1
|
Bentsen KK, Brink C, Nielsen TB, Lynggaard RB, Vinholt PJ, Schytte T, Hansen O, Jeppesen SS. Cumulative rib fracture risk after stereotactic body radiotherapy in patients with localized non-small cell lung cancer. Radiother Oncol 2024; 200:110481. [PMID: 39159679 DOI: 10.1016/j.radonc.2024.110481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
INTRODUCTION Rib fracture is a known complication after stereotactic body radiotherapy (SBRT). Patient-related parameters are essential to provide patient-tailored risk estimation, however, their impact on rib fracture is less documented compared to dosimetric parameters. This study aimed to predict the risk of rib fractures in patients with localized non-small cell lung cancer (NSCLC) post-SBRT based on both patient-related and dosimetric parameters with death as a competing risk. MATERIALS AND METHODS In total, 602 patients with localized NSCLC treated with SBRT between 2010-2020 at Odense University Hospital, Denmark were included. All patients received SBRT with 45-66 Gray (Gy)/3 fractions. Rib fractures were identified in CT-scans using a word embedding model. The cumulative incidence function was based on cause-specific Cox hazard models with variable selection based on cross-validation model likelihood performed using 50 bootstraps. RESULTS In total, 19 % of patients experienced a rib fracture. The cumulative risk of rib fracture increased rapidly from 6-54 months post-SBRT. Female gender, bone density, near max dose to the rib, V30 and V40 to the rib, gross tumor volume, and mean lung dose were significantly associated with rib fracture risk in univariable analysis. The final multi-variable model consisted of V20 and V30 to the rib and mean lung dose. CONCLUSION Female gender and low bone density in male patients are significant predictors of rib fracture risk. The final model predicting cumulative rib fracture risk of 19 % in patients with localized NSCLC treated with SBRT contained no patient-related parameters, suggesting that dosimetric parameters are the primary drivers.
Collapse
Affiliation(s)
- Kristian Kirkelund Bentsen
- Department of Oncology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark.
| | - Carsten Brink
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Tine Bjørn Nielsen
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Rasmus Bank Lynggaard
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Pernille Just Vinholt
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Tine Schytte
- Department of Oncology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Olfred Hansen
- Department of Oncology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| | - Stefan Starup Jeppesen
- Department of Oncology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| |
Collapse
|
2
|
Way AR, Wasserman PL, Mailhot R, Letter H. Radiation-Induced Rib Fractures on Magnetic Resonance Imaging Following Proton Therapy for Breast Cancer With Pencil Beam Scanning. Cureus 2020; 12:e11120. [PMID: 33240715 PMCID: PMC7682907 DOI: 10.7759/cureus.11120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Radiation-induced rib fractures (RIRF) are long-term complications associated with irradiation of the chest/chest wall. RIRFs are commonly seen in lung- or breast-cancer patients treated with stereotactic body radiotherapy (SBRT) or conventional external beam radiation therapy (EBRT), respectively. We report a case of a 31-year-old female presenting with pathological fractures of the third, fourth, and fifth ribs discovered on magnetic resonance imaging (MRI) as a complication from pencil beam scanning (PBS) proton therapy (PT), of the whole left breast and regional lymph nodes. To our knowledge, this presentation is the first to be initially reported on MRI in radiological literature.
Collapse
|