1
|
Bao H, Wang H, Sun Q, Wang Y, Liu H, Liang P, Lv Z. The involvement of brain regions associated with lower KPS and shorter survival time predicts a poor prognosis in glioma. Front Neurol 2023; 14:1264322. [PMID: 38111796 PMCID: PMC10725945 DOI: 10.3389/fneur.2023.1264322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/14/2023] [Indexed: 12/20/2023] Open
Abstract
Background Isocitrate dehydrogenase-wildtype glioblastoma (IDH-wildtype GBM) and IDH-mutant astrocytoma have distinct biological behaviors and clinical outcomes. The location of brain tumors is closely associated not only with clinical symptoms and prognosis but also with key molecular alterations such as IDH. Therefore, we hypothesize that the key brain regions influencing the prognosis of glioblastoma and astrocytoma are likely to differ. This study aims to (1) identify specific regions that are associated with the Karnofsky Performance Scale (KPS) or overall survival (OS) in IDH-wildtype GBM and IDH-mutant astrocytoma and (2) test whether the involvement of these regions could act as a prognostic indicator. Methods A total of 111 patients with IDH-wildtype GBM and 78 patients with IDH-mutant astrocytoma from the Cancer Imaging Archive database were included in the study. Voxel-based lesion-symptom mapping (VLSM) was used to identify key brain areas for lower KPS and shorter OS. Next, we analyzed the structural and cognitive dysfunction associated with these regions. The survival analysis was carried out using Kaplan-Meier survival curves. Another 72 GBM patients and 48 astrocytoma patients from Harbin Medical University Cancer Hospital were used as a validation cohort. Results Tumors located in the insular cortex, parahippocampal gyrus, and middle and superior temporal gyrus of the left hemisphere tended to lead to lower KPS and shorter OS in IDH-wildtype GBM. The regions that were significantly correlated with lower KPS in IDH-mutant astrocytoma included the subcallosal cortex and cingulate gyrus. These regions were associated with diverse structural and cognitive impairments. The involvement of these regions was an independent predictor for shorter survival in both GBM and astrocytoma. Conclusion This study identified the specific regions that were significantly associated with OS or KPS in glioma. The results may help neurosurgeons evaluate patient survival before surgery and understand the pathogenic mechanisms of glioma in depth.
Collapse
Affiliation(s)
- Hongbo Bao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huan Wang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Qian Sun
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yujie Wang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Hui Liu
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Peng Liang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Zhonghua Lv
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Scola E, Del Vecchio G, Busto G, Bianchi A, Desideri I, Gadda D, Mancini S, Carlesi E, Moretti M, Desideri I, Muscas G, Della Puppa A, Fainardi E. Conventional and Advanced Magnetic Resonance Imaging Assessment of Non-Enhancing Peritumoral Area in Brain Tumor. Cancers (Basel) 2023; 15:cancers15112992. [PMID: 37296953 DOI: 10.3390/cancers15112992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The non-enhancing peritumoral area (NEPA) is defined as the hyperintense region in T2-weighted and fluid-attenuated inversion recovery (FLAIR) images surrounding a brain tumor. The NEPA corresponds to different pathological processes, including vasogenic edema and infiltrative edema. The analysis of the NEPA with conventional and advanced magnetic resonance imaging (MRI) was proposed in the differential diagnosis of solid brain tumors, showing higher accuracy than MRI evaluation of the enhancing part of the tumor. In particular, MRI assessment of the NEPA was demonstrated to be a promising tool for distinguishing high-grade gliomas from primary lymphoma and brain metastases. Additionally, the MRI characteristics of the NEPA were found to correlate with prognosis and treatment response. The purpose of this narrative review was to describe MRI features of the NEPA obtained with conventional and advanced MRI techniques to better understand their potential in identifying the different characteristics of high-grade gliomas, primary lymphoma and brain metastases and in predicting clinical outcome and response to surgery and chemo-irradiation. Diffusion and perfusion techniques, such as diffusion tensor imaging (DTI), diffusional kurtosis imaging (DKI), dynamic susceptibility contrast-enhanced (DSC) perfusion imaging, dynamic contrast-enhanced (DCE) perfusion imaging, arterial spin labeling (ASL), spectroscopy and amide proton transfer (APT), were the advanced MRI procedures we reviewed.
Collapse
Affiliation(s)
- Elisa Scola
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Guido Del Vecchio
- Radiodiagnostic Unit N. 2, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50121 Florence, Italy
| | - Giorgio Busto
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Andrea Bianchi
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Ilaria Desideri
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Davide Gadda
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Sara Mancini
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Edoardo Carlesi
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Marco Moretti
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy
| | - Isacco Desideri
- Radiation Oncology, Oncology Department, Careggi University Hospital, University of Florence, 50121 Florence, Italy
| | - Giovanni Muscas
- Neurosurgery Unit, Department of Neuroscience, Psychology, Pharmacology and Child Health, Careggi University Hospital, University of Florence, 50121 Florence, Italy
| | - Alessandro Della Puppa
- Neurosurgery Unit, Department of Neuroscience, Psychology, Pharmacology and Child Health, Careggi University Hospital, University of Florence, 50121 Florence, Italy
| | - Enrico Fainardi
- Neuroradiology Unit, Department of Radiology, Careggi University Hospital, 50134 Florence, Italy
- Neuroradiology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50121 Florence, Italy
| |
Collapse
|
3
|
Bao H, Ren P, Yi L, Lv Z, Ding W, Li C, Li S, Li Z, Yang X, Liang X, Liang P. New insights into glioma frequency maps: From genetic and transcriptomic correlate to survival prediction. Int J Cancer 2023; 152:998-1012. [PMID: 36305649 PMCID: PMC10100131 DOI: 10.1002/ijc.34336] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/18/2022] [Accepted: 10/17/2022] [Indexed: 01/06/2023]
Abstract
Increasing evidence indicates that glioma topographic location is linked to the cellular origin, molecular alterations and genetic profile. This research aims to (a) reveal the underlying mechanisms of tumor location predilection in glioblastoma multiforme (GBM) and lower-grade glioma (LGG) and (b) leverage glioma location features to predict prognosis. MRI images from 396 GBM and 190 LGG (115 astrocytoma and 75 oligodendroglioma) patients were standardized to construct frequency maps and analyzed by voxel-based lesion-symptom mapping. We then investigated the spatial correlation between glioma distribution with gene expression in healthy brains. We also evaluated transcriptomic differences in tumor tissue from predilection and nonpredilection sites. Furthermore, we quantitively characterized tumor anatomical localization and explored whether it was significantly related to overall survival. Finally, we employed a support vector machine to build a survival prediction model for GBM patients. GBMs exhibited a distinct location predilection from LGGs. GBMs were nearer to the subventricular zone and more likely to be localized to regions enriched with synaptic signaling, whereas astrocytoma and oligodendroglioma tended to occur in areas associated with the immune response. Synapse, neurotransmitters and calcium ion channel-related genes were all activated in GBM tissues coming from predilection regions. Furthermore, we characterized tumor location features in terms of a series of tumor-to-predilection distance metrics, which were able to predict GBM 1-year survival status with an accuracy of 0.71. These findings provide new perspectives on our understanding of tumor anatomic localization. The spatial features of glioma are of great value in individual therapy and prognosis prediction.
Collapse
Affiliation(s)
- Hongbo Bao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China.,Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Peng Ren
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Liye Yi
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhonghua Lv
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wencai Ding
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chenlong Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Siyang Li
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhipeng Li
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xue Yang
- Department of Information, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xia Liang
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin, China
| | - Peng Liang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
4
|
Muacevic A, Adler JR, Liang HK, Nakai K, Sumiya T, Iizumi T, Kohzuki H, Numajiri H, Makishima H, Tsurubuchi T, Matsuda M, Ishikawa E, Sakurai H. Factors Involved in Preoperative Edema in High-Grade Gliomas. Cureus 2022; 14:e31379. [PMID: 36514578 PMCID: PMC9741940 DOI: 10.7759/cureus.31379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Expansion of preoperative edema (PE) is an independent poor prognostic factor in high-grade gliomas. Evaluation of PE provides important information that can be readily obtained from magnetic resonance imaging (MRI), but there are few reports on factors associated with PE. The goal of this study was to identify factors contributing to PE in Grade 3 (G3) and Grade 4 (G4) gliomas. Methodology PE was measured in 141 pathologically proven G3 and G4 gliomas, and factors with a potential relationship with PE were examined in univariate and multivariate analyses. The following eight explanatory variables were used: age, sex, Karnofsky performance status (KPS), location of the glioma, tumor diameter, pathological grade, isocitrate dehydrogenase (IDH)-1-R132H status, and Ki-67 index. Overall survival (OS) and progression-free survival (PFS) were calculated in groups divided by PE (<1 vs. ≥1 cm) and by factors with a significant correlation with PE in multivariate analysis. Results In univariate analysis, age (p = 0.013), KPS (p = 0.012), pathology grade (p = 0.004), and IDH1-R132H status (p = 0.0003) were significantly correlated with PE. In multivariate analysis, only IDH1-R132H status showed a significant correlation (p = 0.036), with a regression coefficient of -0.42. The median follow-up period in survivors was 38.9 months (range: 1.2-131.7 months). The one-, two-, and three-year OS rates for PE <1 vs. ≥1 cm were 77% vs. 68%, 67% vs. 44%, and 63% vs. 24% (p = 0.0001), respectively, and those for IDH1-R132H mutated vs. wild-type cases were 85% vs. 67%, 85% vs. 40%, and 81% vs. 21% (p < 0.0001), respectively. The one-, two-, and three-year PFS rates for PE <1 vs. ≥1 cm were 77% vs. 49%, 64% vs. 24%, and 50% vs. 18% (p = 0.0002), respectively, and those for IDH1-R132H mutated vs. wild-type cases were 85% vs. 48%, 77% vs. 23%, and 73% vs. 14% (p < 0.0001), respectively. Conclusions IDH1-R132H status was found to be a significant contributor to PE. Cases with PE <1 cm and those with the IDH1-R132H mutation clearly had a better prognosis.
Collapse
|
5
|
Hassel B, Niehusmann P, Halvorsen B, Dahlberg D. Pro-inflammatory cytokines in cystic glioblastoma: A quantitative study with a comparison with bacterial brain abscesses. With an MRI investigation of displacement and destruction of the brain tissue surrounding a glioblastoma. Front Oncol 2022; 12:846674. [PMID: 35965529 PMCID: PMC9372434 DOI: 10.3389/fonc.2022.846674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic glioblastomas are aggressive primary brain tumors that may both destroy and displace the surrounding brain tissue as they grow. The mechanisms underlying these tumors’ destructive effect could include exposure of brain tissue to tumor-derived cytokines, but quantitative cytokine data are lacking. Here, we provide quantitative data on leukocyte markers and cytokines in the cyst fluid from 21 cystic glioblastomas, which we compare to values in 13 brain abscess pus samples. The concentration of macrophage/microglia markers sCD163 and MCP-1 was higher in glioblastoma cyst fluid than in brain abscess pus; lymphocyte marker sCD25 was similar in cyst fluid and pus, whereas neutrophil marker myeloperoxidase was higher in pus. Median cytokine levels in glioblastoma cyst fluid were high (pg/mL): TNF-α: 32, IL-6: 1064, IL-8: 23585, tissue factor: 28, the chemokine CXCL1: 639. These values were not significantly different from values in pus, pointing to a highly pro-inflammatory glioblastoma environment. In contrast, levels of IFN-γ, IL-1β, IL-2, IL-4, IL-10, IL-12, and IL-13 were higher in pus than in glioblastoma cyst fluid. Based on the quantitative data, we show for the first time that the concentrations of cytokines in glioblastoma cyst fluid correlate with blood leukocyte levels, suggesting an important interaction between glioblastomas and the circulation. Preoperative MRI of the cystic glioblastomas confirmed both destruction and displacement of brain tissue, but none of the cytokine levels correlated with degree of brain tissue displacement or peri-tumoral edema, as could be assessed by MRI. We conclude that cystic glioblastomas are highly pro-inflammatory environments that interact with the circulation and that they both displace and destroy brain tissue. These observations point to the need for neuroprotective strategies in glioblastoma therapy, which could include an anti-inflammatory approach.
Collapse
Affiliation(s)
- Bjørnar Hassel
- Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Defence Research Establishment (FFI), Kjeller, Norway
- *Correspondence: Bjørnar Hassel,
| | - Pitt Niehusmann
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Bente Halvorsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Daniel Dahlberg
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Clinicopathologic analysis of microscopic tumor extension in glioma for external beam radiotherapy planning. BMC Med 2021; 19:269. [PMID: 34784919 PMCID: PMC8597244 DOI: 10.1186/s12916-021-02143-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/27/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND There is no consensus regarding the clinical target volume (CTV) margins in radiotherapy for glioma. In this study, we aimed to perform a complete macropathologic analysis examining microscopic tumor extension (ME) to more accurately define the CTV in glioma. METHODS Thirty-eight supra-total resection specimens of glioma patients were examined on histologic sections. The ME distance, defined as the maximum linear distance from the tumor border to the invasive tumor cells, was measured at each section. We defined the CTV based on the relationships between ME distance and clinicopathologic features. RESULTS Between February 2016 and July 2020, a total of 814 slides were examined, corresponding to 162 slides for low-grade glioma (LGG) and 652 slides for high-grade glioma (HGG). The ME value was 0.69 ± 0.43 cm for LGG and 1.29 ± 0.54 cm for HGG (P < 0.001). After multivariate analysis, tumor grade, O6-methylguanine-DNA-methyltransferase promoter methylated status (MGMTm), isocitrate dehydrogenase wild-type status (IDHwt), and 1p/19q non-co-deleted status (non-codel) were positively correlated with ME distance (all P < 0.05). We defined the CTV of glioma based on tumor grade. To take into account approximately 95% of the ME, a margin of 1.00 cm, 1.50 cm, and 2.00 cm were chosen for grade II, grade III, and grade IV glioma, respectively. Paired analysis of molecularly defined patients confirmed that tumors that had all three molecular alterations (i.e., MGMTm/IDHwt/non-codel) were the most aggressive subgroups (all P < 0.05). For these patients, the margin could be up to 1.50 cm, 2.00 cm, and 2.50 cm for grade II, grade III, and grade IV glioma, respectively, to cover the subclinical lesions in 95% of cases. CONCLUSIONS The ME was different between the grades of gliomas. It may be reasonable to recommend 1.00 cm, 1.50 cm, and 2.00 cm CTV margins for grade II, grade III, and grade IV glioma, respectively. Considering the highly aggressive nature of MGMTm/IDHwt/non-codel tumors, for these patients, the margin could be further expanded by 0.5 cm. These recommendations would encompass microscopic disease extension in 95% of cases. TRIAL REGISTRATION The trial was registered with Chinese Clinical Trial Registry ( ChiCTR2100049376 ).
Collapse
|
7
|
Mizumoto M, Liang HK, Oshiro Y, Matsuda M, Kohzuki H, Iizumi T, Numajiri H, Nakai K, Okumura T, Ishikawa E, Sakurai H. Radiation Therapy for Grade 3 Gliomas: Correlation of MRI Findings With Prognosis. Cureus 2021; 13:e16887. [PMID: 34513462 PMCID: PMC8416380 DOI: 10.7759/cureus.16887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 11/05/2022] Open
Abstract
Background and objective Postoperative radiotherapy is usually indicated for both grade 3 glioma and grade 4 glioblastoma. However, the treatment results and tumor features of grade 3 glioma clearly differ from those of glioblastoma. There is limited information on outcomes and tumor progression for grade 3 glioma. In this study, we evaluate the result of postoperative radiotherapy for grade 3 glioma and focus on the correlation of MRI findings with prognosis. Methods In this study, 99 of 110 patients with grade 3 glioma who received postoperative radiotherapy and were followed up for more than one year were retrospectively analyzed. The total irradiation dose was 60.0 Gy in 30 fractions, and daily temozolomide or two cycles of nimustine (ACNU) was concurrently administered during radiotherapy. The median follow-up period was 46 months (range: 2-151 months). Results In multivariate analysis, pathology [anaplastic oligodendroglioma (AO) vs. anaplastic astrocytoma (AA)], the status of surgical resection (biopsy vs. partial resection or more), and contrast enhancement (enhanced by MRI image or not) were significant factors for overall survival (OS). The five-year OS for AO vs. AA cases were 76.8% vs. 46.1%, total to partial resection vs. biopsy cases were 72.7% vs. 21.0%, and non-enhanced vs. enhanced cases were 82.5% vs. 45.6%, respectively. In multivariate analysis, the status of surgical resection and longer extension of preoperative edema (PE) were significant factors for progression-free survival (PFS). The five-year PFS for the total to partial resection vs. biopsy cases were 52.9% vs. 10.7%, and non-extensive PE vs. extensive PE (EPE) cases were 62.2% vs. 19.1%, respectively. Conclusion Our results suggest that a contrast-enhanced tumor on MRI and a longer PE may also be significantly associated with OS and PFS among grade 3 glioma patients.
Collapse
Affiliation(s)
- Masashi Mizumoto
- Radiation Oncology, University of Tsukuba Hospital, Tsukuba, JPN
| | - Hsiang-Kuang Liang
- Department of Biomedical Engineering, National Taiwan University, Taipei, TWN.,Division of Radiation Oncology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, TWN.,Radiation Science and Proton Therapy Center, National Taiwan University College of Medicine, Taipei, TWN
| | - Yoshiko Oshiro
- Department of Radiation Oncology, Tsukuba Medical Center Hospital, Tsukuba, JPN
| | | | | | - Takashi Iizumi
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba, JPN
| | - Haruko Numajiri
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba, JPN
| | - Kei Nakai
- Department of Radiation Oncology, University of Tsukuba Hospital, Tsukuba, JPN
| | - Toshiyuki Okumura
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba, JPN
| | | | | |
Collapse
|
8
|
Liang HKT, Mizumoto M, Ishikawa E, Matsuda M, Tanaka K, Kohzuki H, Numajiri H, Oshiro Y, Okumura T, Matsumura A, Sakurai H. Peritumoral edema status of glioblastoma identifies patients reaching long-term disease control with specific progression patterns after tumor resection and high-dose proton boost. J Cancer Res Clin Oncol 2021; 147:3503-3516. [PMID: 34459971 PMCID: PMC8557163 DOI: 10.1007/s00432-021-03765-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/13/2021] [Indexed: 01/22/2023]
Abstract
Background Glioblastoma peritumoral edema (PE) extent is associated with survival and progression pattern after tumor resection and radiotherapy (RT). To increase tumor control, proton beam was adopted to give high-dose boost (> 90 Gy). However, the correlation between PE extent and prognosis of glioblastoma after postoperative high-dose proton boost (HDPB) therapy stays unknown. We intend to utilize the PE status to classify the survival and progression patterns. Methods Patients receiving HDPB (96.6 GyE) were retrospectively evaluated. Limited peritumoral edema (LPE) was defined as PE extent < 3 cm with a ratio of PE extent to tumor maximum diameter of < 0.75. Extended progressive disease (EPD) was defined as progression of tumors extending > 1 cm from the tumor bed edge. Results After long-term follow-up (median 88.7, range 63.6–113.8 months) for surviving patients with (n = 13) and without (n = 32) LPE, the median overall survival (OS) and progression-free survival (PFS) were 77.2 vs. 16.7 months (p = 0.004) and 13.6 vs. 8.6 months (p = 0.02), respectively. In multivariate analyses combined with factors of performance, age, tumor maximum diameter, and tumor resection extent, LPE remained a significant factor for favorable OS and PFS. The rates of 5-year complete response, EPD, and distant metastasis with and without LPE were 38.5% vs. 3.2% (p = 0.005), 7.7% vs. 40.6% (p = 0.04), and 0% vs. 34.4% (p = 0.02), respectively. Conclusions The LPE status effectively identified patients with relative long-term control and specific progression patterns after postoperative HDPB for glioblastoma. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-021-03765-6.
Collapse
Affiliation(s)
- Hsiang-Kuang Tony Liang
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Department of Radiation Oncology, National Taiwan University Cancer Center, National Taiwan University Hospital, Taipei, Taiwan
- Division of Radiation Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Masashi Mizumoto
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Eiichi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masahide Matsuda
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keiichi Tanaka
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hidehiro Kohzuki
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Haruko Numajiri
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiko Oshiro
- Department of Radiation Oncology, Tsukuba Medical Center Hospital, Tsukuba, Ibaraki, Japan
| | - Toshiyuki Okumura
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Matsumura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
9
|
Zheng L, Zhou ZR, Yu Q, Shi M, Yang Y, Zhou X, Li C, Wei Q. The Definition and Delineation of the Target Area of Radiotherapy Based on the Recurrence Pattern of Glioblastoma After Temozolomide Chemoradiotherapy. Front Oncol 2021; 10:615368. [PMID: 33692942 PMCID: PMC7937883 DOI: 10.3389/fonc.2020.615368] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/30/2020] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy is an important treatment for glioblastoma (GBM), but there is no consensus on the target delineation for GBM radiotherapy. The Radiation Therapy Oncology Group (RTOG) and European Organisation for Research and Treatment of Cancer (EORTC) each have their own rules. Our center adopted a target volume delineation plan based on our previous studies. This study focuses on the recurrence pattern of GBM patients whose target delineations did not intentionally include the T2/fluid-attenuated inversion recovery (FLAIR) hyperintensity area outside of the gross tumor volume (GTV). We prospectively collected 162 GBM cases and retrospectively analysed the clinical data and continuous dynamic magnetic resonance images (MRI) of 55 patients with recurrent GBM. All patients received concurrent radiotherapy and chemotherapy with temozolomide (TMZ). The GTV that we defined includes the postoperative T1-weighted MRI enhancement area and resection cavity. Clinical target volume 1 (CTV1) and CTV2 were defined as GTVs with 1 and 2 cm margins, respectively. Planning target volume 1 (PTV1) and PTV2 were defined as CTV1 and CTV2 plus a 3 mm margin with prescribed doses of 60 and 54 Gy, respectively. The first recurrent contrast-enhanced T1-weighted MRI was introduced into the Varian Eclipse radiotherapy planning system and fused with the original planning computed tomography (CT) images to determine the recurrence pattern. The median follow-up time was 15.8 months. The median overall survival (OS) and progression-free survival (PFS) were 17.7 and 7.0 months, respectively. Among the patients, 44 had central recurrences, two had in-field recurrences, one had marginal recurrence occurred, 11 had distant recurrences, and three had subependymal recurrences. Five patients had multiple recurrence patterns. Compared to the EORTC protocol, target delineation that excludes the adjacent T2/FLAIR hyperintensity area reduces the brain volume exposed to high-dose radiation (P = 0.000) without an increased risk of marginal recurrence. Therefore, it is worthwhile to conduct a clinical trial investigating the feasibility of intentionally not including the T2/FLAIR hyperintensity region outside of the GTV.
Collapse
Affiliation(s)
- Lin Zheng
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Radiation Oncology, Taizhou Cancer Hospital, Wenling, China
| | - Zhi-Rui Zhou
- Radiation Oncology Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - QianQian Yu
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minghan Shi
- Département de l'éducation aux adultes, Cégep Saint-Jean-sur-Richelieu, Brossard, QC, Canada
| | - Yang Yang
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaofeng Zhou
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Li
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Mummareddy N, Salwi SR, Ganesh Kumar N, Zhao Z, Ye F, Le CH, Mobley BC, Thompson RC, Chambless LB, Mistry AM. Prognostic relevance of CSF and peri-tumoral edema volumes in glioblastoma. J Clin Neurosci 2020; 84:1-7. [PMID: 33485591 DOI: 10.1016/j.jocn.2020.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/24/2020] [Accepted: 12/10/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND We conducted a segmental volumetric analysis of pre-operative brain magnetic resonance images (MRIs) of glioblastoma patients to identify brain- and tumor-related features that are prognostic of survival. METHODS Using a dataset of 210 single-institutional adult glioblastoma patients, total volumes of the following tumor- and brain-related features were quantified on pre-operative MRIs using a fully automated segmentation tool: tumor enhancement, tumor non-enhancement, tumor necrosis, peri-tumoral edema, grey matter, white matter, and cerebrospinal fluid (CSF). Their association with survival using Cox regression models, adjusting for the well-known predictors of glioblastoma survival. The findings were verified in a second dataset consisting of 96 glioblastoma patients from The Cancer Imaging Archive and The Cancer Genome Atlas (TCIA/TCGA). RESULTS CSF volume and edema were independently and consistently associated with overall survival of glioblastoma patients in both datasets. Greater edema was associated with increased hazard or decreased survival [adjusted hazard ratio (aHR) with 95% confidence interval (CI): 1.34 [1.08-1.67], p = 0.008 (institutional dataset); and, 1.44 [1.08-1.93], p = 0.013 (TCIA/TCGA dataset)]. Greater CSF volume also correlated with increased hazard or decreased survival [aHR 1.27 [1.02-1.59], p = 0.035 (institutional dataset), and 1.42 [1.03-1.95], p = 0.032 (TCIA/TCGA dataset)]. CONCLUSIONS Higher brain CSF volume and higher edema levels at diagnosis are independently associated with decreased survival in glioblastoma patients. These results highlight the importance of a broader, quantitative brain-wide radiological analyses and invite investigations to understand tumor-related causes of increased edema and possibly increased CSF volume.
Collapse
Affiliation(s)
- Nishit Mummareddy
- School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Sanjana R Salwi
- School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Nishant Ganesh Kumar
- Department of Surgery, Section of Plastic Surgery, University of Michigan Health System, Ann Arbor, MI, United States
| | - Zhiguo Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Fei Ye
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Chi H Le
- School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Bret C Mobley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Reid C Thompson
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Lola B Chambless
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Akshitkumar M Mistry
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
11
|
Harat M, Małkowski B, Roszkowski K. Prognostic value of subventricular zone involvement in relation to tumor volumes defined by fused MRI and O-(2-[ 18F]fluoroethyl)-L-tyrosine (FET) PET imaging in glioblastoma multiforme. Radiat Oncol 2019; 14:37. [PMID: 30832691 PMCID: PMC6398237 DOI: 10.1186/s13014-019-1241-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/21/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Subventricular zone (SVZ) involvement is associated with a dismal prognosis in patients with glioblastoma multiforme (GBM). Dual-time point (dtp) O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET/CT (PET) may be a time- and cost-effective alternative to dynamic FET PET, but its prognostic value, particularly with respect to SVZ involvement, is unknown. METHODS Thirty-five patients had two scans 5-15 and 50-60 min after i.v. FET injection to define tumor volumes and SVZ involvement before starting radiotherapy. Associations between clinical progression markers, MRI- and dtp FET PET-based tumor volumes, or SVZ involvement and progression-free (PFS) and overall survival (OS) were assessed in univariable and multivariable analyses. RESULTS The extent of resection was not related to outcomes. Albeit non-significant, dtp FET PET detected more SVZ infiltration than MRI (60% vs. 51%, p = 0.25) and was significantly associated with poor survival (p < 0.03), but PET-T1-Gad volumes were larger in this group (p < 0.002). Survival was shorter in patients with larger MRI tumor volumes, larger PET tumor volumes, and worse Karnofsky performance status (KPS), with fused PET-T1-Gad and KPS significant in multivariable analysis (p < 0.03). Uptake kinetics was not associated with treatment outcomes. CONCLUSIONS FET PET-based tumor volumes may be useful for predicting worse prognosis glioblastoma. Although the presence of SVZ infiltration is linked to higher PET/MRI-based tumor volumes, the independent value of dtp FET PET parameters and SVZ infiltration as prognostic markers pre-irradiation has not been confirmed.
Collapse
Affiliation(s)
- Maciej Harat
- Department of Oncology and Brachytherapy, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum, Romanowskiej 2 St, ,85-796, Bydgoszcz, Poland. .,Department of Radiotherapy, Unit of Radiosurgery and Radiotherapy of CNS, Franciszek Lukaszczyk Oncology Center, Bydgoszcz, Poland.
| | - Bogdan Małkowski
- Department of Positron Emission Tomography and Molecular Imaging, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Krzysztof Roszkowski
- Department of Oncology, Radiotherapy and Gynecologic Oncology, Faculty of Health Sciences, Nicolaus Copernicus University Toruń, Bydgoszcz, Poland
| |
Collapse
|
12
|
Response to ‘Perilesional edema in brain cancer: Independent prognosticator or epiphenomenon of biomolecular signature?’. Radiother Oncol 2018; 129:185-186. [DOI: 10.1016/j.radonc.2017.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 11/19/2022]
|
13
|
Location of subventricular zone recurrence and its radiation dose predicts survival in patients with glioblastoma. J Neurooncol 2018; 138:549-556. [PMID: 29546530 DOI: 10.1007/s11060-018-2822-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/03/2018] [Indexed: 01/05/2023]
Abstract
Glioblastomas are aggressive brain tumors that frequently recur in the subventricular zone (SVZ) despite maximal treatment. The purpose of this study was to evaluate imaging patterns of subventricular progression and impact of recurrent subventricular tumor involvement and radiation dose to patient outcome. Retrospective review of 50 patients diagnosed with glioblastoma and treated with surgery, radiation, and concurrent temozolomide from January 2012 to June 2013 was performed. Tumors were classified based on location, size, and cortical and subventricular zone involvement. Survival was compared based on recurrence type, distance from the initial enhancing tumor (local ≤ 2 cm, distant > 2 cm), and the radiation dose at the recurrence site. Progression of enhancing subventricular tumor was common at both local (58%) and distant (42%) sites. Median survival was better after local SVZ recurrence than distant SVZ recurrence (8.7 vs. 4.3 months, p = 0.04). Radiation doses at local SVZ recurrence sites recurrence averaged 57.0 ± 4.0 Gy compared to 44.7 ± 6.7 Gy at distant SVZ recurrence sites (p = 0.008). Distant subventricular progression at a site receiving ≤ 45 Gy predicted worse subsequent survival (p = 0.05). Glioblastomas frequently recurred in the subventricular zone, and patient survival was worse when enhancing tumor occurred at sites that received lower radiation doses. This recurrent disease may represent disease undertreated at the time of diagnosis, and further study is needed to determine if improved treatment strategies, such as including the subventricular zone in radiation fields, could improve clinical outcomes.
Collapse
|
14
|
Perilesional edema in brain cancer: Independent prognosticator or epiphenomenon of biomolecular signature? Radiother Oncol 2018; 129:183-184. [PMID: 29331541 DOI: 10.1016/j.radonc.2017.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/19/2017] [Indexed: 11/22/2022]
|