥2 (34.0%, 95% CI: 30.7%-37.3% vs. 24.6%, 95% CI: 19.9%-29.3%; P = 0.001) pneumonitis than non-Asian patients, but with no significant differences in the rates of grade ≥3 and grade 5 pneumonitis. Results from subgroup analyses were generally similar to that from the all studies. In addition, the pooled median/mean of lung volume receiving ≥20 Gy and mean lung dose were relatively low in Asian studies compared to that in non-Asian studies. Interpretation Asian patients are likely to have a higher incidence of pneumonitis than non-Asian patients, which appears to be due to the poor tolerance of lung to radiation. Nevertheless, these findings are based on observational studies and with significant heterogeneity, and need to be validated in future large prospective studies focusing on the subject. Funding None.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
- Department of Radiation Oncology, Anshan Cancer Hospital, Anshan, China
| | - Sihan Li
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Silu Ding
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Jingping Qiu
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Chengbo Ren
- Department of Radiation Oncology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Jun Chen
- Department of Radiation Oncology, Shenyang Tenth People's Hospital, Shenyang, China
| | - He Wang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Xiaoling Wang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Guang Li
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Zheng He
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Jun Dang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Hattu D, Emans D, van der Stoep J, Canters R, van Loon J, De Ruysscher D. Comparison of photon intensity modulated, hybrid and volumetric modulated arc radiation treatment techniques in locally advanced non-small cell lung cancer. Phys Imaging Radiat Oncol 2023; 28:100519. [PMID: 38111503 PMCID: PMC10726236 DOI: 10.1016/j.phro.2023.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
Background and purpose There is no consensus on the best photon radiation technique for non-small cell lung cancer (NSCLC). This study quantified the differences between commonly used treatment techniques in NSCLC to find the optimal technique. Materials and methods Treatment plans were retrospectively generated according to clinical guidelines for 26 stage III NSCLC patients using intensity modulated radiation therapy (IMRT), hybrid, and volumetric modulated arc therapy (VMATC, and VMATV5 optimized for lower lung and heart dose). Plans were evaluated for target coverage, organs at risk dose (including heart substructures) and normal tissue complication probabilities (NTCP). Results The comparison showed significant and largest median differences (>1 Gy or >5%) in favor of IMRT for the mediastinal envelope and heart (maximum dose), in favor of the hybrid technique for the lungs (V5Gy of the total lungs and V5Gy of the contralateral lung) and in favor of VMATC for the heart (Dmean), most of the substructures of the heart, and the spinal cord (maximum dose). The VMATV5 technique had significantly lower heart dose compared to the hybrid technique and significantly lower lung dose compared to the VMATC, combining both advantages in one technique. The mean ΔNTCP did not exceed the 2 percent point (pp) for grade 5 (mortality), and 10 pp for grade ≥2 toxicities (radiation pneumonitis and acute esophageal toxicity), but ΔNTCP was mostly in favor of VMATC/V5 for individual patients. Conclusion This planning study showed that VMATV5 was preferred as it achieved low lung and heart doses, as well as low NTCPs, simultaneously.
Collapse
Affiliation(s)
- Djoya Hattu
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Daisy Emans
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Judith van der Stoep
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Richard Canters
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Judith van Loon
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
7
|
Yagihashi T, Inoue T, Shiba S, Yamano A, Minagawa Y, Omura M, Inoue K, Nagata H. Impact of delivery time factor on treatment time and plan quality in tomotherapy. Sci Rep 2023; 13:12207. [PMID: 37500671 PMCID: PMC10374581 DOI: 10.1038/s41598-023-39047-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
Delivery time factor (DTF) is a new parameter introduced by the RayStation treatment planning system for tomotherapy treatment planning. This study investigated the effects of this factor on various tomotherapy plans. Twenty-five patients with cancer (head and neck, 6; lung, 9; prostate, 10) were enrolled in this study. Helical tomotherapy plans with a field width of 2.5 cm, pitch of 0.287, and DTF of 2.0 were created. All the initial plans were recalculated by changing the DTF parameter from 1.0 to 3.0 in increments of 0.1. Then, DTF's impact on delivery efficiency and plan quality was evaluated. Treatment time and modulation factor increased monotonically with increasing DTF. Increasing the DTF by 0.1 increased the treatment time and modulation factor by almost 10%. This relationship was similar for all treatment sites. Conformity index (CI), homogeneity index, and organ at risk doses were improved compared to plans with a DTF of 1.0, except for the CI in the lung cancer case. However, the improvement in most indices ceased at a certain DTF; nevertheless, treatment time continued to increase following an increase in DTF. DTF is a critical parameter for improving the quality of tomotherapy plans.
Collapse
Affiliation(s)
- Takayuki Yagihashi
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo, 116-8551, Japan
| | - Tatsuya Inoue
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan.
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Shintaro Shiba
- Department of Radiation Oncology, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Akihiro Yamano
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Yumiko Minagawa
- Department of Radiation Oncology, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Motoko Omura
- Department of Radiation Oncology, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| | - Kazumasa Inoue
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo, 116-8551, Japan
| | - Hironori Nagata
- Department of Medical Physics, Shonan Kamakura General Hospital, 1370-1 Okamoto, Kamakura, Kanagawa, 247-8533, Japan
| |
Collapse
|
8
|
Zheng X, Guo W, Wang Y, Zhang J, Zhang Y, Cheng C, Teng X, Lam S, Zhou T, Ma Z, Liu R, Wu H, Ge H, Cai J, Li B. Multi-omics to predict acute radiation esophagitis in patients with lung cancer treated with intensity-modulated radiation therapy. Eur J Med Res 2023; 28:126. [PMID: 36935504 PMCID: PMC10024847 DOI: 10.1186/s40001-023-01041-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/03/2023] [Indexed: 03/21/2023] Open
Abstract
PURPOSE The study aimed to predict acute radiation esophagitis (ARE) with grade ≥ 2 for patients with locally advanced lung cancer (LALC) treated with intensity-modulated radiation therapy (IMRT) using multi-omics features, including radiomics and dosiomics. METHODS 161 patients with stage IIIA-IIIB LALC who received chemoradiotherapy (CRT) or radiotherapy by IMRT with a prescribed dose from 45 to 70 Gy from 2015 to 2019 were enrolled retrospectively. All the toxicity gradings were given following the Common Terminology Criteria for Adverse Events V4.0. Multi-omics features, including radiomics, dosiomics (including dose-volume histogram dosimetric parameters), were extracted based on the planning CT image and three-dimensional dose distribution. All data were randomly divided into training cohorts (N = 107) and testing cohorts (N = 54). In the training cohorts, features with reliably high outcome relevance and low redundancy were selected under random patient subsampling. Four classification models (using clinical factors (CF) only, using radiomics features (RFs) only, dosiomics features (DFs) only, and the hybrid features (HFs) containing clinical factors, radiomics and dosiomics) were constructed employing the Ridge classifier using two-thirds of randomly selected patients as the training cohort. The remaining patient was treated as the testing cohort. A series of models were built with 30 times training-testing splits. Their performances were assessed using the area under the ROC curve (AUC) and accuracy. RESULTS Among all patients, 51 developed ARE grade ≥ 2, with an incidence of 31.7%. Next, 8990 radiomics and 213 dosiomics features were extracted, and 3, 6, 12, and 13 features remained after feature selection in the CF, DF, RF and DF models, respectively. The RF and HF models achieved similar classification performance, with the training and testing AUCs of 0.796 ± 0.023 (95% confidence interval (CI [0.79, 0.80])/0.744 ± 0.044 (95% CI [0.73, 0.76]) and 0.801 ± 0.022 (95% CI [0.79, 0.81]) (p = 0.74), respectively. The model performances using CF and DF features were poorer, with training and testing AUCs of 0.573 ± 0.026 (95% CI [0.56, 0.58])/ 0.509 ± 0.072 (95% CI [0.48, 0.53]) and 0.679 ± 0.027 (95% CI [0.67, 0.69])/0.604 ± 0.041 (95% CI [0.53, 0.63]) compared with the above two models (p < 0.001), respectively. CONCLUSIONS In LALC patients treated with CRT IMRT, the ARE grade ≥ 2 can be predicted using the pretreatment radiotherapy image features. To predict ARE, the multi-omics features had similar predictability with radiomics features; however, the dosiomics features and clinical factors had a limited classification performance.
Collapse
Affiliation(s)
- Xiaoli Zheng
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Wei Guo
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yunhan Wang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Jiang Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yuanpeng Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chen Cheng
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xinzhi Teng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Saikit Lam
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Ta Zhou
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Zongrui Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Ruining Liu
- Department of Interventional Therapy, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hui Wu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| | - Bing Li
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
9
|
Predictors of high-grade radiation pneumonitis following radiochemotherapy for locally advanced non-small cell lung cancer: analysis of clinical, radiographic and radiotherapy-related factors. JOURNAL OF RADIOTHERAPY IN PRACTICE 2023. [DOI: 10.1017/s1460396923000043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Abstract
Purpose:
In this study, the relation between radiation pneumonitis (RP) and a wide spectrum of clinical, radiographic and treatment-related factors was investigated. As scoring of low-grade RP can be subjective, RP grade ≥3 (RP ≥ G3) was chosen as a more objective and clinically significant endpoint for this study.
Methods and Materials:
105 consecutive patients with locally advanced non-small cell lung cancer underwent conventionally fractionated radio-(chemo-)therapy to a median dose of 64 Gy. A retrospective analysis of 25 clinical (gender, race, pulmonary function, diabetes, statin use, smoking history), radiographic (emphysema, interstitial lung disease) and radiotherapy dose- and technique-related factors was performed to identify predictors of RP ≥ G3. Following testing of all variables for statistical association with RP using univariate analysis (UVA), a forward selection algorithm was implemented for building a multivariate predictive model (MVA) with limited sample size.
Results:
Median follow-up of surviving patients was 33 months (9–132 months). RP ≥ G3 was diagnosed in 10/105 (9·5%) patients. Median survival was 28·5 months. On UVA, predictors for RP ≥ G3 were diabetes, lower lobe location, planning target volume, volumetric modulated arc therapy (VMAT), lung V5 Gy (%), lung Vspared5 Gy (mL), lung V20 Gy (%) and heart V5 Gy (% and mL). On MVA, VMAT was the only significant predictor for RP ≥ G3 (p = 0·042). Lung V5 Gy and lung V20 Gy were borderline significant for RP ≥ G3. Patients with RP ≥ 3 had a median survival of 10 months compared to 29·5 months with RP < G3 (p = 0·02).
Conclusions:
In this study, VMAT was the only factor that was significantly correlated with RP ≥ G3. Avoiding RP ≥ G3 is important as a toxicity per se and as a risk factor for poor survival. To reduce RP, caution needs to be taken to reduce low-dose lung volumes in addition to other well-established dose constraints.
Collapse
|
10
|
Zhou PX, Wang RH, Yu H, Zhang Y, Zhang GQ, Zhang SX. Different functional lung-sparing strategies and radiotherapy techniques for patients with esophageal cancer. Front Oncol 2022; 12:898141. [PMID: 36091164 PMCID: PMC9459335 DOI: 10.3389/fonc.2022.898141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundIntegration of 4D-CT ventilation function images into esophageal cancer radiation treatment planning aimed to assess dosimetric differences between different functional lung (FL) protection strategies and radiotherapy techniques.MethodsA total of 15 patients with esophageal cancer who had 4D-CT scans were included. Lung ventilation function images based on Jacobian values were obtained by deformation image registration and ventilation imaging algorithm. Several different plans were designed for each patient: clinical treatment planning (non-sparing planning), the same beam distribution to FL-sparing planning, three fixed-beams FL-sparing intensity-modulated radiation therapy (IMRT) planning (5F-IMRT, 7F-IMRT, 9F-IMRT), and two FL-sparing volumetric modulated arc therapy (VMAT) planning [1F-VMAT (1-Arc), 2F-VMAT (2-Arc)]. The dosimetric parameters of the planning target volume (PTV) and organs at risk (OARs) were compared and focused on dosimetric differences in FL.ResultsThe FL-sparing planning compared with the non-sparing planning significantly decreased the FL-Dmean, V5-30 and Lungs-Dmean, V10-30 (Vx: volume of receiving ≥X Gy), although it slightly compromised PTV conformability and increased Heart-V40 (P< 0.05). The 5F-IMRT had the lowest PTV-conformability index (CI) but had a lower Lungs and Heart irradiation dose compared with those of the 7F-IMRT and 9F-IMRT (P< 0.05). The 2F-VMAT had higher PTV-homogeneity index (HI) and reduced irradiation dose to FL, Lungs, and Heart compared to those of the 1F-VMAT planning (P< 0.05). The 2F-VMAT had higher PTV conformability and homogeneity and decreased FL-Dmean, V5-20 and Lungs-Dmean, V5-10 but correspondingly increased spinal cord-Dmean compared with those of the 5F-IMRT planning (P< 0.05).ConclusionIn this study, 4D-CT ventilation function image-based FL-sparing planning for esophageal cancer can effectively reduce the dose of the FL. The 2F-VMAT planning is better than the 5F-IMRT planning in reducing the dose of FL.
Collapse
|
11
|
VMAT-Based Planning Allows Sparing of a Spatial Dose Pattern Associated with Radiation Pneumonitis in Patients Treated with Radiotherapy for a Locally Advanced Lung Cancer. Cancers (Basel) 2022; 14:cancers14153702. [PMID: 35954366 PMCID: PMC9367460 DOI: 10.3390/cancers14153702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/07/2022] Open
Abstract
Introduction: In patients treated with radiotherapy for locally advanced lung cancer, respect for dose constraints to organs at risk (OAR) insufficiently protects patients from acute pulmonary toxicity (APT), such toxicities being associated with a potential impact on the treatment’s completion and the patient’s quality of life. Dosimetric planning does not take into account regional lung functionality. An APT prediction model combining usual dosimetry features with the mean dose (DMeanPmap) received by a voxel-based volume (Pmap) localized in the posterior right lung has been previously developed. A DMeanPmap of ≥30.3 Gy or a predicted APT probability (ProbAPT) of ≥8% were associated with a higher risk of APT. In the present study, the authors aim to demonstrate the possibility of decreasing the DMeanPmap via a volumetric arctherapy (VMAT)-based adapted planning and evaluate the impact on the risk of APT. Methods: Among the 207 patients included in the initial study, only patients who presented with APT of ≥grade 2 and with a probability of APT ≥ 8% based on the prediction model were included. Dosimetry planning was optimized with a new constraint (DMeanPmap < 30.3 Gy) added to the usual constraints. The initial and optimized treatment plans were compared using the t-test for the independent variables and the non-parametric Mann−Whitney U test otherwise, regarding both doses to the OARs and PTV (Planning Target Volume) coverage. Conformity and heterogeneity indexes were also compared. The risk of APT was recalculated using the new dosimetric features and the APT prediction model. Results: Dosimetric optimization was considered successful for 27 out of the 44 included patients (61.4%), meaning the dosimetric constraint on the Pmap region was achieved without compromising the PTV coverage (p = 0.61). The optimization significantly decreased the median DMeanPmap from 28.8 Gy (CI95% 24.2−33.4) to 22.1 Gy (CI95% 18.3−26.0). When recomputing the risk of APT using the new dosimetric features, the optimization significantly reduced the risk of APT (p < 0.0001) by reclassifying 43.2% (19/44) of the patients. Conclusion: Our approach appears to be both easily implementable on a daily basis and efficient at reducing the risk of APT. Regional radiosensitivity should be considered in usual lung dose constraints, opening the possibility of new treatment strategies, such as dose escalation or innovative treatment associations.
Collapse
|
12
|
Bourbonne V, Lucia F, Jaouen V, Bert J, Rehn M, Pradier O, Visvikis D, Schick U. Development and prospective validation of a spatial dose pattern based model predicting acute pulmonary toxicity in patients treated with volumetric arc-therapy for locally advanced lung cancer. Radiother Oncol 2021; 164:43-49. [PMID: 34547351 DOI: 10.1016/j.radonc.2021.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 12/25/2022]
Abstract
INTRODUCTION (Chemo)-radiotherapy is the standard treatment for patients with locally advanced lung cancer (LALC) not accessible to surgery. Despite strict application of dose constraints, acute toxicities such as acute pulmonary toxicity (APT) remain frequent, and may impact treatment's compliance and patients' quality of life. Previously, on a population treated with intensity-modulated photon therapy or passive scattering proton therapy, spatial dose patterns associated with APT were identified in the lower lungs, especially in the posterior right lung. In the present study, we aim to define these spatial dose patterns on a retrospective cohort treated by volumetric-arctherapy (VMAT) and to validate our findings prospectively. METHODS For the training cohort, we retrospectively included all patients treated in our institution by VMAT for a LALC between 2015 and 2018. APT was scored according to the CTCAE v4.0 scale. All dose maps were registered to a thorax phantom using a segmentation-based elastic registration. Voxel-based analysis of local dose differences was performed with a non-parametric permutation test accounting for n = 10.000 permutations, producing a 3-dimensional significance maps on which clusters of voxels that exhibited significant dose differences (p < 0.05) between the two toxicity groups (APT ≥ grade 2 vs APT < grade 2) were identified. A prediction model (Pmap-Model) was then built using a neural network approach and then applied to an observational prospective cohort for validation. The model was evaluated using the Area under the curve (AUC) and the balanced accuracy (Bacc: mean of the sensitivity and specificity). RESULTS 165 and 42 patients were included in the training and validation cohorts, with respective APT rates of 22.4% and 19.1%. In the training cohort, a cluster of voxels (Pmap-region) was identified in the posterior right lung. In the training cohort, the Pmap-Model combining 11 features among which the mean dose to the Pmap-region resulted in an AUC of 0.99 and a Bacc of 99.2 using an 8% probability threshold. Using the same voxel cluster on the validation cohort, the Pmap-model resulted in an AUC of 0.81 and a Bacc of 82.0. CONCLUSION Our APT-prediction model was successfully validated in a prospective cohort treated by VMAT. Regional radiosensitivity should be considered in usual lung dose constraints, opening the possibility of easily implementable adaptive dosimetry planning.
Collapse
Affiliation(s)
- Vincent Bourbonne
- Department of Radiation Oncology, University Hospital, Brest, France; LaTIM UMR 1101 INSERM, University Brest, Brest, France.
| | - François Lucia
- Department of Radiation Oncology, University Hospital, Brest, France; LaTIM UMR 1101 INSERM, University Brest, Brest, France
| | - Vincent Jaouen
- LaTIM UMR 1101 INSERM, University Brest, Brest, France; Institut Mines-Télécom Atlantique, Brest, France
| | - Julien Bert
- LaTIM UMR 1101 INSERM, University Brest, Brest, France
| | - Martin Rehn
- Department of Radiation Oncology, University Hospital, Brest, France
| | - Olivier Pradier
- Department of Radiation Oncology, University Hospital, Brest, France; LaTIM UMR 1101 INSERM, University Brest, Brest, France
| | | | - Ulrike Schick
- Department of Radiation Oncology, University Hospital, Brest, France; LaTIM UMR 1101 INSERM, University Brest, Brest, France
| |
Collapse
|
13
|
Lucia F, Rehn M, Blanc-Béguin F, Le Roux PY. Radiation Therapy Planning of Thoracic Tumors: A Review of Challenges Associated With Lung Toxicities and Potential Perspectives of Gallium-68 Lung PET/CT Imaging. Front Med (Lausanne) 2021; 8:723748. [PMID: 34513884 PMCID: PMC8429617 DOI: 10.3389/fmed.2021.723748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the introduction of new radiotherapy techniques, such as intensity modulated radiation therapy or stereotactic body radiation therapy, radiation induced lung injury remains a significant treatment related adverse event of thoracic radiation therapy. Functional lung avoidance radiation therapy is an emerging concept in the treatment of lung disease to better preserve lung function and to reduce pulmonary toxicity. While conventional ventilation/perfusion (V/Q) lung scintigraphy is limited by a relatively low spatial and temporal resolution, the recent advent of 68Gallium V/Q lung PET/CT imaging offers a potential to increase the accuracy of lung functional mapping and to better tailor lung radiation therapy plans to the individual's lung function. Lung PET/CT imaging may also improve our understanding of radiation induced lung injury compared to the current anatomical based dose–volume constraints. In this review, recent advances in radiation therapy for the management of primary and secondary lung tumors and in V/Q PET/CT imaging for the assessment of functional lung volumes are reviewed. The new opportunities and challenges arising from the integration of V/Q PET/CT imaging in radiation therapy planning are also discussed.
Collapse
Affiliation(s)
- François Lucia
- Radiation Oncology Department, University Hospital, Brest, France
| | - Martin Rehn
- Radiation Oncology Department, University Hospital, Brest, France
| | - Frédérique Blanc-Béguin
- Service de médecine nucléaire, CHRU de Brest, EA3878 (GETBO), Université de Brest, Brest, France
| | - Pierre-Yves Le Roux
- Service de médecine nucléaire, CHRU de Brest, EA3878 (GETBO), Université de Brest, Brest, France
| |
Collapse
|
14
|
Kamran SC, Yeap BY, Ulysse CA, Cronin C, Bowes CL, Durgin B, Gainor JF, Khandekar MJ, Tansky JY, Keane FK, Olsen CC, Willers H. Assessment of a Contralateral Esophagus-Sparing Technique in Locally Advanced Lung Cancer Treated With High-Dose Chemoradiation: A Phase 1 Nonrandomized Clinical Trial. JAMA Oncol 2021; 7:910-914. [PMID: 33830168 DOI: 10.1001/jamaoncol.2021.0281] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Importance Severe acute esophagitis occurs in up to 20% of patients with locally advanced lung cancer treated with chemoradiation therapy to at least 60 Gy once daily and represents a dose-limiting toxic event associated with poor outcomes. Objective To assess whether formalized sparing of the contralateral esophagus (CE) is associated with reduced risk of severe acute esophagitis. Design, Setting, and Participants This single-center phase 1 nonrandomized clinical trial assessing an empirical CE-sparing technique enrolled patients from July 2015 to January 2019. In total, 27 patients with locally advanced non-small cell lung carcinoma (with or without solitary brain metastasis) or limited-stage small cell lung carcinoma with gross tumor within 1 cm of the esophagus were eligible. Interventions Intensity-modulated radiation therapy to 70 Gy at 2 Gy/fraction concurrent with standard chemotherapy with or without adjuvant durvalumab. The esophageal wall contralateral to gross tumor was contoured as an avoidance structure to guide a steep dose falloff gradient. Target coverage was prioritized over CE sparing, and 99% of internal and planning target volumes had to be covered by 70 Gy and at least 63 Gy, respectively. Main Outcomes and Measures The primary end point was the rate of at least grade 3 acute esophagitis as assessed by Common Terminology Criteria for Adverse Events, version 4. Results Of 27 patients enrolled, 25 completed chemoradiation therapy. Nineteen patients had non-small cell lung carcinoma, and 6 had small cell lung carcinoma. The median age at diagnosis was 67 years (range, 51-81 years), and 15 patients (60%) were men. Thirteen patients (52%) had stage IIIA cancer, 10 (40%) had stage IIIB cancer, and 2 (8%) had stage IV cancer. The median CE maximum dose was 66 Gy (range, 44-71 Gy); the median volume of CE receiving at least 55 Gy was 1.4 cm3 (range, 0-5.3 cm3), and the median volume of CE receiving at least 45 Gy was 2.7 cm3 (range, 0-9.2 cm3). The median combined percentage of lung receiving at least 20 Gy was 25% (range, 11%-37%). The median follow-up was 33.3 months (range, 11.1-52.2 months). Among the 20 patients who had treatment breaks of 0 to 3 days and were thus evaluable for the primary end point, the rate of at least grade 3 esophagitis was 0%. Other toxic events observed among all 25 patients included 7 (28%) with grade 2 esophagitis, 3 (12%) with at least grade 2 pneumonitis (including 1 with grade 5), and 2 (8%) with at least grade 3 cardiac toxic event (including 1 with grade 5). There was no isolated local tumor failure. The 2-year progression-free survival rate was 57% (95% CI, 33%-75%), and the 2-year overall survival rate was 67% (95% CI, 45%-82%). Conclusions and Relevance This phase 1 nonrandomized clinical trial found that the CE-sparing technique was associated with reduced risk of esophagitis among patients treated uniformly with chemoradiation therapy (to 70 Gy), with no grade 3 or higher esophagitis despite tumor within 1 cm of the esophagus. This technique may be translated into clinical practice. Trial Registration ClinicalTrials.gov Identifier: NCT02394548.
Collapse
Affiliation(s)
- Sophia C Kamran
- Department of Radiation Oncology, Massachusetts General Hospital, Boston
| | - Beow Y Yeap
- Department of Medicine, Massachusetts General Hospital, Boston
| | | | - Catherine Cronin
- Department of Radiation Oncology, Massachusetts General Hospital, Boston
| | - Cynthia L Bowes
- Department of Radiation Oncology, Massachusetts General Hospital, Boston
| | - Brittany Durgin
- Department of Radiation Oncology, Massachusetts General Hospital, Boston
| | - Justin F Gainor
- Department of Medicine, Massachusetts General Hospital, Boston
| | - Melin J Khandekar
- Department of Radiation Oncology, Massachusetts General Hospital, Boston
| | - Joanna Y Tansky
- Department of Radiation Oncology, Massachusetts General Hospital, Boston.,Department of Radiation Oncology, Newton-Wellesley Hospital, Newton, Massachusetts
| | - Florence K Keane
- Department of Radiation Oncology, Massachusetts General Hospital, Boston.,Department of Radiation Oncology, Newton-Wellesley Hospital, Newton, Massachusetts
| | - Christine C Olsen
- Department of Radiation Oncology, Massachusetts General Hospital, Boston.,Department of Radiation Oncology, Newton-Wellesley Hospital, Newton, Massachusetts
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Boston
| |
Collapse
|
15
|
Ribeiro CO, Visser S, Korevaar EW, Sijtsema NM, Anakotta RM, Dieters M, Both S, Langendijk JA, Wijsman R, Muijs CT, Meijers A, Knopf A. Towards the clinical implementation of intensity-modulated proton therapy for thoracic indications with moderate motion: Robust optimised plan evaluation by means of patient and machine specific information. Radiother Oncol 2021; 157:210-218. [DOI: 10.1016/j.radonc.2021.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 12/09/2020] [Accepted: 01/06/2021] [Indexed: 02/09/2023]
|
16
|
Hoffmann L, Knap MM, Alber M, Møller DS. Optimal beam angle selection and knowledge-based planning significantly reduces radiotherapy dose to organs at risk for lung cancer patients. Acta Oncol 2021; 60:293-299. [PMID: 33306422 DOI: 10.1080/0284186x.2020.1856409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Lung cancer patients struggle with high toxicity rates. This study investigates if IMRT plans with individually set beam angles or uni-lateral VMAT plans results in dose reduction to OARs. We investigate if introduction of a RapidPlan model leads to reduced dose to OARs. Finally, the model is validated prospectively. MATERIAL AND METHODS Seventy-four consecutive lung cancer patients treated with IMRT were included. For all patients, new IMRT plans were made by an experienced dose planner re-tuning beam angles aiming for minimized dose to the lungs and heart. Additionally, VMAT plans were made. The IMRT plans were selected as input for a RapidPlan model, which was used to generate 74 new IMRT plans. The new IMRT plans were used as input for a second RapidPlan model. This model was clinically implemented and used for generation of clinical treatment plans. Dosimetric parameters were compared using a Wilcoxon signed rank test or a 1-sided student's t-test. p < .05 was considered significant. RESULTS IMRT plans significantly reduced mean doses to lungs (MLD) and heart (MHD) by 1.6 Gy and 1.7 Gy in mean compared to VMAT plans. MLD was significantly (p < .001) reduced from 10.8 Gy to 9.4 Gy by using the second RapidPlan model. MHD was significantly (p < .001) reduced from 4.9 Gy to 3.9 Gy. The model was validated in prospectively collected treatment plans showing significantly lower MLD after the implementation of the second RapidPlan model. CONCLUSION Introduction of RapidPlan and beam angles selected based on the target and OARs position reduces dose to OARs.
Collapse
Affiliation(s)
- L. Hoffmann
- Department of Oncology, Section for Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - M. M. Knap
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - M. Alber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - D. S. Møller
- Department of Oncology, Section for Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
17
|
Abstract
The paper describes a computer tool dedicated to the comprehensive analysis of lung changes in computed tomography (CT) images. The correlation between the dose delivered during radiotherapy and pulmonary fibrosis is offered as an example analysis. The input data, in DICOM (Digital Imaging and Communications in Medicine) format, is provided from CT images and dose distribution models of patients. The CT images are processed using convolution neural networks, and next, the selected slices go through the segmentation and registration algorithms. The results of the analysis are visualized in graphical format and also in numerical parameters calculated based on the images analysis.
Collapse
|
18
|
Bourbonne V, Delafoy A, Lucia F, Quéré G, Pradier O, Schick U. Toxicity after volumetric modulated arc therapy for lung cancer: a monocentric retrospective study. Transl Lung Cancer Res 2021; 10:156-166. [PMID: 33569301 PMCID: PMC7867762 DOI: 10.21037/tlcr-20-406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Intensity-modulated radiotherapy (RT) is now widely implemented and has replaced classical three-dimensional (3D)-RT in many tumor sites, as it allows a better target dose conformity and a better sparing of organs a risk (OAR), at the expense, however, of increasing the volume of low dose to normal tissues. Clinical data on toxicities using volumetric modulated arc therapy (VMAT) in lung cancer remain scarce. We aimed to report both acute (APT) and late (LPT) pulmonary and acute (AET) and late (LET) oesophageal toxicities in such setting. Methods All patients treated for a primary lung cancer with VMAT +/- chemotherapy (ChT) in our center from 2014 to 2018 were retrospectively included. Usual clinical, treatment and dosimetric features were collected. Univariate analysis was performed using the receiver operative characteristics approach while multivariate analysis (MVA) relied on logistic regression, calculated with Medcalc 14.8.1. Results In total, 167 patients were included, with a median age of 66 years (39-88 years). Median radiation dose was 66 Gy (30-66 Gy); 82% patients received concomitant (32.3%), induction (25.7%) or induction followed by concomitant ChT (24%). After a median follow-up of 14.0 months, the G ≥2 APT, AET, LPT and LET rates were 22.2%, 30.0%, 16.8% and 5.4%, respectively with low grade ≥3 toxicity rates (respectively, 3%, 6.6%, 3% and 0%). On MVA, APT was significantly associated with V30 to the homolateral lung, AET with age, LPT with MEVS while no feature remained significantly correlated with LET. Conclusions Low rates of pulmonary and esophageal toxicity were observed in our cohort. Larger prospective studies are needed to confirm these results.
Collapse
Affiliation(s)
- Vincent Bourbonne
- Radiation Oncology Department, CHRU Brest, Brest, France.,LaTIM, INSERM UMR 1101, Univ Brest, Brest, France
| | - Alice Delafoy
- Radiation Oncology Department, CHRU Brest, Brest, France
| | - François Lucia
- Radiation Oncology Department, CHRU Brest, Brest, France.,LaTIM, INSERM UMR 1101, Univ Brest, Brest, France
| | - Gilles Quéré
- Medical Oncology Department, CHRU Brest, Brest, France
| | - Olivier Pradier
- Radiation Oncology Department, CHRU Brest, Brest, France.,LaTIM, INSERM UMR 1101, Univ Brest, Brest, France
| | - Ulrike Schick
- Radiation Oncology Department, CHRU Brest, Brest, France.,LaTIM, INSERM UMR 1101, Univ Brest, Brest, France
| |
Collapse
|
19
|
Bourbonne V, Da-Ano R, Jaouen V, Lucia F, Dissaux G, Bert J, Pradier O, Visvikis D, Hatt M, Schick U. Radiomics analysis of 3D dose distributions to predict toxicity of radiotherapy for lung cancer. Radiother Oncol 2020; 155:144-150. [PMID: 33161012 DOI: 10.1016/j.radonc.2020.10.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE (Chemo)-radiotherapy (RT) is the gold standard treatment for patients with locally advanced lung cancer non accessible for surgery. However, current toxicity prediction models rely on clinical and dose volume histograms (DVHs) and remain unsufficient. The goal of this work is to investigate the added predictive value of the radiomics approach applied to dose maps regarding acute and late toxicities in both the lungs and esophagus. METHODS Acute and late toxicities scored using the CTCAE v4.0 were retrospectively collected on patients treated with RT in our institution. Radiomic features were extracted from 3D dose maps considering Gy values as grey-levels in images. DVH and usual clinical factors were also considered. Three toxicity prediction models (clinical only, clinical + DVH and combined, i.e., including clinical + DVH + radiomics) were incrementally trained using a neural network on 70% of the patients for prediction of grade ≥2 acute and late pulmonary toxicities (APT/LPT) and grade ≥2 acute esophageal toxicities (AET). After bootstrapping (n = 1000), optimal cut-off values were determined based on the Youden Index. The trained models were then evaluated in the remaining 30% of patients using balanced accuracy (BAcc). RESULTS 167 patients were treated from 2015 to 2018: 78% non small-cell lung cancers, 14% small-cell lung cancers and 8% other histology with a median age at treatment of 66 years. Respectively, 22.2%, 16.8% and 30.0% experienced APT, LPT and AET. In the training set (n = 117), the corresponding BAcc for clinical only/clinical + DVH/combined were 0.68/0.79/0.92, 0.66/0.77/0.87 and 0.68/0.73/0.84. In the testing evaluation (n = 50), these trained models obtained a corresponding BAcc of 0.69/0.69/0.92, 0.76/0.80/0.89 and 0.58/0.73/0.72. CONCLUSION In patients with a lung cancer treated with RT, radiomic features extracted from 3D dose maps seem to surpass usual models based on clinical factors and DVHs for the prediction of APT and LPT.
Collapse
Affiliation(s)
- V Bourbonne
- Radiation Oncology Department, University Hospital, Brest, France; LaTIM, UMR 1101, INSERM, Univ Brest, Brest, France.
| | - R Da-Ano
- LaTIM, UMR 1101, INSERM, Univ Brest, Brest, France
| | - V Jaouen
- LaTIM, UMR 1101, INSERM, Univ Brest, Brest, France
| | - F Lucia
- Radiation Oncology Department, University Hospital, Brest, France; LaTIM, UMR 1101, INSERM, Univ Brest, Brest, France
| | - G Dissaux
- Radiation Oncology Department, University Hospital, Brest, France; LaTIM, UMR 1101, INSERM, Univ Brest, Brest, France
| | - J Bert
- LaTIM, UMR 1101, INSERM, Univ Brest, Brest, France
| | - O Pradier
- Radiation Oncology Department, University Hospital, Brest, France; LaTIM, UMR 1101, INSERM, Univ Brest, Brest, France
| | - D Visvikis
- LaTIM, UMR 1101, INSERM, Univ Brest, Brest, France
| | - M Hatt
- LaTIM, UMR 1101, INSERM, Univ Brest, Brest, France
| | - U Schick
- Radiation Oncology Department, University Hospital, Brest, France; LaTIM, UMR 1101, INSERM, Univ Brest, Brest, France
| |
Collapse
|
20
|
Meng Y, Luo W, Wang W, Zhou C, Zhou S, Tang X, Hou L, Kong FMS, Yang H. Intermediate Dose-Volume Parameters, Not Low-Dose Bath, Is Superior to Predict Radiation Pneumonitis for Lung Cancer Treated With Intensity-Modulated Radiotherapy. Front Oncol 2020; 10:584756. [PMID: 33178612 PMCID: PMC7594624 DOI: 10.3389/fonc.2020.584756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Purpose Although intensity-modulated radiotherapy (IMRT) is now a preferred option for conventionally fractionated RT in lung cancer, the commonly used cutoff values of the dosimetric constraints are still mainly derived from the data using three-dimensional conformal radiotherapy (3D-CRT). We aimed to compare the prediction performance among different dosimetric parameters for acute radiation pneumonitis (RP) in patients with lung cancer received IMRT. Methods A total of 236 patients treated with IMRT were retrospectively reviewed in two independent groups of lung cancer from January 2014 to August 2018. The primary endpoint was grade 2 or higher acute RP (RP2). Dose metrics were generated from the bilateral lung volume outside GTV (VdoseG) and PTV (VdoseP). The associations of RP2 with clinical variables, dose-volume parameters and mean lung dose (MLD) were analyzed by univariate and multivariate logistic regression. The power of discrimination among each predictor was assessed by employing the bootstrapped area under the receiver operating characteristic curve (AUC), net reclassification improvement (NRI), and the integrated discrimination improvement (IDI). Results Thirty-four (14.4%) out of 236 patients developed acute RP2 after the end of IMRT. The clinical parameters were identified as less important predictors for RP2 based on univariate and multivariate analysis. In both studied groups, the significance of association was more convincing in V20P, V30P, and MLDP (smaller Ps) than V5G and V5P. The largest bootstrapped AUC was identified for the V30P. We found a trend of better discriminating performance for the V20P and V30P, and MLDP than the V5G and V5P according to the higher values in AUC, IDI, and NRI analysis. To limit RP2 incidence less than 20%, the V30P cutoff was 14.5%. Conclusions This study identified the intermediate dose-volume parameters V20P and V30P with better prediction performance for acute RP2 than low-dose metrics V5G and V5P. Among all studied predictors, the V30P had the best discriminating power, and should be considered as a supplement to the traditional dose constraints in lung cancer treated with IMRT.
Collapse
Affiliation(s)
- Yinnan Meng
- Laboratory of Cellular and Molecular Radiation Oncology, Radiation Oncology Institute of Enze Medical Health Academy, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China.,Department of Radiation Oncology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China
| | - Wei Luo
- Department of Radiation Medicine, University of Kentucky, Lexington, KY, United States
| | - Wei Wang
- Laboratory of Cellular and Molecular Radiation Oncology, Radiation Oncology Institute of Enze Medical Health Academy, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China.,Department of Radiation Oncology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China
| | - Chao Zhou
- Laboratory of Cellular and Molecular Radiation Oncology, Radiation Oncology Institute of Enze Medical Health Academy, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China.,Department of Radiation Oncology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China
| | - Suna Zhou
- Laboratory of Cellular and Molecular Radiation Oncology, Radiation Oncology Institute of Enze Medical Health Academy, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China.,Department of Radiation Oncology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China
| | - Xingni Tang
- Laboratory of Cellular and Molecular Radiation Oncology, Radiation Oncology Institute of Enze Medical Health Academy, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China.,Department of Radiation Oncology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China
| | - Liqiao Hou
- Laboratory of Cellular and Molecular Radiation Oncology, Radiation Oncology Institute of Enze Medical Health Academy, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China.,Department of Radiation Oncology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China
| | - Feng-Ming Spring Kong
- Laboratory of Cellular and Molecular Radiation Oncology, Radiation Oncology Institute of Enze Medical Health Academy, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China.,Department of Clinical Oncology, Hong Kong University Shenzhen Hospital and Queen Mary Hospital, Hong Kong University Li Ka Shing Medical School, Hong Kong, China.,Department of Radiation Oncology, University Hospitals/Seidman Cancer Center and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
| | - Haihua Yang
- Laboratory of Cellular and Molecular Radiation Oncology, Radiation Oncology Institute of Enze Medical Health Academy, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China.,Department of Radiation Oncology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China
| |
Collapse
|
21
|
Käsmann L, Dietrich A, Staab-Weijnitz CA, Manapov F, Behr J, Rimner A, Jeremic B, Senan S, De Ruysscher D, Lauber K, Belka C. Radiation-induced lung toxicity - cellular and molecular mechanisms of pathogenesis, management, and literature review. Radiat Oncol 2020; 15:214. [PMID: 32912295 PMCID: PMC7488099 DOI: 10.1186/s13014-020-01654-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
Lung, breast, and esophageal cancer represent three common malignancies with high incidence and mortality worldwide. The management of these tumors critically relies on radiotherapy as a major part of multi-modality care, and treatment-related toxicities, such as radiation-induced pneumonitis and/or lung fibrosis, are important dose limiting factors with direct impact on patient outcomes and quality of life. In this review, we summarize the current understanding of radiation-induced pneumonitis and pulmonary fibrosis, present predictive factors as well as recent diagnostic and therapeutic advances. Novel candidates for molecularly targeted approaches to prevent and/or treat radiation-induced pneumonitis and pulmonary fibrosis are discussed.
Collapse
Affiliation(s)
- Lukas Käsmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany.
- German Center for Lung Research (DZL), partner site Munich, Munich, Germany.
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany.
| | - Alexander Dietrich
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Medical Faculty, LMU-Munich, Munich, Germany
| | - Claudia A Staab-Weijnitz
- German Center for Lung Research (DZL), partner site Munich, Munich, Germany
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany
| | - Farkhad Manapov
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- German Center for Lung Research (DZL), partner site Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Jürgen Behr
- German Center for Lung Research (DZL), partner site Munich, Munich, Germany
- Department of Internal Medicine V, LMU Munich, Munich, Germany
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, USA
| | | | - Suresh Senan
- Department of Radiation Oncology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- German Center for Lung Research (DZL), partner site Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| |
Collapse
|
22
|
Giuranno L, Ient J, De Ruysscher D, Vooijs MA. Radiation-Induced Lung Injury (RILI). Front Oncol 2019; 9:877. [PMID: 31555602 PMCID: PMC6743286 DOI: 10.3389/fonc.2019.00877] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Radiation pneumonitis (RP) and radiation fibrosis (RF) are two dose-limiting toxicities of radiotherapy (RT), especially for lung, and esophageal cancer. It occurs in 5-20% of patients and limits the maximum dose that can be delivered, reducing tumor control probability (TCP) and may lead to dyspnea, lung fibrosis, and impaired quality of life. Both physical and biological factors determine the normal tissue complication probability (NTCP) by Radiotherapy. A better understanding of the pathophysiological sequence of radiation-induced lung injury (RILI) and the intrinsic, environmental and treatment-related factors may aid in the prevention, and better management of radiation-induced lung damage. In this review, we summarize our current understanding of the pathological and molecular consequences of lung exposure to ionizing radiation, and pharmaceutical interventions that may be beneficial in the prevention or curtailment of RILI, and therefore enable a more durable therapeutic tumor response.
Collapse
Affiliation(s)
- Lorena Giuranno
- Department of Radiotherapy, GROW School for Oncology Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jonathan Ient
- Department of Radiotherapy, GROW School for Oncology Maastricht University Medical Centre, Maastricht, Netherlands
| | - Dirk De Ruysscher
- Department of Radiotherapy, GROW School for Oncology Maastricht University Medical Centre, Maastricht, Netherlands
| | - Marc A Vooijs
- Department of Radiotherapy, GROW School for Oncology Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
23
|
Murrell DH, Karnas SJ, Corkum MT, Hipwell S, Palma DA, Rodrigues G, Louie AV. Radical radiotherapy for locally advanced non-small cell lung cancer-what's up with arm positioning? J Thorac Dis 2019; 11:2099-2104. [PMID: 31285903 DOI: 10.21037/jtd.2019.05.40] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Radical thoracic radiotherapy is ideally delivered in the arms-up (AU) position; however, patient comfort may only allow for arms-down (AD) positioning to be feasible. Objectives of this study were (I) to evaluate the dosimetric impact of changing arm position during treatment and (II) to compare plan quality for optimization in AU vs. AD positions. In this retrospective planning study, stage III lung cancer patients (n=10) who received 60 Gy in 30 fractions using volumetric modulated arc therapy (VMAT) were identified. To simulate AD treatment, a PET/CT (acquired AD) was registered to the planning CT (acquired AU) for arm delineation. The clinically delivered plan (AU) was recalculated with a density override to 1 g/cm3 for one or both arm contours (AD). Plans were also re-optimized for the AD position. Dose-volume parameters were compared for each scenario. Moving from AU to AD without re-optimization resulted in a mean 3.7% reduction in PTV D95; in all cases, this caused 95% of the PTV to receive ≤57 Gy. The mean arms D2cc were 23.1 and 4.0 Gy for the ipsilateral and contralateral, respectively. Dosimetric consequences of ipsilateral arm only were similar to both AD, whereas contralateral arm only had less than 1% effect on PTV D95. Re-optimizing to account for both AD recovered PTV D95 coverage with acceptable doses to all organs at risk. Arm D2cc were also decreased to 5.5 and 2.3 Gy for ipsilateral and contralateral, respectively. There was a significant difference in heart V25 and mean heart dose (P<0.001), but the magnitude was small at 4.1% for V25 and 1.7 Gy for mean heart dose and the plans still met institutional dose constraints. This planning study suggests that it is feasible to plan radiotherapy for locally advanced lung cancer patients in the AD position using VMAT, when necessary, with only a modest dosimetric impact.
Collapse
Affiliation(s)
- Donna H Murrell
- Physics and Engineering, London Regional Cancer Program, London, ON, Canada
| | - Scott J Karnas
- Physics and Engineering, London Regional Cancer Program, London, ON, Canada.,Department of Radiation Oncology, London Health Sciences Centre, London, ON, Canada
| | - Mark T Corkum
- Department of Radiation Oncology, London Health Sciences Centre, London, ON, Canada
| | - Scott Hipwell
- Physics and Engineering, London Regional Cancer Program, London, ON, Canada
| | - David A Palma
- Department of Radiation Oncology, London Health Sciences Centre, London, ON, Canada
| | - George Rodrigues
- Department of Radiation Oncology, London Health Sciences Centre, London, ON, Canada
| | - Alexander V Louie
- Department of Radiation Oncology, London Health Sciences Centre, London, ON, Canada.,Department of Epidemiology and Biostatistics, Western University, London, ON, Canada.,Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
24
|
Creemers IHP, Kusters JMAM, van Kollenburg PGM, Bouwmans LCW, Schinagl DAX, Bussink J. Comparison of dose metrics between automated and manual radiotherapy planning for advanced stage non-small cell lung cancer with volumetric modulated arc therapy. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2019; 9:92-96. [PMID: 33458432 PMCID: PMC7807870 DOI: 10.1016/j.phro.2019.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Iris H P Creemers
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Johannes M A M Kusters
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Liza C W Bouwmans
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dominic A X Schinagl
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
25
|
Wu K, Xu X, Li X, Wang J, Zhu L, Chen X, Wang B, Zhang M, Xia B, Ma S. Radiation pneumonitis in lung cancer treated with volumetric modulated arc therapy. J Thorac Dis 2018; 10:6531-6539. [PMID: 30746197 DOI: 10.21037/jtd.2018.11.132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Few studies to date have assessed the incidence of radiation pneumonitis (RP) in lung cancer patients who have been treated with volumetric modulated arc therapy (VMAT). This study is aimed at reporting the RP incidence rate and the risk factors associated with a symptomatic RP in patients with lung cancer treated with VMAT. Methods A total of 77 consecutive lung cancer patients treated with VMAT from 2013 through 2015 were reviewed. RP severity was graded according to the Common Terminology Criteria for Adverse Events (CTCEA) v.4. Univariate and multivariate analyses were performed to identify the significant factors associated with RP. Results VMAT allowed us to achieve most planning objectives on the target volumes and organs at risk, for PTV V95% =96.8%±3.1%, for lung V5 =41.3%±8.7%, V10 =30.0%±7.1%, V20 =20.9%±5.7%, for heart V5 =43.2%±29.9%, for esophagus V60 =8.1%±12.9%. The maximum dose of spinal cord was 34.4±9.5 Gy. The overall incidence of symptomatic RP (grade ≥2 by CTCAE) was 28.6% in the entire cohort, and the rate of grade ≥3 RP was 11.7%. Based on the multivariate analysis, factors predictive of symptomatic RP included lung volume receiving ≥10 Gy (V10) (P=0.019) and C-reactive protein changing level (P=0.013). Conclusions Our data showed that the incidence rate of RP was acceptable in lung cancer patients treated with VMAT. Additionally, we found that V10 might be an important factor for predicting the development of RP when VMAT was used; but this observation needs to be validated in future studies.
Collapse
Affiliation(s)
- Kan Wu
- Department of Oncology, The Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou Cancer Hospital, Hangzhou 310006, China
| | - Xiao Xu
- Department of Radiation Oncology, The Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou Cancer Hospital, Hangzhou 310006, China
| | - Xiadong Li
- Department of Radiation Oncology, The Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou Cancer Hospital, Hangzhou 310006, China
| | - Jiahao Wang
- Department of Radiation Oncology, The Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou Cancer Hospital, Hangzhou 310006, China
| | - Lucheng Zhu
- Department of Radiation Oncology, The Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou Cancer Hospital, Hangzhou 310006, China
| | - Xueqin Chen
- Department of Oncology, The Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou Cancer Hospital, Hangzhou 310006, China
| | - Bing Wang
- Department of Radiation Oncology, The Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou Cancer Hospital, Hangzhou 310006, China
| | - Minna Zhang
- Department of Radiation Oncology, The Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou Cancer Hospital, Hangzhou 310006, China
| | - Bing Xia
- Department of Radiation Oncology, The Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou Cancer Hospital, Hangzhou 310006, China
| | - Shenglin Ma
- Department of Oncology, The Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou Cancer Hospital, Hangzhou 310006, China
| |
Collapse
|
26
|
External validation of an NTCP model for acute esophageal toxicity in locally advanced NSCLC patients treated with intensity-modulated (chemo-)radiotherapy. Radiother Oncol 2018; 129:249-256. [DOI: 10.1016/j.radonc.2018.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/23/2018] [Accepted: 07/23/2018] [Indexed: 01/06/2023]
|
27
|
Intensity-modulated radiation therapy versus volumetric-modulated arc therapy in non-small cell lung cancer: assessing the risk of radiation pneumonitis. JOURNAL OF RADIOTHERAPY IN PRACTICE 2018. [DOI: 10.1017/s1460396917000358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractPurposeThis study aimed to compare intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) regarding plan quality and healthy lung sparing, in stage III non-small cell lung cancer (NSCLC) patients.Materials and methodsThe plans of 60 patients were allocated either to the IMRT (n=30) or the VMAT (n=30) group. The dose prescribed to the planning target volume (PTV) was evaluated at the 95% level and the mean lung dose (MLD) and the healthy lung receiving 5, 10 and 20 Gy (V5, V10and V20, respectively) were analysed. The normal tissue complication probability (NTCP) for radiation pneumonitis was calculated with the Lyman–Kutcher–Burman model.ResultsBoth techniques achieved comparable results for target coverage (V95%=97·87 versus 97·18%,p>0·05) and homogeneity. The MLD (15·57 versus 16·98 Gy,p>0·05), V5(60·35 versus 67·25%,p>0·05) and V10(45·22 versus 53·14%,p=0·011) were lower for IMRT, whereas VMAT reduced V20(26·44 versus 25·90%,p>0·05). The NTCP for radiation pneumonitis was higher for VMAT, but no statistical significance was observed (11·07 versus 12·75,p>0·05).ConclusionBoth techniques seemed suitable for NSCLC treatment, but IMRT presented better results regarding lung sparing thus being beneficial in reducing the risk of radiation-induced pneumonitis.
Collapse
|
28
|
Inclusion of Incidental Radiation Dose to the Cardiac Atria and Ventricles Does Not Improve the Prediction of Radiation Pneumonitis in Advanced-Stage Non-Small Cell Lung Cancer Patients Treated With Intensity Modulated Radiation Therapy. Int J Radiat Oncol Biol Phys 2017; 99:434-441. [PMID: 28871994 DOI: 10.1016/j.ijrobp.2017.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/16/2017] [Accepted: 04/10/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE To evaluate whether inclusion of incidental radiation dose to the cardiac atria and ventricles improves the prediction of grade ≥3 radiation pneumonitis (RP) in advanced-stage non-small cell lung cancer (AS-NSCLC) patients treated with intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT). METHODS AND MATERIALS Using a bootstrap modeling approach, clinical parameters and dose-volume histogram (DVH) parameters of lungs and heart (assessing atria and ventricles separately and combined) were evaluated for RP prediction in 188 AS-NSCLC patients. RESULTS After a median follow-up of 18.4 months, 26 patients (13.8%) developed RP. Only the median mean lung dose (MLD) differed between groups (15.3 Gy vs 13.7 Gy for the RP and non-RP group, respectively; P=.004). The MLD showed the highest Spearman correlation coefficient (Rs) for RP (Rs = 0.21; P<.01). Most Rs of the lung DVH parameters exceeded those of the heart DVH parameters. After predictive modeling using a bootstrap procedure, the MLD was always included in the predictive model for grade ≥3 RP, whereas the heart DVH parameters were seldom included in the model. CONCLUSION Incidental dose to the cardiac atria and ventricles did not improve RP risk prediction in our cohort of 188 AS-NSCLC patients treated with IMRT or VMAT.
Collapse
|