1
|
Hurkmans C, Bibault JE, Brock KK, van Elmpt W, Feng M, David Fuller C, Jereczek-Fossa BA, Korreman S, Landry G, Madesta F, Mayo C, McWilliam A, Moura F, Muren LP, El Naqa I, Seuntjens J, Valentini V, Velec M. A joint ESTRO and AAPM guideline for development, clinical validation and reporting of artificial intelligence models in radiation therapy. Radiother Oncol 2024; 197:110345. [PMID: 38838989 DOI: 10.1016/j.radonc.2024.110345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND AND PURPOSE Artificial Intelligence (AI) models in radiation therapy are being developed with increasing pace. Despite this, the radiation therapy community has not widely adopted these models in clinical practice. A cohesive guideline on how to develop, report and clinically validate AI algorithms might help bridge this gap. METHODS AND MATERIALS A Delphi process with all co-authors was followed to determine which topics should be addressed in this comprehensive guideline. Separate sections of the guideline, including Statements, were written by subgroups of the authors and discussed with the whole group at several meetings. Statements were formulated and scored as highly recommended or recommended. RESULTS The following topics were found most relevant: Decision making, image analysis, volume segmentation, treatment planning, patient specific quality assurance of treatment delivery, adaptive treatment, outcome prediction, training, validation and testing of AI model parameters, model availability for others to verify, model quality assurance/updates and upgrades, ethics. Key references were given together with an outlook on current hurdles and possibilities to overcome these. 19 Statements were formulated. CONCLUSION A cohesive guideline has been written which addresses main topics regarding AI in radiation therapy. It will help to guide development, as well as transparent and consistent reporting and validation of new AI tools and facilitate adoption.
Collapse
Affiliation(s)
- Coen Hurkmans
- Department of Radiation Oncology, Catharina Hospital, Eindhoven, the Netherlands; Department of Electrical Engineering, Technical University Eindhoven, Eindhoven, the Netherlands.
| | | | - Kristy K Brock
- Departments of Imaging Physics and Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Mary Feng
- University of California San Francisco, San Francisco, CA, USA
| | - Clifton David Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer, Houston, TX
| | - Barbara A Jereczek-Fossa
- Dept. of Oncology and Hemato-oncology, University of Milan, Milan, Italy; Dept. of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Stine Korreman
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Guillaume Landry
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between DKFZ and LMU University Hospital Munich, Germany; Bavarian Cancer Research Center (BZKF), Partner Site Munich, Munich, Germany
| | - Frederic Madesta
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute for Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Center for Biomedical Artificial Intelligence (bAIome), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chuck Mayo
- Institute for Healthcare Policy and Innovation, University of Michigan, USA
| | - Alan McWilliam
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Filipe Moura
- CrossI&D Lisbon Research Center, Portuguese Red Cross Higher Health School Lisbon, Portugal
| | - Ludvig P Muren
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Issam El Naqa
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Jan Seuntjens
- Princess Margaret Cancer Centre, Radiation Medicine Program, University Health Network & Departments of Radiation Oncology and Medical Biophysics, University of Toronto, Toronto, Canada
| | - Vincenzo Valentini
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michael Velec
- Radiation Medicine Program, Princess Margaret Cancer Centre and Department of Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Nakamura M, Zhou D, Minemura T, Kito S, Okamoto H, Tohyama N, Kurooka M, Kumazaki Y, Ishikawa M, Clark CH, Miles E, Lehmann J, Andratschke N, Kry S, Ishikura S, Mizowaki T, Nishio T. A virtual audit system for intensity-modulated radiation therapy credentialing in Japan Clinical Oncology Group clinical trials: A pilot study. J Appl Clin Med Phys 2023:e14040. [PMID: 37191875 DOI: 10.1002/acm2.14040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
PURPOSE The Medical Physics Working Group of the Radiation Therapy Study Group at the Japan Clinical Oncology Group is currently developing a virtual audit system for intensity-modulated radiation therapy dosimetry credentialing. The target dosimeters include films and array detectors, such as ArcCHECK (Sun Nuclear Corporation, Melbourne, Florida, USA) and Delta4 (ScandiDos, Uppsala, Sweden). This pilot study investigated the feasibility of our virtual audit system using previously acquired data. METHODS We analyzed 46 films (32 and 14 in the axial and coronal planes, respectively) from 29 institutions. Global gamma analysis between measured and planned dose distributions used the following settings: 3%/3 mm criteria (the dose denominator was 2 Gy), 30% threshold dose, no scaling of the datasets, and 90% tolerance level. In addition, 21 datasets from nine institutions were obtained for array evaluation. Five institutions used ArcCHECK, while the others used Delta4. Global gamma analysis was performed with 3%/2 mm criteria (the dose denominator was the maximum calculated dose), 10% threshold dose, and 95% tolerance level. The film calibration and gamma analysis were conducted with in-house software developed using Python (version 3.9.2). RESULTS The means ± standard deviations of the gamma passing rates were 99.4 ± 1.5% (range, 92.8%-100%) and 99.2 ± 1.0% (range, 97.0%-100%) in the film and array evaluations, respectively. CONCLUSION This pilot study demonstrated the feasibility of virtual audits. The proposed virtual audit system will contribute to more efficient, cheaper, and more rapid trial credentialing than on-site and postal audits; however, the limitations should be considered when operating our virtual audit system.
Collapse
Affiliation(s)
- Mitsuhiro Nakamura
- Department of Advanced Medical Physics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Dejun Zhou
- Department of Advanced Medical Physics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Satoshi Kito
- Department of Radiation Oncology, Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital, Tokyo, Japan
| | - Hiroyuki Okamoto
- Radiation Safety and Quality Assurance Division, National Cancer Center Hospital, Tokyo, Japan
| | - Naoki Tohyama
- Division of Medical Physics, Tokyo Bay Makuhari Clinic for Advanced Imaging, Cancer Screening, and High-Precision Radiotherapy, Chiba, Japan
| | - Masahiko Kurooka
- Department of Radiation Therapy, Tokyo Medical University Hospital, Tokyo, Japan
| | - Yu Kumazaki
- Department of Radiation Oncology, International Medical Center, Saitama Medical University, Saitama, Japan
| | | | - Catharine H Clark
- National Radiotherapy Trials Quality Assurance (RTTQA) Group, Royal Surrey NHS Foundation Trust, London, UK
- Department of Radiotherapy Physics, University College London Hospital, London, UK
- Department of Medical Physics and Bioengineering, University College London, London, UK
- Medical Physics department, National Physical Laboratory (NPL), Teddington, UK
| | - Elizabeth Miles
- National Radiotherapy Trials Quality Assurance (RTTQA) Group, Mount Vernon Cancer Centre, Northwood, UK
| | - Joerg Lehmann
- Trans Tasman Radiation Oncology Group (TROG), Newcastle, Australia
- Department of Radiation Oncology, Calvary Mater Hospital, Newcastle, Australia
- School of Information and Physical Sciences, University of Newcastle, Newcastle, Australia
- Institute of Medical Physics, University of Sydney, Sydney, Australia
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Stephen Kry
- Imaging and Radiation Oncology Core (IROC), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Satoshi Ishikura
- Division of Radiation Oncology, Tokyo Bay Makuhari Clinic for Advanced Imaging, Cancer Screening, and High-Precision Radiotherapy, Chiba, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Teiji Nishio
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Putu Inten Gayatri IA, Handika AD, Wibowo WE, Fitriandini A, Fadli M, Yudi Putranto AM, Yudhi Prasada DN, Okselia A, Suharsono, Pawiro SA. 2-Dimensional IMRT dose audit: An Indonesian multicenter study. Appl Radiat Isot 2022; 188:110415. [PMID: 36027871 DOI: 10.1016/j.apradiso.2022.110415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 11/02/2022]
Abstract
Intensity modulated radiation therapy (IMRT) is an advanced technique in radiation therapy delivery. IMRT depends on the accuracy of the multileaf collimator during treatment. Hence, the actual dose distribution can deviate from the treatment planning system's calculation. This study aimed to perform a multicentre planar dosimetry audit of radiotherapy centres in Indonesia, using the structure sets from AAPM TG-119. The gamma index used to evaluate the dose distribution was 3%/3 mm and 3%/2 mm. We observed 100% gamma index passing rates mostly in the 3%/3 mm evaluations. The gamma index passing rates dropped in the 3%/2 mm analysis. Most of the radiotherapy centres participating in this audit satisfied each criterion's tolerance limit of the action level. This study may become a first result for the next multicenter IMRT audit by using a standardized protocol.
Collapse
Affiliation(s)
- Ida Ayu Putu Inten Gayatri
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia; Department of Radiation Oncology, MRCCC Siloam Hospitals, Jakarta, Indonesia
| | - Andrian Dede Handika
- Department of Radiation Oncology, Persahabatan General Hospital, Jakarta, Indonesia
| | - Wahyu Edy Wibowo
- Department of Radiation Oncology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Aninda Fitriandini
- Department of Radiation Oncology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Muhamad Fadli
- Department of Radiation Oncology, MRCCC Siloam Hospitals, Jakarta, Indonesia
| | | | | | - Anisza Okselia
- Department of Radiation Oncology, Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Suharsono
- Department of Radiotherapy, Dharmais National Cancer Center Hospital, Jakarta, Indonesia
| | - Supriyanto Ardjo Pawiro
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia.
| |
Collapse
|
4
|
Nishio T, Nakamura M, Okamoto H, Kito S, Minemura T, Ozawa S, Kumazaki Y, Ishikawa M, Tohyama N, Kurooka M, Nakashima T, Shimizu H, Suzuki R, Ishikura S, Nishimura Y. An overview of the medical-physics-related verification system for radiotherapy multicenter clinical trials by the Medical Physics Working Group in the Japan Clinical Oncology Group-Radiation Therapy Study Group. JOURNAL OF RADIATION RESEARCH 2020; 61:999-1008. [PMID: 32989445 PMCID: PMC7674673 DOI: 10.1093/jrr/rraa089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/25/2020] [Indexed: 05/14/2023]
Abstract
The Japan Clinical Oncology Group-Radiation Therapy Study Group (JCOG-RTSG) has initiated several multicenter clinical trials for high-precision radiotherapy, which are presently ongoing. When conducting multi-center clinical trials, a large difference in physical quantities, such as the absolute doses to the target and the organ at risk, as well as the irradiation localization accuracy, affects the treatment outcome. Therefore, the differences in the various physical quantities used in different institutions must be within an acceptable range for conducting multicenter clinical trials, and this must be verified with medical physics consideration. In 2011, Japan's first Medical Physics Working Group (MPWG) in the JCOG-RTSG was established to perform this medical-physics-related verification for multicenter clinical trials. We have developed an auditing method to verify the accuracy of the absolute dose and the irradiation localization. Subsequently, we credentialed the participating institutions in the JCOG multicenter clinical trials that were using stereotactic body radiotherapy (SBRT) for lungs, intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) for several disease sites, and proton beam therapy (PT) for the liver. From the verification results, accuracies of the absolute dose and the irradiation localization among the participating institutions of the multicenter clinical trial were assured, and the JCOG clinical trials could be initiated.
Collapse
Affiliation(s)
- Teiji Nishio
- Corresponding author. Department of Medical Physics, Graduate School of Medicine, Tokyo Women’s Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan. Tel: +81-3-3353-8111; Fax: +81-3-5269-7040;
| | - Mitsuhiro Nakamura
- Division of Medical Physics, Department of Information Technology and Medical Engineering, Human He Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
- Medical Physics Working Group (MPWG) in Japan Clinical Oncology Group - Radiation Therapy Study Group (JCOG-RTSG), Tokyo, Japan
| | - Hiroyuki Okamoto
- Department of Medical Physics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
- Medical Physics Working Group (MPWG) in Japan Clinical Oncology Group - Radiation Therapy Study Group (JCOG-RTSG), Tokyo, Japan
| | - Satoshi Kito
- Department of Radiology, Tokyo Metropolitan Bokutoh Hospital, 4-23-15 Kotobashi, Sumida-ku, Tokyo 130-8575, Japan
- Department of Radiation Oncology, Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8677, Japan
- Division of Medical Physics, Department of Information Technology and Medical Engineering, Human He Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
- Medical Physics Working Group (MPWG) in Japan Clinical Oncology Group - Radiation Therapy Study Group (JCOG-RTSG), Tokyo, Japan
| | - Toshiyuki Minemura
- Division of Medical Support and Partnership, Center for Cancer Control and Information Services, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Medical Physics Working Group (MPWG) in Japan Clinical Oncology Group - Radiation Therapy Study Group (JCOG-RTSG), Tokyo, Japan
| | - Shuichi Ozawa
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
- Hiroshima High-Precision Radiotherapy Cancer Center, 3-2-2, Futabanosato, Higashi-ku, Hiroshima 732-0057, Japan
- Medical Physics Working Group (MPWG) in Japan Clinical Oncology Group - Radiation Therapy Study Group (JCOG-RTSG), Tokyo, Japan
| | - Yu Kumazaki
- Department of Radiation Oncology, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama 350-1298, Japan
- Medical Physics Working Group (MPWG) in Japan Clinical Oncology Group - Radiation Therapy Study Group (JCOG-RTSG), Tokyo, Japan
| | - Masayori Ishikawa
- Faculty of Health Sciences, Hokkaido University, N-12 W-5 Kita-ku, Sapporo, 060-0812, Japan
- Medical Physics Working Group (MPWG) in Japan Clinical Oncology Group - Radiation Therapy Study Group (JCOG-RTSG), Tokyo, Japan
| | - Naoki Tohyama
- Division of Medical Physics, Tokyo Bay Advanced Imaging & Radiation Oncology Makuhari Clinic, 1-17 Toyosuna, Mihama-ku, Chiba, 261-0024, Japan
- Medical Physics Working Group (MPWG) in Japan Clinical Oncology Group - Radiation Therapy Study Group (JCOG-RTSG), Tokyo, Japan
| | - Masahiko Kurooka
- Department of Radiation Therapy, Tokyo Medical University Hospital, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- Medical Physics Working Group (MPWG) in Japan Clinical Oncology Group - Radiation Therapy Study Group (JCOG-RTSG), Tokyo, Japan
| | - Takeo Nakashima
- Radiation Therapy Section, Department of Clinical Support, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
- Medical Physics Working Group (MPWG) in Japan Clinical Oncology Group - Radiation Therapy Study Group (JCOG-RTSG), Tokyo, Japan
| | - Hidetoshi Shimizu
- Department of Radiation Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan
- Medical Physics Working Group (MPWG) in Japan Clinical Oncology Group - Radiation Therapy Study Group (JCOG-RTSG), Tokyo, Japan
| | - Ryusuke Suzuki
- Department of Medical Physics, Hokkaido University Hospital, North-14, West-5, Kita-Ku, Sapporo, Hokkaido 060-8638, Japan
- Medical Physics Working Group (MPWG) in Japan Clinical Oncology Group - Radiation Therapy Study Group (JCOG-RTSG), Tokyo, Japan
| | - Satoshi Ishikura
- Department of Radiology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
- Radiotherapy Committee (RC) in Japan Clinical Oncology Group, Tokyo, Japan
- Japan Clinical Oncology Group - Radiation Therapy Study Group (JCOG-RTSG), Tokyo, Japan
| | - Yasumasa Nishimura
- Department of Radiation Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
- Japan Clinical Oncology Group - Radiation Therapy Study Group (JCOG-RTSG), Tokyo, Japan
| |
Collapse
|
5
|
Peet SC, Yu L, Maxwell S, Crowe SB, Trapp JV, Kairn T. Exploring the gamma surface: A new method for visualising modulated radiotherapy quality assurance results. Phys Med 2020; 78:166-172. [PMID: 33035928 DOI: 10.1016/j.ejmp.2020.09.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022] Open
Abstract
PURPOSE This work presents a novel method of visualising the results of patient-specific quality assurance (QA) for modulated radiotherapy treatment plans, using a three-dimensional distribution of gamma pass rates, referred to as the "gamma surface". The method was developed to aid in comparing borderline and failing QA plans, and to better compare patient-specific QA results between departments. METHODS Gamma surface plots were created for a representative sample of situations encountered during patient-specific QA. To produce a gamma surface plot, for each QA result, gamma pass rates were plotted as a heat map, with dose difference on one axis and distance-to-agreement on the other. This involved the calculation of 100 × 100 gamma pass rates over a dose difference and distance-to-agreement grid. As examples, five 220 × 680 arrays of dose points from radiotherapy treatment plans were compared against measurement data consisting of 21 × 66 arrays of dose points spaced 10 mm apart. RESULTS The gamma surface plots facilitated the rapid evaluation of criteria combinations for each plan, clearly highlighting the difference between plans that are modelled and delivered well, and those that are not. Large scale features were also evident in each surface, hinting at potential over-modulation, systematic dose errors, and small or large scale areas of disagreement in the distributions. CONCLUSIONS Gamma surface plots are a useful tool for investigating QA failures and borderline results, and have the capacity to grant insights into treatment plan QA performance that may otherwise be missed.
Collapse
Affiliation(s)
- Samuel C Peet
- Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia; Queensland University of Technology, Brisbane, QLD 4001, Australia.
| | - Liting Yu
- Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia; Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Sarah Maxwell
- Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Scott B Crowe
- Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia; Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Jamie V Trapp
- Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Tanya Kairn
- Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia; Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
6
|
Apaza Veliz DG, Wilches Visbal JH, Abrego FC, Vega Ramírez JL. Monte Carlo Calculation of the Energy Spectrum of a 6 MeV Electron Beam using PENetration and Energy Loss of Positrons and Electrons Code. J Med Phys 2020; 45:116-122. [PMID: 32831494 PMCID: PMC7416870 DOI: 10.4103/jmp.jmp_104_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/19/2020] [Accepted: 03/27/2020] [Indexed: 11/11/2022] Open
Abstract
Background: The limited bibliographic existence of research works on the use of Monte Carlo simulation to determine the energy spectra of electron beams compared to the information available regarding photon beams is a scientific task that should be resolved. Aims: In this work, Monte Carlo simulation was performed through the PENELOPE code of the Sinergy Elekta accelerator head to obtain the spectrum of a 6 MeV electron beam and its characteristic dosimetric parameters. Materials and Methods: The central-axis energy spectrum and the percentage depth dose curve of a 6 MeV electron beam of an Elekta Synergy linear accelerator were obtained by using Monte Carlo PENELOPE code v2014. For this, the linear accelerator head geometry, electron applicators, and water phantom were simplified. Subsequently, the interaction process between the electron beam and head components was simulated in a time of 86.4x104 s. Results: From this simulation, the energy spectrum at the linear accelerator exit window and the surface of the phantom was obtained, as well as the associated percentage depth dose curves. The validation of the Monte Carlo simulation was performed by comparing the simulated and the measured percentage depth dose curves via the gamma index criterion. Measured percentage depth- dose was determined by using a Markus electron ionization chamber, type T23343. Characteristic parameters of the beam related with the PDD curves such as the maximum dose depth (R100), 90% dose depth (R90), 90% dose depth or therapeutic range (R85), half dose depth (R50), practical range (Rp), maximum range (Rmax), surface dose (Ds), normalized dose gradient (G0) and photon contamination dose (Dx) were determined. Parameters related with the energy spectrum, namely, the most probable energy of electrons at the surface (Ep,0) and electron average energy (E– 0) were also determined. Conclusion: It was demonstrated that PENELOPE is an attractive and accurate tool for the obtaining of dosimetric parameters of a medical linear accelerator since it can reliably reproduce important clinical data such as the energy spectrum, depth dose, and dose profile.
Collapse
Affiliation(s)
- Danny Giancarlo Apaza Veliz
- Department of Physics, Faculty of Philosophy, Sciences and Letters, University of São Paulo, Brazil.,Department of Physics, National University of San Agustín, Arequipa, Peru
| | - Jorge Homero Wilches Visbal
- Department of Basic Biomedical Sciences, Faculty of Health Sciences, University of Magdalena, Santa Marta, Colombia
| | - Felipe Chen Abrego
- Center for Natural and Human Sciences, Federal University of ABC, Brazil
| | | |
Collapse
|
7
|
Baran M, Kabat D, Tulik M, Rzecki K, Sośnicki T, Tabor Z. Statistical approach to the selection of the tolerances for distance to agreement improves the quality control of the dose delivery in radiotherapy. ACTA ACUST UNITED AC 2020; 65:145004. [DOI: 10.1088/1361-6560/ab86d5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Mehrens H, Taylor P, Followill DS, Kry SF. Survey results of 3D-CRT and IMRT quality assurance practice. J Appl Clin Med Phys 2020; 21:70-76. [PMID: 32351006 PMCID: PMC7386182 DOI: 10.1002/acm2.12885] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/03/2020] [Accepted: 03/17/2020] [Indexed: 01/09/2023] Open
Abstract
PURPOSE To create a snapshot of common practices for 3D-CRT and intensity-modulated radiation therapy (IMRT) QA through a large-scale survey and compare to TG-218 recommendations. METHODS A survey of 3D-CRT and IMRT QA was constructed at and distributed by the IROC-Houston QA center to all institutions monitored by IROC (n = 2,861). The first part of the survey asked about methods to check dose delivery for 3D-CRT. The bulk of the survey focused on IMRT QA, inquiring about treatment modalities, standard tools used to verify planned dose, how assessment of agreement is calculated and the comparison criteria used, and the strategies taken if QA fails. RESULTS The most common tools for dose verification were a 2D diode array (52.8%), point(s) measurement (39.0%), EPID (27.4%), and 2D ion chamber array (23.9%). When IMRT QA failed, the highest average rank strategy utilized was to remeasure with the same setup, which had an average position ranking of 1.1 with 90.4% of facilities employing this strategy. The second highest average ranked strategy was to move to a new calculation point and remeasure (54.9%); this had an average ranking of 2.1. CONCLUSION The survey provided a snapshot of the current state of dose verification for IMRT radiotherapy. The results showed variability in approaches and that work is still needed to unify and tighten criteria in the medical physics community, especially in reference to TG-218's recommendations.
Collapse
Affiliation(s)
- Hunter Mehrens
- Imaging and Radiation Core Houston QA Center, Houston, TX, USA.,Department of Radiation Physics, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Paige Taylor
- Imaging and Radiation Core Houston QA Center, Houston, TX, USA.,Department of Radiation Physics, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - David S Followill
- Imaging and Radiation Core Houston QA Center, Houston, TX, USA.,Department of Radiation Physics, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Stephen F Kry
- Imaging and Radiation Core Houston QA Center, Houston, TX, USA.,Department of Radiation Physics, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
9
|
Yu L, Kairn T, Trapp J, Crowe SB. Technical note: A modified gamma evaluation method for dose distribution comparisons. J Appl Clin Med Phys 2019; 20:193-200. [PMID: 31282112 PMCID: PMC6612697 DOI: 10.1002/acm2.12606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/25/2019] [Accepted: 02/20/2019] [Indexed: 11/09/2022] Open
Abstract
Purpose In this work we have developed a novel method of dose distribution comparison, the inverse gamma (IG) evaluation, by modifying the commonly used gamma evaluation method. Methods The IG evaluation calculates the gamma criteria (dose difference criterion, ΔD, or distance‐to‐agreement criterion, Δd) that are needed to achieve a predefined pass rate or gamma agreement index (GAI). In‐house code for evaluating IG with a fixed ΔD of 3% was developed using Python (v3.5.2) and investigated using treatment plans and measurement data from 25 retrospective patient specific quality assurance tests (53 individual arcs). Results It was found that when the desired GAI was set to 95%, approximately three quarters of the arcs tested were able to achieve Δd within 1 mm (mean Δd: 0.7 ± 0.5 mm). The mean Δd required in order for all points to pass the gamma evaluation (i.e., GAI = 100%) was 4.5 ± 3.1 mm. The possibility of evaluating IG by fixing the Δd or ΔD/Δd, instead of fixing the ΔD at 3%, was also investigated. Conclusion The IG method and its indices have the potential to be implemented clinically to quantify the minimum dose and distance criteria based on a specified GAI. This method provides additional information to augment standard gamma evaluation results during patient specific quality assurance testing of individual treatment plans. The IG method also has the potential to be used in retrospective audits to determine an appropriate set of local gamma criteria and action levels based on a cohort of patient specific quality assurance plans.
Collapse
Affiliation(s)
- Liting Yu
- Royal Brisbane & Women's Hospital, Herston, QLD, Australia.,Queensland University of Technology, Brisbane, QLD, Australia
| | - Tanya Kairn
- Royal Brisbane & Women's Hospital, Herston, QLD, Australia.,Queensland University of Technology, Brisbane, QLD, Australia
| | - Jamie Trapp
- Queensland University of Technology, Brisbane, QLD, Australia
| | - Scott B Crowe
- Royal Brisbane & Women's Hospital, Herston, QLD, Australia.,Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Dosimetric Multicenter Planning Comparison Studies for Stereotactic Body Radiation Therapy: Methodology and Future Perspectives. Int J Radiat Oncol Biol Phys 2019; 106:403-412. [PMID: 31707124 DOI: 10.1016/j.ijrobp.2019.10.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/03/2019] [Accepted: 10/25/2019] [Indexed: 12/22/2022]
Abstract
In this review a summary of the published literature pertaining to the stereotactic body radiation therapy multiplanning comparison, data sharing strategies, and implementation of benchmark planning cases to improve the skills and knowledge of the participating centers was investigated. A total of 30 full-text articles were included. The studies were subdivided in 3 categories: multiplanning studies on dosimetric variability, planning harmonization before clinical trials, and technical and methodologic studies. The methodology used in the studies were critically analyzed to find common and original elements with the pros and cons. Multicenter planning studies have played a key role in improving treatment plan harmonization, treatment plan compliance, and even clinical practices. This review has highlighted that some fundamental steps should be taken to transform a simple treatment planning comparison study into a potential credentialing method for stereotactic body radiation therapy accreditation. In particular, prescription and general requirements should always be well defined; data analysis should be performed with independent dose volume histogram or dose calculations; quality score indices should be constructed; feedback and correction strategies should be provided; and a simple web-based collaboration platform should be used. The results reported clearly showed that a crowd-based replanning approach is a viable method for achieving harmonization and standardization of treatment planning among centers using different technologies.
Collapse
|
11
|
Tulik M, Kabat D, Baran M, Kycia R, Tabor Z. Use of statistical approaches to improve the quality control of the dose delivery in radiotherapy. ACTA ACUST UNITED AC 2019; 64:145018. [DOI: 10.1088/1361-6560/ab25ab] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Wilson LJ, Newhauser WD, Schneider CW. An objective method to evaluate radiation dose distributions varying by three orders of magnitude. Med Phys 2019; 46:1888-1895. [PMID: 30714163 DOI: 10.1002/mp.13420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/26/2018] [Accepted: 01/24/2019] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Modern radiotherapy practices typically report the absorbed dose (D) within the 5% relative isodose volume (i.e., the therapeutic dose region) to an accuracy of 3%-5%. Gamma-index analysis, the most commonly used method to evaluate dosimetric accuracy, has low sensitivity to discrepancies that occur outside of this region. The objective of this study was to develop an evaluation method with high sensitivity across dose distributions spanning three orders of magnitude. METHODS We generalized the gamma index to include an additional criterion, the absolute absorbed dose difference, specifically for the low-dose region (i.e., D ≤ 5%). We also proposed a method to objectively select the appropriate magnitudes for relative-dose-difference, absolute-dose-difference, and distance-to-agreement criteria. We demonstrated the generalized gamma-index method by first finding the appropriate generalized gamma-index agreement criteria at an interval of specified passing rates. Next, we used the generalized gamma index to evaluate one-, two-, and three-dimensional absorbed dose distributions in a water-box phantom and voxelized patient geometry. RESULTS Generalized gamma-index passing rates for one-, two-, and three-dimensional dose distributions were 55.4%, 44.5%, and 8.9%, respectively. Traditional gamma-index passing rates were 100%, 97.8%, and 96.4%, respectively. These results reveal that the generalized method has adequate sensitivity in all regions (i.e., therapeutic and low dose). Additionally, the algorithmic determination of triplets of agreement criteria revealed that they are strong functions of the specified passing rate. CONCLUSIONS The major finding of this work is that the proposed method provides an objective evaluation of the agreement of dose distributions spanning three orders of magnitude. In particular, this generalized method correctly characterized dosimetric agreement in the low-dose region, which was not possible by traditional methods. The proposed algorithmic selection of agreement criteria decreased subjectivity and requirements of user judgment and skill. This method could find utility in a variety of applications including dose-algorithm development and translation.
Collapse
Affiliation(s)
- Lydia J Wilson
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, 70803-4001, USA
| | - Wayne D Newhauser
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, 70803-4001, USA.,Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA, 70809, USA
| | - Christopher W Schneider
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, 70803-4001, USA
| |
Collapse
|
13
|
Medical physics in radiation Oncology: New challenges, needs and roles. Radiother Oncol 2017; 125:375-378. [PMID: 29150160 DOI: 10.1016/j.radonc.2017.10.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 12/21/2022]
|