1
|
Gao D, Zhang H, Sun W, Wang H, Wang H. Radiation-Induced Intestinal Injury: Molecular Mechanisms and Therapeutic Status. DNA Cell Biol 2024. [PMID: 39235407 DOI: 10.1089/dna.2024.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Radiation-induced intestinal injury is one of the most common intestinal complications caused by pelvic and abdominal tumor radiotherapy, severely impacting patients' quality of life. Ionizing radiation, while killing tumor cells, inevitably damages healthy tissue. Radiation-induced enteropathy results from radiation therapy-induced intestinal tissue damage and inflammatory responses. This damage involves various complex molecular mechanisms, including cell apoptosis, oxidative stress, release of inflammatory mediators, disruption of immune responses, and imbalance of intestinal microbiota. A thorough understanding of these molecular mechanisms is crucial for developing effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Dandan Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin 300121, China
| | - Heng Zhang
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin 300121, China
| | - Wanjun Sun
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin 300121, China
| | - Huaqing Wang
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin 300121, China
| | - Hui Wang
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
- Tianjin Cancer Institute of Integrative Traditional Chinese and Western Medicine, Tianjin 300121, China
| |
Collapse
|
2
|
Lückerath K, Trajkovic-Arsic M, Mona CE. Fibroblast Activation Protein Inhibitor Theranostics. PET Clin 2023:S1556-8598(23)00019-6. [PMID: 36990945 DOI: 10.1016/j.cpet.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Fibroblast activation protein (FAP)-radioligand therapy might be effective in some patients without being curative. FAP-radioligands deliver ionizing radiation directly to FAP+ cancer-associated fibroblasts and, in some cancers, to FAP+ tumor cells; in addition, they indirectly irradiate FAP- cells in tumor tissue via cross-fire and bystander effects. Here, we discuss the potential to improve FAP-radioligand therapy through interfering with DNA damage repair, immunotherapy, and co-targeting cancer-associated fibroblasts. As the molecular and cellular effects of FAP-radioligands on the tumor and its microenvironment have not been investigated yet, we call for future research to close this gap in knowledge, which prevents the development of more effective FAP-radioligand therapies.
Collapse
Affiliation(s)
- Katharina Lückerath
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Marija Trajkovic-Arsic
- Division of Solid Tumor Translational Oncology, DKTK and German Cancer Research Center (DKFZ) Partner Side Essen, Hufelandstrasse 15, 45147, Germany; Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Christine E Mona
- Ahmanson Translational Theranostic Division, Department of Molecular and Medical Pharmacology, University of California Los Angeles, 650 Charles E Young Drive S, Los Angeles, CA 90095, USA.
| |
Collapse
|
3
|
Liu L, Liang Z, Ma S, Li L, Liu X. Radioprotective countermeasures for radiation injury (Review). Mol Med Rep 2023; 27:66. [PMID: 36799170 PMCID: PMC9926870 DOI: 10.3892/mmr.2023.12953] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/10/2023] [Indexed: 02/09/2023] Open
Abstract
A series of physiological and pathological changes occur after radiotherapy and accidental exposure to ionizing radiation (IR). These changes cause serious damage to human tissues and can lead to death. Radioprotective countermeasures are radioprotective agents that prevent and reduce IR injury or have therapeutic effects. Based on a good understanding of radiobiology, a number of protective agents have achieved positive results in early clinical trials. The present review grouped known radioprotective agents according to biochemical categories and potential clinical use, and reviewed radiation countermeasures, i.e., radioprotectors, radiation mitigators and radiotherapeutic agents, with an emphasis on their current status and research progress. The aim of the present review is to facilitate the selection and application of suitable radioprotectors for clinicians and researchers, to prevent or reduce IR injury.
Collapse
Affiliation(s)
- Lianchang Liu
- National Health Commission Key Laboratory of Radiobiology, School of Public Health of Jilin University, Jilin, Changchun 130021, P.R. China,School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,Department of Intervention, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Zhenzhen Liang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, P.R. China
| | - Shumei Ma
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, Zhejiang 325035, P.R. China
| | - Lan Li
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, Zhejiang 325035, P.R. China,Correspondence to: Professor Lan Li, School of Public Health and Management, Wenzhou Medical University, 1 North Zhongxin Road, Chashan, Wenzhou, Zhejiang 325035, P.R. China, E-mail:
| | - Xiaodong Liu
- National Health Commission Key Laboratory of Radiobiology, School of Public Health of Jilin University, Jilin, Changchun 130021, P.R. China,School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China,South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, Zhejiang 325035, P.R. China,Professor Xiaodong Liu, National Health Commission Key Laboratory of Radiobiology, School of Public Health of Jilin University, 1163 Xinmin Road, Changchun, Jilin 130021, P.R. China, E-mail:
| |
Collapse
|
4
|
Wang S, Song M, Zhang B. Trichostatin A enhances radiosensitivity and radiation-induced DNA damage of esophageal cancer cells. J Gastrointest Oncol 2021; 12:1985-1995. [PMID: 34790366 DOI: 10.21037/jgo-21-560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/29/2021] [Indexed: 01/02/2023] Open
Abstract
Background Trichostatin A (TSA) is emerging as a potential component of anticancer therapy. In this study, we aimed to identify the radiosensitizing effects of TSA in esophageal squamous carcinoma cell lines and identify the genomic alteration of histone acetylation associated with TSA treatment. Methods EC109 and KYSE450 cells were pretreated with TSA (0.1 µM) for 12 hours prior to irradiation, and the cell viability, flow cytometry, and comet assays were performed to analyze cell growth, cell apoptosis, and DNA damage, respectively. Chromatin immunoprecipitation sequencing (ChIP-Seq) was performed to identify the acetylation sites of histone H3 lysine 9 (H3K9), which was altered by TSA. Results Our data showed that TSA could sensitize esophageal cancer cells to radiation by inducing cell cycle arrest and increasing cell apoptosis. DNA damage induced by radiation was enhanced by TSA treatment. In addition, a total of 105 differential peak-related genes were found to be associated with TSA treatment, which was identified using ChIP-Seq with specific antibodies against acetylated histone H3K9. Conclusions Our data suggest that pretreatment with TSA can enhance ionizing radiation-induced DNA damage of esophageal cancer cells, which was associated with the altered histone modification of whole genome. TSA has potential implications for clinical use in increasing the anticancer efficacy of radiation.
Collapse
Affiliation(s)
- Shaobo Wang
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Song
- Department of Neurology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Zhang
- Department of Nephrology, Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
5
|
Fernandez A, O’Leary C, O’Byrne KJ, Burgess J, Richard DJ, Suraweera A. Epigenetic Mechanisms in DNA Double Strand Break Repair: A Clinical Review. Front Mol Biosci 2021; 8:685440. [PMID: 34307454 PMCID: PMC8292790 DOI: 10.3389/fmolb.2021.685440] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Upon the induction of DNA damage, the chromatin structure unwinds to allow access to enzymes to catalyse the repair. The regulation of the winding and unwinding of chromatin occurs via epigenetic modifications, which can alter gene expression without changing the DNA sequence. Epigenetic mechanisms such as histone acetylation and DNA methylation are known to be reversible and have been indicated to play different roles in the repair of DNA. More importantly, the inhibition of such mechanisms has been reported to play a role in the repair of double strand breaks, the most detrimental type of DNA damage. This occurs by manipulating the chromatin structure and the expression of essential proteins that are critical for homologous recombination and non-homologous end joining repair pathways. Inhibitors of histone deacetylases and DNA methyltransferases have demonstrated efficacy in the clinic and represent a promising approach for cancer therapy. The aims of this review are to summarise the role of histone deacetylase and DNA methyltransferase inhibitors involved in DNA double strand break repair and explore their current and future independent use in combination with other DNA repair inhibitors or pre-existing therapies in the clinic.
Collapse
Affiliation(s)
- Alejandra Fernandez
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Connor O’Leary
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Kenneth J O’Byrne
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Joshua Burgess
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Derek J Richard
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Amila Suraweera
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| |
Collapse
|
6
|
Wengner AM, Scholz A, Haendler B. Targeting DNA Damage Response in Prostate and Breast Cancer. Int J Mol Sci 2020; 21:E8273. [PMID: 33158305 PMCID: PMC7663807 DOI: 10.3390/ijms21218273] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Steroid hormone signaling induces vast gene expression programs which necessitate the local formation of transcription factories at regulatory regions and large-scale alterations of the genome architecture to allow communication among distantly related cis-acting regions. This involves major stress at the genomic DNA level. Transcriptionally active regions are generally instable and prone to breakage due to the torsional stress and local depletion of nucleosomes that make DNA more accessible to damaging agents. A dedicated DNA damage response (DDR) is therefore essential to maintain genome integrity at these exposed regions. The DDR is a complex network involving DNA damage sensor proteins, such as the poly(ADP-ribose) polymerase 1 (PARP-1), the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), the ataxia-telangiectasia-mutated (ATM) kinase and the ATM and Rad3-related (ATR) kinase, as central regulators. The tight interplay between the DDR and steroid hormone receptors has been unraveled recently. Several DNA repair factors interact with the androgen and estrogen receptors and support their transcriptional functions. Conversely, both receptors directly control the expression of agents involved in the DDR. Impaired DDR is also exploited by tumors to acquire advantageous mutations. Cancer cells often harbor germline or somatic alterations in DDR genes, and their association with disease outcome and treatment response led to intensive efforts towards identifying selective inhibitors targeting the major players in this process. The PARP-1 inhibitors are now approved for ovarian, breast, and prostate cancer with specific genomic alterations. Additional DDR-targeting agents are being evaluated in clinical studies either as single agents or in combination with treatments eliciting DNA damage (e.g., radiation therapy, including targeted radiotherapy, and chemotherapy) or addressing targets involved in maintenance of genome integrity. Recent preclinical and clinical findings made in addressing DNA repair dysfunction in hormone-dependent and -independent prostate and breast tumors are presented. Importantly, the combination of anti-hormonal therapy with DDR inhibition or with radiation has the potential to enhance efficacy but still needs further investigation.
Collapse
Affiliation(s)
| | | | - Bernard Haendler
- Preclinical Research, Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany; (A.M.W.); (A.S.)
| |
Collapse
|
7
|
Labbé M, Hoey C, Ray J, Potiron V, Supiot S, Liu SK, Fradin D. microRNAs identified in prostate cancer: Correlative studies on response to ionizing radiation. Mol Cancer 2020; 19:63. [PMID: 32293453 PMCID: PMC7087366 DOI: 10.1186/s12943-020-01186-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
As the most frequently diagnosed non-skin cancer in men and a leading cause of cancer-related death, understanding the molecular mechanisms that drive treatment resistance in prostate cancer poses a significant clinical need. Radiotherapy is one of the most widely used treatments for prostate cancer, along with surgery, hormone therapy, and chemotherapy. However, inherent radioresistance of tumor cells can reduce local control and ultimately lead to poor patient outcomes, such as recurrence, metastasis and death. The underlying mechanisms of radioresistance have not been fully elucidated, but it has been suggested that miRNAs play a critical role. miRNAs are small non-coding RNAs that regulate gene expression in every signaling pathway of the cell, with one miRNA often having multiple targets. By fine-tuning gene expression, miRNAs are important players in modulating DNA damage response, cell death, tumor aggression and the tumor microenvironment, and can ultimately affect a tumor's response to radiotherapy. Furthermore, much interest has focused on miRNAs found in biofluids and their potential utility in various clinical applications. In this review, we summarize the current knowledge on miRNA deregulation after irradiation and the associated functional outcomes, with a focus on prostate cancer. In addition, we discuss the utility of circulating miRNAs as non-invasive biomarkers to diagnose, predict response to treatment, and prognosticate patient outcomes.
Collapse
Affiliation(s)
- Maureen Labbé
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Christianne Hoey
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Jessica Ray
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Vincent Potiron
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- Institut de Cancérologie de L'Ouest René Gauducheau, Saint-Herblain, France
| | - Stéphane Supiot
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- Institut de Cancérologie de L'Ouest René Gauducheau, Saint-Herblain, France
| | - Stanley K Liu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
- Department of Radiation Oncology, University of Toronto and Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
| | - Delphine Fradin
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.
| |
Collapse
|
8
|
Yun CW, Kim HJ, Lim JH, Lee SH. Heat Shock Proteins: Agents of Cancer Development and Therapeutic Targets in Anti-Cancer Therapy. Cells 2019; 9:cells9010060. [PMID: 31878360 PMCID: PMC7017199 DOI: 10.3390/cells9010060] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/06/2019] [Accepted: 12/21/2019] [Indexed: 12/24/2022] Open
Abstract
Heat shock proteins (HSPs) constitute a large family of molecular chaperones classified by their molecular weights, and they include HSP27, HSP40, HSP60, HSP70, and HSP90. HSPs function in diverse physiological and protective processes to assist in maintaining cellular homeostasis. In particular, HSPs participate in protein folding and maturation processes under diverse stressors such as heat shock, hypoxia, and degradation. Notably, HSPs also play essential roles across cancers as they are implicated in a variety of cancer-related activities such as cell proliferation, metastasis, and anti-cancer drug resistance. In this review, we comprehensively discuss the functions of HSPs in association with cancer initiation, progression, and metastasis and anti-cancer therapy resistance. Moreover, the potential utilization of HSPs to enhance the effects of chemo-, radio-, and immunotherapy is explored. Taken together, HSPs have multiple clinical usages as biomarkers for cancer diagnosis and prognosis as well as the potential therapeutic targets for anti-cancer treatment.
Collapse
Affiliation(s)
- Chul Won Yun
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
| | - Hyung Joo Kim
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
| | - Ji Ho Lim
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 31538, Korea
- Correspondence: ; Tel.: +82-02-709-2029
| |
Collapse
|
9
|
Feng LR, Wolff BS, Liwang J, Regan JM, Alshawi S, Raheem S, Saligan LN. Cancer‑related fatigue during combined treatment of androgen deprivation therapy and radiotherapy is associated with mitochondrial dysfunction. Int J Mol Med 2019; 45:485-496. [PMID: 31894256 PMCID: PMC6984780 DOI: 10.3892/ijmm.2019.4435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/06/2019] [Indexed: 01/02/2023] Open
Abstract
Combined androgen deprivation therapy (ADT) and radiation therapy (RT) is the standard of care treatment for non-metastatic prostate cancer (NMPC). Despite the efficacy, treatment-related symptoms including fatigue greatly reduce the quality of life of cancer patients. The goal of the study is to examine the influence of combined ADT/RT on fatigue and understand its underlying mechanisms. A total of 64 participants with NMPC were enrolled. Fatigue was assessed using the Functional Assessment of Cancer Therapy-Fatigue. Mitochondrial function parameters were measured as oxygen consumption from peripheral blood mononuclear cells (PBMCs) extracted from participants' whole blood. An ADT/RT-induced fatigue mouse model was developed, with fatigue measured as a reduction in voluntary wheel-running activity (VWRA) in 54 mice. Mitochondrial function was assessed in the ADT/RT mouse brains using western blot analysis of glucose transporter 4 (GLUT4) and transcription factor A, mitochondrial (TFAM). The results demonstrated that fatigue in the ADT group was exacerbated during RT compared with the non-ADT group. This effect was specific to fatigue, as depressive symptoms were unaffected. PBMCs of fatigued subjects exhibited decreased ATP coupling efficiency compared to non-fatigued subjects, indicative of mitochondrial dysfunction. The ADT/RT mice demonstrated the synergistic effect of ADT and RT in decreasing VWRA. Brain tissues of ADT/RT mice exhibited decreased levels of GLUT4 and TFAM suggesting that impaired neuronal metabolic homeostasis may contribute to fatigue pathogenesis. In conclusion, these findings suggest that fatigue induced by ADT/RT may be attributable to mitochondrial dysfunction both peripherally and in the central nervous system (CNS). The synergistic effect of ADT/RT is behaviorally reproducible in a mouse model and its mechanism may be related to bioenergetics in the CNS.
Collapse
Affiliation(s)
- Li Rebekah Feng
- Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian S Wolff
- Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Josephine Liwang
- Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeniece M Regan
- Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah Alshawi
- Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sumiyya Raheem
- Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leorey N Saligan
- Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Zheng J, Cheng X, Xu S, Zhang L, Pan J, Yu H, Bao J, Lu R. Diallyl trisulfide induces G2/M cell-cycle arrest and apoptosis in anaplastic thyroid carcinoma 8505C cells. Food Funct 2019; 10:7253-7261. [PMID: 31617531 DOI: 10.1039/c9fo00646j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Anaplastic thyroid cancer (ATC) is the most aggressive thyroid cancer. Current approaches including surgery, chemotherapy and therapeutic drugs provide limited benefits for ATC patients. Diallyl trisulfide (DATS) has been documented as a promising anti-cancer agent for various carcinomas. However, its role in ATC tumorigenesis remained unclear. Our results showed that DATS treatment at 12.5, 25 and 50 μM decreased the viability of 8505C cells both in a time- and dose-dependent manner. The phosphorylation of H2A.X, which is a DNA damage marker, was induced by DATS both in a dose- and time-dependent manner. Moreover, DATS mediated the DNA damage through the phosphorylation of ATM but not ATR. DATS also induced G2/M cell-cycle arrest followed by the translocation of Cdc25C from the nucleus to the cytoplasm. Further results showed that DATS induced mitochondrial apoptosis in 8505C cells, evidenced by Hoechst/PI double staining, PI-Annexin V assay and western blot. Taken altogether, our findings demonstrated that DATS induced G2/M cell-cycle arrest and mitochondrial apoptosis by triggering DNA damage in ATC 8505C cells, which shed light on a novel therapeutic approach for ATC treatment.
Collapse
Affiliation(s)
- Jiangxia Zheng
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China. and Jiangsu Institute of Nuclear Medicine, Key Laboratory of Nuclear Medicine, Ministry of Health, 20 Qian Rong Road, Wuxi, Jiangsu 214063, China
| | - Xian Cheng
- Jiangsu Institute of Nuclear Medicine, Key Laboratory of Nuclear Medicine, Ministry of Health, 20 Qian Rong Road, Wuxi, Jiangsu 214063, China
| | - Shichen Xu
- Jiangsu Institute of Nuclear Medicine, Key Laboratory of Nuclear Medicine, Ministry of Health, 20 Qian Rong Road, Wuxi, Jiangsu 214063, China
| | - Li Zhang
- Jiangsu Institute of Nuclear Medicine, Key Laboratory of Nuclear Medicine, Ministry of Health, 20 Qian Rong Road, Wuxi, Jiangsu 214063, China
| | - Jie Pan
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| | - Huixin Yu
- Jiangsu Institute of Nuclear Medicine, Key Laboratory of Nuclear Medicine, Ministry of Health, 20 Qian Rong Road, Wuxi, Jiangsu 214063, China
| | - Jiandong Bao
- Jiangsu Institute of Nuclear Medicine, Key Laboratory of Nuclear Medicine, Ministry of Health, 20 Qian Rong Road, Wuxi, Jiangsu 214063, China
| | - Rongrong Lu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
11
|
Cohen J, Anvari A, Samanta S, Poirier Y, Soman S, Alexander A, Ranjbar M, Pavlovic R, Zodda A, Jackson IL, Mahmood J, Vujaskovic Z, Sawant A. Mild hyperthermia as a localized radiosensitizer for deep-seated tumors: investigation in an orthotopic prostate cancer model in mice. Br J Radiol 2019; 92:20180759. [PMID: 30673305 PMCID: PMC6541201 DOI: 10.1259/bjr.20180759] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/02/2019] [Accepted: 01/16/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE: Non-ablative or mild hyperthermia (HT) has been shown in preclinical (and clinical) studies as a localized radiosensitizer that enhances the tumoricidal effects of radiation. Most preclinical in vivo HT studies use subcutaneous tumor models which do not adequately represent clinical conditions (e.g. proximity of normal/critical organs) or replicate the tumor microenvironment-both of which are important factors for eventual clinical translation. The purpose of this work is to demonstrate proof-of-concept of locoregional radiosensitization with superficially applied, radiofrequency (RF)-induced HT in an orthotopic mouse model of prostate cancer. METHODS: In a 4-arm study, 40 athymic male nude mice were inoculated in the prostate with luciferase-transfected human prostate cancer cells (PC3). Tumor volumes were allowed to reach 150-250 mm3 (as measured by ultrasound) following which, mice were randomized into (i) control (no intervention); (ii) HT alone; (iii) RT alone; and (iv) HT + RT. RF-induced HT was administered (Groups ii and iv) using the Oncotherm LAB EHY-100 device to achieve a target temperature of 41 °C in the prostate. RT was administered ~30 min following HT, using an image-guided small animal radiotherapy research platform. In each case, a dual arc plan was used to deliver 12 Gy to the target in a single fraction. One animal from each cohort was euthanized on Day 10 or 11 after treatment for caspase-9 and caspase-3 Western blot analysis. RESULTS: The inoculation success rate was 89%. Mean tumor size at randomization (~16 days post-inoculation) was ~189 mm3 . Following the administration of RT and HT, mean tumor doubling times in days were: control = 4.2; HT = 4.5; RT = 30.4; and HT + RT = 33.4. A significant difference (p = 0.036) was noted between normalized nadir volumes for the RT alone (0.76) and the HT + RT (0.40) groups. Increased caspase-3 expression was seen in the combination treatment group compared to the other treatment groups. CONCLUSION: These early results demonstrate the successful use of external mild HT as a localized radiosensitizer for deep-seated tumors. ADVANCES IN KNOWLEDGE: We successfully demonstrated the feasibility of administering external mild HT in an orthotopic tumor model and demonstrated preclinical proof-of-concept of HT-based localized radiosensitization in prostate cancer radiotherapy.
Collapse
Affiliation(s)
- Justin Cohen
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Akbar Anvari
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Santanu Samanta
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yannick Poirier
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sandrine Soman
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Allen Alexander
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maida Ranjbar
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ramilda Pavlovic
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrew Zodda
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Isabel L Jackson
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Javed Mahmood
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amit Sawant
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|