1
|
Locquet M, Jacob S, Geets X, Beaudart C. Dose-volume predictors of cardiac adverse events after high-dose thoracic radiation therapy for lung cancer: a systematic review and meta-analysis. BMC Cancer 2024; 24:1556. [PMID: 39702000 DOI: 10.1186/s12885-024-13281-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Lung cancer is a leading cause of cancer mortality and may require high-dose thoracic radiation therapy (RT). However, RT significantly increases the risk of radiation-induced cardiac events, such as pericarditis, cardiomyopathy, and ischemic heart diseases. Despite evidence from clinical trials showing that higher RT doses are associated with poorer survival outcomes due to these cardiac effects, data on dose-volume predictors of such events in lung cancer remain sparse. OBJECTIVE To systematically synthesize the incidence of cardiac events following radiation therapy for lung cancer treatment and dose-volume metrics predictors of radiation therapy-induced cardiac events in lung cancer treatment. METHODS This systematic review, registered on PROSPERO (CRD42024565103), adhered to PRISMA guidelines to investigate cardiac events and its dose-volume predictors following high-dose radiation therapy in adults with lung cancer. Data were extracted from longitudinal observational studies and randomized controlled trials. A comprehensive literature search was conducted across MEDLINE, Cochrane CENTRAL, and Embase, with studies selected based on predefined criteria, focusing on clinical cardiac outcomes. Data extraction followed CHARMS guidelines, and study quality was reported using the PROBAST tool. Results were synthesized narratively, with meta-analyses performed where appropriate using R software to estimate pooled effect sizes, heterogeneity, and publication bias. RESULTS The systematic review included 21 studies and identified a significant association between high-dose thoracic radiation therapy (RT) and an increased incidence of cardiac adverse events in lung cancer patients. The review revealed that higher dose-volume parameters, notably higher mean heart doses (MHD), were predictive of major cardiac events such as pericardial effusion, arrhythmias, and acute coronary syndrome. The meta-analysis showed a significant 4% (95% confidence interval: 3%-6%) increased probability of the occurrence of cardiac events per additional Gray of MHD, with low heterogeneity among studies (I2 = 23%). No publication bias was evidenced. CONCLUSION This study underscores the importance of dose-volume parameters as predictors of cardiac adverse events following high-dose thoracic RT in lung cancer treatment. The findings highlight the need for careful consideration of heart dose constraints in RT planning to mitigate the risk of radiation-induced cardiotoxicity, thereby improving the therapeutic ratio for lung cancer patients. Future research should focus on refining these dose constraints and exploring cardioprotective strategies during lung cancer radiotherapy.
Collapse
Affiliation(s)
- Médéa Locquet
- Department of Biomedical Sciences, Namur Research Institute for Life Sciences, (NARILIS), Faculty of Medicine, University of Namur, Namur, Belgium.
- Clinical Pharmacology and Toxicology Research Unit, Namur Research Institute for Life Sciences, Faculty of Medicine, University of Namur, 5000, Namur, Belgium.
- National Institute for Medical Research (Inserm), Unit 1018 Centre for Research in Epidemiology and Population Health, Laboratory of "Epidemiology of Radiations, Clinical Epidemiology and Cancer Survivorship", Paris-Saclay University, Gif-Sur-Yvette, France.
| | - Sophie Jacob
- Laboratory of Epidemiology (LEPID), Institut de Radioprotection Et de Sureté Nucléaire, Fontenay-Aux-Roses, France
| | - Xavier Geets
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, MIRO Lab. IREC - UCLouvain, Brussels, Belgium
| | - Charlotte Beaudart
- Department of Biomedical Sciences, Namur Research Institute for Life Sciences, (NARILIS), Faculty of Medicine, University of Namur, Namur, Belgium
- Clinical Pharmacology and Toxicology Research Unit, Namur Research Institute for Life Sciences, Faculty of Medicine, University of Namur, 5000, Namur, Belgium
| |
Collapse
|
2
|
Jahng JWS, Little MP, No HJ, Loo BW, Wu JC. Consequences of ionizing radiation exposure to the cardiovascular system. Nat Rev Cardiol 2024; 21:880-898. [PMID: 38987578 DOI: 10.1038/s41569-024-01056-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
Ionizing radiation is widely used in various industrial and medical applications, resulting in increased exposure for certain populations. Lessons from radiation accidents and occupational exposure have highlighted the cardiovascular and cerebrovascular risks associated with radiation exposure. In addition, radiation therapy for cancer has been linked to numerous cardiovascular complications, depending on the distribution of the dose by volume in the heart and other relevant target tissues in the circulatory system. The manifestation of symptoms is influenced by numerous factors, and distinct cardiac complications have previously been observed in different groups of patients with cancer undergoing radiation therapy. However, in contemporary radiation therapy, advances in treatment planning with conformal radiation delivery have markedly reduced the mean heart dose and volume of exposure, and these variables are therefore no longer sole surrogates for predicting the risk of specific types of heart disease. Nevertheless, certain cardiac substructures remain vulnerable to radiation exposure, necessitating close monitoring. In this Review, we provide a comprehensive overview of the consequences of radiation exposure on the cardiovascular system, drawing insights from various cohorts exposed to uniform, whole-body radiation or to partial-body irradiation, and identify potential risk modifiers in the development of radiation-associated cardiovascular disease.
Collapse
Affiliation(s)
- James W S Jahng
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
- Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, UK
| | - Hyunsoo J No
- Department of Radiation Oncology, Southern California Permanente Medical Group, Los Angeles, CA, USA
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
- Greenstone Biosciences, Palo Alto, CA, USA.
| |
Collapse
|
3
|
Walls GM, Bergom C, Mitchell JD, Rentschler SL, Hugo GD, Samson PP, Robinson CG. Cardiotoxicity following thoracic radiotherapy for lung cancer. Br J Cancer 2024:10.1038/s41416-024-02888-0. [PMID: 39506136 DOI: 10.1038/s41416-024-02888-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Radiotherapy is the standard of care treatment for unresectable NSCLC, combined with concurrent chemotherapy and adjuvant immunotherapy. Despite technological advances in radiotherapy planning and delivery, the risk of damage to surrounding thoracic tissues remains high. Cardiac problems, including arrhythmia, heart failure and ischaemic events, occur in 20% of patients with lung cancer who undergo radiotherapy. As survival rates improve incrementally for this cohort, minimising the cardiovascular morbidity of RT is increasingly important. Problematically, the reporting of cardiac endpoints has been poor in thoracic radiotherapy clinical trials, and retrospective studies have been limited by the lack of standardisation of nomenclature and endpoints. How baseline cardiovascular profile and cardiac substructure radiation dose distribution impact the risk of cardiotoxicity is incompletely understood. As Thoracic Oncology departments seek to expand the indications for radiotherapy, and as the patient cohort becomes older and more comorbid, there is a pressing need for cardiotoxicity to be comprehensively characterised with sophisticated oncology, physics and cardio-oncology evaluations. This review synthesises the evidence base for cardiotoxicity in conventional radiotherapy, focusing on lung cancer, including current data, unmet clinical needs, and future scientific directions.
Collapse
Affiliation(s)
- Gerard M Walls
- Department of Radiation Oncology, Washington University in St Louis, Saint Louis, MO, USA.
- Patrick Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, USA.
| | - Carmen Bergom
- Department of Radiation Oncology, Washington University in St Louis, Saint Louis, MO, USA
- Siteman Cancer Center, Washington University Medical Campus, Saint Louis, MO, USA
| | - Joshua D Mitchell
- Cardio-Oncology Center of Excellence, Washington University in St Louis, St Louis, MO, USA
| | - Stacey L Rentschler
- Department of Developmental Biology, Washington University in St Louis, St. Louis, MO, USA
- Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division, Washington University in St Louis, St. Louis, MO, USA
| | - Geoffrey D Hugo
- Department of Radiation Oncology, Washington University in St Louis, Saint Louis, MO, USA
- Siteman Cancer Center, Washington University Medical Campus, Saint Louis, MO, USA
| | - Pamela P Samson
- Department of Radiation Oncology, Washington University in St Louis, Saint Louis, MO, USA
- Siteman Cancer Center, Washington University Medical Campus, Saint Louis, MO, USA
| | - Clifford G Robinson
- Department of Radiation Oncology, Washington University in St Louis, Saint Louis, MO, USA
- Siteman Cancer Center, Washington University Medical Campus, Saint Louis, MO, USA
| |
Collapse
|
4
|
Pouvreau P, Taleb I, Fontaine A, Edouard L, Gibson N, Yaouanq M, Boudoussier A, Petit A, Vinh-Hung V, Sargos P, Benziane-Ouaritini N, Bouleftour W, Magne N. Heart is a heavy burden: cardiac toxicity in radiation oncology. Support Care Cancer 2024; 32:769. [PMID: 39495349 DOI: 10.1007/s00520-024-08949-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Over the years, radiotherapy has seen continual improvements and has become a standard treatment for most malignant tumors. Cardiotoxicity is a well-known radiotherapy side effect, leading to the risk of long-term morbidity and mortality in cancer survivors. Therefore, minimizing radiotherapy-related cardiotoxicity remains an important challenge in cancer care management. Indeed, multiple dose constraints were proposed for the heart and its substructures. In addition, sparing techniques were developed to reduce the exposure of the heart to ionizing radiation and are currently used in daily clinical routine. The purpose of this review is to summarize the current knowledge about radiation-induced cardiotoxicity, to discuss the previously cardiac dose constraints, and to evaluate the various management strategies.
Collapse
Affiliation(s)
- Pierre Pouvreau
- Department of Radiation Oncology, Institut Bergonié, Bordeaux, France
| | - Imed Taleb
- Department of Radiation Oncology, Institut Bergonié, Bordeaux, France
| | - Agathe Fontaine
- Department of Radiation Oncology, Institut Bergonié, Bordeaux, France
| | - Lucas Edouard
- Department of Radiation Oncology, Institut Bergonié, Bordeaux, France
| | - Nyere Gibson
- Department of Radiation Oncology, Institut Bergonié, Bordeaux, France
| | - Margaux Yaouanq
- Department of Radiation Oncology, Institut Bergonié, Bordeaux, France
| | | | - Adeline Petit
- Department of Radiation Oncology, Institut Bergonié, Bordeaux, France
| | - Vincent Vinh-Hung
- Department of Radiation Oncology, Institut Bergonié, Bordeaux, France
| | - Paul Sargos
- Department of Radiation Oncology, Institut Bergonié, Bordeaux, France
| | | | - Wafa Bouleftour
- Medical Oncology Department, Cancerology and Hematology Institute, Saint-Etienne University, Hospital, 42055, France.
| | - Nicolas Magne
- Department of Radiation Oncology, Institut Bergonié, Bordeaux, France
| |
Collapse
|
5
|
Bowen Jones S, Marchant T, Saunderson C, McWilliam A, Banfill K. Moving beyond mean heart dose: The importance of cardiac substructures in radiation therapy toxicity. J Med Imaging Radiat Oncol 2024. [PMID: 39228181 DOI: 10.1111/1754-9485.13737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/12/2024] [Indexed: 09/05/2024]
Abstract
Normal tissue tolerance dose limits to the heart have been established to reduce the risk of radiation-induced cardiac disease (RICD). Dose constraints have been developed based on either the mean dose delivered to the whole heart (MHD) or the dose delivered to a specific volume, for example, volume of heart receiving equal to or greater than 30 Gy (V30). There is increasing evidence that the impact of thoracic radiation on cardiac morbidity and mortality has been underestimated. Consequently, there is a need to reduce the dose delivered to the heart in radical radiotherapy treatment planning. The pathophysiology of RICD may relate to dose to specific cardiac substructures (CS) rather than the traditionally observed MHD for common toxicities. The MHD or V30 Gy threshold dose rarely represents the true dose delivered to individual CS. Studies have shown the dose to specific areas may be more strongly correlated with overall survival (OS). With advances in modern radiotherapy techniques, it is vital that we develop robust, evidence-based dose limits for CS, to fully understand and reduce the risk of RICD, particularly in high-risk populations with cardiac risk factors. The following review will summarise the existing evidence of dose limits to CS, explain how dose limits may vary according to different disease sites or radiation techniques and propose how radiotherapy plans can be optimised to reduce the dose to these CS in clinical practice.
Collapse
Affiliation(s)
- Sarah Bowen Jones
- Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, UK
| | - Tom Marchant
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Chris Saunderson
- Department of Cardiology, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Alan McWilliam
- Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Kathryn Banfill
- Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
6
|
Little MP, Bazyka D, de Gonzalez AB, Brenner AV, Chumak VV, Cullings HM, Daniels RD, French B, Grant E, Hamada N, Hauptmann M, Kendall GM, Laurier D, Lee C, Lee WJ, Linet MS, Mabuchi K, Morton LM, Muirhead CR, Preston DL, Rajaraman P, Richardson DB, Sakata R, Samet JM, Simon SL, Sugiyama H, Wakeford R, Zablotska LB. A Historical Survey of Key Epidemiological Studies of Ionizing Radiation Exposure. Radiat Res 2024; 202:432-487. [PMID: 39021204 PMCID: PMC11316622 DOI: 10.1667/rade-24-00021.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/23/2024] [Indexed: 07/20/2024]
Abstract
In this article we review the history of key epidemiological studies of populations exposed to ionizing radiation. We highlight historical and recent findings regarding radiation-associated risks for incidence and mortality of cancer and non-cancer outcomes with emphasis on study design and methods of exposure assessment and dose estimation along with brief consideration of sources of bias for a few of the more important studies. We examine the findings from the epidemiological studies of the Japanese atomic bomb survivors, persons exposed to radiation for diagnostic or therapeutic purposes, those exposed to environmental sources including Chornobyl and other reactor accidents, and occupationally exposed cohorts. We also summarize results of pooled studies. These summaries are necessarily brief, but we provide references to more detailed information. We discuss possible future directions of study, to include assessment of susceptible populations, and possible new populations, data sources, study designs and methods of analysis.
Collapse
Affiliation(s)
- Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
- Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK
| | - Dimitry Bazyka
- National Research Center for Radiation Medicine, Hematology and Oncology, 53 Melnikov Street, Kyiv 04050, Ukraine
| | | | - Alina V. Brenner
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Vadim V. Chumak
- National Research Center for Radiation Medicine, Hematology and Oncology, 53 Melnikov Street, Kyiv 04050, Ukraine
| | - Harry M. Cullings
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Robert D. Daniels
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Benjamin French
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eric Grant
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194, Japan
| | - Michael Hauptmann
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany
| | - Gerald M. Kendall
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Headington, Oxford, OX3 7LF, UK
| | - Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety, Fontenay aux Roses France
| | - Choonsik Lee
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Won Jin Lee
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Martha S. Linet
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Kiyohiko Mabuchi
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Lindsay M. Morton
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | | | | | - Preetha Rajaraman
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - David B. Richardson
- Environmental and Occupational Health, 653 East Peltason, University California, Irvine, Irvine, CA 92697-3957 USA
| | - Ritsu Sakata
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Jonathan M. Samet
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| | - Steven L. Simon
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Hiromi Sugiyama
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Ellen Wilkinson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Lydia B. Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, 550 16 Street, 2 floor, San Francisco, CA 94143, USA
| |
Collapse
|
7
|
Little MP, Boerma M, Bernier MO, Azizova TV, Zablotska LB, Einstein AJ, Hamada N. Effects of confounding and effect-modifying lifestyle, environmental and medical factors on risk of radiation-associated cardiovascular disease. BMC Public Health 2024; 24:1601. [PMID: 38879521 PMCID: PMC11179258 DOI: 10.1186/s12889-024-18701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/23/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of death worldwide. It has been known for some considerable time that radiation is associated with excess risk of CVD. A recent systematic review of radiation and CVD highlighted substantial inter-study heterogeneity in effect, possibly a result of confounding or modifications of radiation effect by non-radiation factors, in particular by the major lifestyle/environmental/medical risk factors and latent period. METHODS We assessed effects of confounding by lifestyle/environmental/medical risk factors on radiation-associated CVD and investigated evidence for modifying effects of these variables on CVD radiation dose-response, using data assembled for a recent systematic review. RESULTS There are 43 epidemiologic studies which are informative on effects of adjustment for confounding or risk modifying factors on radiation-associated CVD. Of these 22 were studies of groups exposed to substantial doses of medical radiation for therapy or diagnosis. The remaining 21 studies were of groups exposed at much lower levels of dose and/or dose rate. Only four studies suggest substantial effects of adjustment for lifestyle/environmental/medical risk factors on radiation risk of CVD; however, there were also substantial uncertainties in the estimates in all of these studies. There are fewer suggestions of effects that modify the radiation dose response; only two studies, both at lower levels of dose, report the most serious level of modifying effect. CONCLUSIONS There are still large uncertainties about confounding factors or lifestyle/environmental/medical variables that may influence radiation-associated CVD, although indications are that there are not many studies in which there are substantial confounding effects of these risk factors.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Room 7E546, 9609 Medical Center Drive MSC 9778, Bethesda, MD, 20892-9778, USA.
- Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK.
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Marie-Odile Bernier
- Institut de Radioprotection et de Sureté Nucléaire, Fontenay Aux Roses, France
| | - Tamara V Azizova
- Clinical Department, Southern Urals Biophysics Institute, Chelyabinsk Region, Ozyorskoe Shosse 19, Ozyorsk, 456780, Russia
| | - Lydia B Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, 550 16th St 2nd floor, San Francisco, CA, 94143, USA
| | - Andrew J Einstein
- Seymour, Paul, and Gloria Milstein Division of Cardiology, Department of Medicine, and Department of Radiology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194, Japan
| |
Collapse
|
8
|
Lee SH, Geng H, Arnold J, Caruana R, Fan Y, Rosen MA, Apte AP, Deasy JO, Bradley JD, Xiao Y. Interpretable Machine Learning for Choosing Radiation Dose-volume Constraints on Cardio-pulmonary Substructures Associated with Overall Survival in NRG Oncology RTOG 0617. Int J Radiat Oncol Biol Phys 2023; 117:1270-1286. [PMID: 37343707 PMCID: PMC10728350 DOI: 10.1016/j.ijrobp.2023.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/08/2023] [Accepted: 06/11/2023] [Indexed: 06/23/2023]
Abstract
PURPOSE Our objective was to use interpretable machine learning for choosing dose-volume constraints on cardiopulmonary substructures (CPSs) associated with overall survival (OS) in radiation therapy for locally advanced non-small cell lung cancer. METHODS AND MATERIALS A total of 428 patients with non-small cell lung cancer were randomly divided into training/validation/test subsets (n = 230/149/49) in Radiation Therapy Oncology Group 0617. Manual or automated contouring was performed to segment CPSs, including heart, atria, ventricles, aorta, left/right ventricle/atrium (LV+RV+LA+RA), inferior/superior vena cava, pulmonary artery, and pericardium. Peri (pericardium-heart), rest (heart-[LV+RV+LA+RA]), clinical target volume (CTV), and lungs-CTV contours were also obtained. Dose-volume histogram features were extracted, including minimum/mean dose to the hottest x% volume (Dx%[Gy]/MOHx%[Gy]), minimum/mean/maximum dose, percent volume receiving at least xGy (VxGy[%]), and overlapping volume of each CPS with planning target volume (PTV_Voverlap[%]). Clinical parameters were collected from the National Clinical Trials Network/Community oncology research program data archive. Feature selection was performed using a series of multiblock sparse partial least squares regression, stability selection supervised principal component analysis, and Boruta. Explainable boosting machine (EBM) was trained using a conditional survival distribution-based approach for imputing censored data, treating survival analysis as a regression problem. Harrell's C-index was used to evaluate OS discrimination performance of EBM, Cox proportional hazards (CPH), random survival forest, extreme gradient boosting survival embeddings, and CPH deep neural network (DeepSurv) models in the test set. Dose-volume constraints were selected using the binary change point detection algorithm in Shapley additive explanations-based partial dependence functions. RESULTS Selected features included LA_V60Gy(%), pericardium_D30%(Gy), lungs-CTV_PTV_Voverlap(%), RA_V55Gy(%), and received_cons_chemo. All models ranked LA_V60Gy(%) as the most important feature. EBM achieved the best performance for predicting OS, followed by extreme gradient boosting survival embeddings, random survival forest, DeepSurv, and CPH (C-index = 0.653, 0.646, 0.642, 0.638, and 0.632). EBM global explanations suggested that LA_V60Gy(%) < 25.6, lungs-CTV_PTV_Voverlap(%) < 1.1, pericardium_D30%(Gy) < 18.9, RA_V55Gy(%) < 19.5, and received_cons_chemo = 'Yes' for improved OS. CONCLUSIONS EBM can be used to discriminate OS while also guiding dose-volume constraint selection for optimal management of cardiac toxicity in lung cancer radiation therapy.
Collapse
Affiliation(s)
- Sang Ho Lee
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Huaizhi Geng
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jacinta Arnold
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Yong Fan
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark A Rosen
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Aditya P Apte
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jeffrey D Bradley
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Petit C, Escande A, Sarrade T, Vaugier L, Kirova Y, Tallet A. Radiation therapy in the thoracic region: Radio-induced cardiovascular disease, cardiac delineation and sparing, cardiac dose constraints, and cardiac implantable electronic devices. Cancer Radiother 2023; 27:588-598. [PMID: 37648559 DOI: 10.1016/j.canrad.2023.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 09/01/2023]
Abstract
Radiation therapy in the thoracic region may deliver incidental ionizing radiation to the surrounding healthy structures, including the heart. Radio-induced heart toxicity has long been a concern in breast cancer and Hodgkin's lymphoma and was deemed a long-term event. However, recent data highlight the need to limit the dose to the heart in less favorable thoracic cancers too, such as lung and esophageal cancers in which incidental irradiation led to increased mortality. This article will summarize available cardiac dose constraints in various clinical settings and the types of radio-induced cardiovascular diseases encountered as well as delineation of cardiac subheadings and management of cardiac devices. Although still not completely deciphered, heart dose constraints remain intensively investigated and the mean dose to the heart is no longer the only dosimetric parameter to consider since the left anterior descending artery as well as the left ventricle should also be part of dosimetry constraints.
Collapse
Affiliation(s)
- C Petit
- Radiation Oncology Department, institut Paoli-Calmettes, 232, boulevard Sainte-Marguerite, 13273 Marseille cedex 09, France
| | - A Escande
- Service de radiothérapie, centre Léonard-de-Vinci, Dechy, France; UMR 9189, laboratoire Cristal, université de Lille, Villeneuve-d'Ascq, France
| | - T Sarrade
- Department of Radiation Oncology, hôpital Tenon, Sorbonne université, 75020 Paris, France
| | - L Vaugier
- Department of Radiation Oncology, institut de cancérologie de l'Ouest, Saint-Herblain, France
| | - Y Kirova
- Department of Radiation Oncology, institut Curie, Paris, France
| | - A Tallet
- Radiation Oncology Department, institut Paoli-Calmettes, 232, boulevard Sainte-Marguerite, 13273 Marseille cedex 09, France; UMR 1068, CRCM Inserm, Marseille, France.
| |
Collapse
|
10
|
Chen X, Tian X, Zhang X, Deng Q, Wang M, Zhou X, Xu Y, Zhou L, Zou B, Liu Y, Ao R, Lu Y, Gong Y. Pericardial irradiation dose may be strongly associated with grade 4 lymphopenia and affect prognosis in patients with locally advanced esophageal cancer receiving definitive concurrent chemoradiotherapy. Thorac Cancer 2023; 14:2735-2744. [PMID: 37519061 PMCID: PMC10518230 DOI: 10.1111/1759-7714.15057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND The immune system may influence prognosis, and lymphopenia is a frequent side effect of concurrent chemoradiotherapy (CCRT). Radical irradiation for locally advanced esophageal cancer (LA-EC) exposes significant vascular and heart volumes. In this study, we hypothesized that lymphopenia is linked to cardiac and pericardial doses and affects patient prognosis. METHODS AND MATERIALS We identified 190 LA-EC patients who received radical CCRT. Multivariate analysis (MVA) was performed to correlate clinical factors and dosimetric parameters with overall survival (OS). We collected lymphocyte-related variables and ratios before and during CCRT. MVA was performed to correlate hematologic toxicity with OS. The relationship between dosimetric parameters and G4 lymphopenia was determined using logistic stepwise regression. Finally, a nomogram of G4 lymphopenia was developed and validated externally. RESULTS Median follow-up time for all patients was 27.5 months. On MVA for OS, higher pericardial V30 (PV30 ) was linked to worse survival (HR: 1.013, 95% CI: 1.001-1.026, p = 0.039). The median OS stratified by PV30 > 55.3% and PV30 ≤ 55.3% was 24.0 months and 54.0 months, respectively (p = 0.004). G4 lymphopenia was shown to be linked with worse OS in the MVA of hematological toxicity with OS (HR: 2.042, 95% CI: 1.335-3.126, p = 0.001). Thirty of the 100 patients in the training set had G4 lymphopenia. Logistic stepwise regression was used to identify variables associated with G4 lymphopenia, and the final model consisted of stage-IVA (p = 0.017), platelet-to-lymphocyte ratio during CCRT (p = 0.008), Heart V50 (p = 0.046), and PV30 (p = 0.048). Finally, a nomogram predicting G4 lymphocytopenia were constructed and externally validated. The ROC curve showed an AUC for internal validation of 0.775 and external validation of 0.843. CONCLUSION Higher doses of pericardial radiation might affect LA-EC patients' prognosis by inducing G4 lymphopenia during CCRT. Further prospective studies are warranted to confirm these findings, especially in the era of immune-checkpoint inhibitor treatment.
Collapse
Affiliation(s)
- Xianyan Chen
- Division of Thoracic Tumor Multidisciplinary Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Xiaoman Tian
- Department of OncologySichuan Provincial People's HospitalChengduChina
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multidisciplinary Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Qianyue Deng
- Division of Thoracic Tumor Multidisciplinary Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Min Wang
- Division of Thoracic Tumor Multidisciplinary Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Xiaojuan Zhou
- Division of Thoracic Tumor Multidisciplinary Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Yong Xu
- Division of Thoracic Tumor Multidisciplinary Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Lin Zhou
- Division of Thoracic Tumor Multidisciplinary Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Bingwen Zou
- Division of Thoracic Tumor Multidisciplinary Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Yongmei Liu
- Division of Thoracic Tumor Multidisciplinary Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Rui Ao
- Department of OncologySichuan Provincial People's HospitalChengduChina
| | - You Lu
- Division of Thoracic Tumor Multidisciplinary Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Youling Gong
- Division of Thoracic Tumor Multidisciplinary Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
11
|
Pennock M, Halmos B, Bodner W, Cheng H, Gucalp R, Ohri N. Exploring causes and consequences of early discontinuation of durvalumab after chemoradiotherapy for non-small cell lung cancer. Clin Transl Radiat Oncol 2023; 41:100643. [PMID: 37346274 PMCID: PMC10279777 DOI: 10.1016/j.ctro.2023.100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction For most locally advanced non-small cell lung cancer (LA-NSCLC) patients who complete definitive chemoradiotherapy (CRT) and do not experience disease progression, one year of adjuvant durvalumab is recommended. Here, we explore causes and consequences of early durvalumab discontinuation. Materials and Methods We reviewed patients treated for LA-NSCLC with definitive CRT who began adjuvant durvalumab between 2017 and 2021. Duration of durvalumab receipt and causes for early discontinuation were tabulated. Logistic regression models were utilized to evaluate predictors of early durvalumab discontinuation. Landmark analyses were performed to explore associations between early durvalumab discontinuation and clinical outcomes (progression-free survival (PFS), overall survival (OS)). Results Fifty-nine patients were included. Forty-one patients (69%) discontinued durvalumab early, most commonly for disease progression (n = 14) or lung toxicity (n = 10). Multivariable analysis revealed mean heart radiotherapy dose (MHD) was associated with risk of durvalumab discontinuation from progression (HR = 2.34 per 10 Gy, p = 0.052), and there was a trend suggesting an association between MHD and risk of durvalumab discontinuation from lung toxicity (HR = 2.16 per 10 Gy, p = 0.126). Median PFS duration following durvalumab initiation was 14 months, and median OS duration was 32 months. Landmark analyses that excluded patients with progression or death within one year of durvalumab initiation demonstrated improved outcomes for patients who completed one year of durvalumab (2-year PFS 100% v. 40%, p < 0.001; 2-year OS 100% v. 67%, p = 0.862). Improved outcomes were observed for patients who received MHD below the cohort median (9.3 Gy) compared to patients with higher MHD (median PFS 32 months v. 8 months, p < 0.001; 2-year OS 69% v. 44%, p = 0.088). Conclusion For LA-NSCLC patients treated with CRT followed by immunotherapy, extent of cardiac irradiation may be a risk factor for immunotherapy discontinuation, disease recurrence, and death.
Collapse
Affiliation(s)
- Michael Pennock
- Albert Einstein College of Medicine and Montefiore Medical Center, Department of Radiation Oncology, 1625 Poplar Street, Suite 101, Bronx, NY 10461, United States
| | - Balazs Halmos
- Albert Einstein College of Medicine and Montefiore Medical Center, Department of Oncology, 1695 Eastchester Road, Bronx, NY 10461-2374, United States
| | - William Bodner
- Albert Einstein College of Medicine and Montefiore Medical Center, Department of Radiation Oncology, 1625 Poplar Street, Suite 101, Bronx, NY 10461, United States
| | - Haiying Cheng
- Albert Einstein College of Medicine and Montefiore Medical Center, Department of Oncology, 1695 Eastchester Road, Bronx, NY 10461-2374, United States
| | - Rasim Gucalp
- Albert Einstein College of Medicine and Montefiore Medical Center, Department of Oncology, 1695 Eastchester Road, Bronx, NY 10461-2374, United States
| | - Nitin Ohri
- Albert Einstein College of Medicine and Montefiore Medical Center, Department of Radiation Oncology, 1625 Poplar Street, Suite 101, Bronx, NY 10461, United States
| |
Collapse
|
12
|
McWilliam A, Abravan A, Banfill K, Faivre-Finn C, van Herk M. Demystifying the Results of RTOG 0617: Identification of Dose Sensitive Cardiac Subregions Associated With Overall Survival. J Thorac Oncol 2023; 18:599-607. [PMID: 36738929 DOI: 10.1016/j.jtho.2023.01.085] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
INTRODUCTION The RTOG 0617 trial presented a worse survival for patients with lung cancer treated in the high-dose (74 Gy) arm. In multivariable models, radiation level and whole-heart volumetric dose parameters were associated with survival. In this work, we consider heart subregions to explain the observed survival difference between radiation levels. METHODS Voxel-based analysis identified anatomical regions where the dose was associated with survival. Bootstrapping clinical and dosimetric variables into an elastic net model selected variables associated with survival. Multivariable Cox regression survival models assessed the significance of dose to the heart subregion, compared with whole heart v5 and v30. Finally, the trial outcome was assessed after propensity score matching of patients on lung dose, heart subregion dose, and tumor volume. RESULTS A total of 458 patients were eligible for voxel-based analysis. A region of significance (p < 0.001) was identified in the base of the heart. Bootstrapping selected mean lung dose, radiation level, log tumor volume, and heart region dose. The multivariable Cox model exhibited dose to the heart region (p = 0.02), and tumor volume (p = 0.03) were significantly associated with survival, and radiation level was not significant (p = 0.07). The models exhibited that whole heart v5 and v30 were not associated with survival, with radiation level being significant (p < 0.05). In the matched cohort, no significant survival difference was seen between radiation levels. CONCLUSIONS Dose to the base of the heart is associated with overall survival, partly removing the radiation level effect, and explaining that worse survival in the high-dose arm is owing, in part, to the heart subregion dose. By defining a heart avoidance region, future dose escalation trials may be feasible.
Collapse
Affiliation(s)
- Alan McWilliam
- The Division of Cancer Science, The University of Manchester, Manchester, United Kingdom; The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom.
| | - Azadeh Abravan
- The Division of Cancer Science, The University of Manchester, Manchester, United Kingdom; The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Kathryn Banfill
- The Division of Cancer Science, The University of Manchester, Manchester, United Kingdom; The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Corinne Faivre-Finn
- The Division of Cancer Science, The University of Manchester, Manchester, United Kingdom; The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Marcel van Herk
- The Division of Cancer Science, The University of Manchester, Manchester, United Kingdom; The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
13
|
Andruska N, Schlaak RA, Frei A, Schottstaedt AM, Lin CY, Fish BL, Gasperetti T, Mpoy C, Pipke JL, Pedersen LN, Flister MJ, Javaheri A, Bergom C. Differences in radiation-induced heart dysfunction in male versus female rats. Int J Radiat Biol 2023; 99:1096-1108. [PMID: 36971580 PMCID: PMC10431914 DOI: 10.1080/09553002.2023.2194404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE Radiation therapy remains part of the standard of care for breast, lung, and esophageal cancers. While radiotherapy improves local control and survival, radiation-induced heart dysfunction is a common side effect of thoracic radiotherapy. Cardiovascular dysfunction can also result from non-therapeutic total body radiation exposures. Numerous studies have evaluated the relationship between radiation dose to the heart and cardiotoxicity, but relatively little is known about whether there are differences based on biological sex in radiation-induced heart dysfunction (RIHD). MATERIALS AND METHODS We evaluated whether male and female inbred Dahl SS rats display differences in RIHD following delivery of 24 Gy in a single fraction to the whole heart using a 1.5 cm beam size (collimater). We also compared the 2.0 cm vs. 1.5 cm collimator in males. Pleural and pericardial effusions and normalized heart weights were measured, and echocardiograms were performed. RESULTS Female SS rats displayed more severe RIHD relative to age-matched SS male rats. Normalized heart weight was significantly increased in females, but not in males. A total of 94% (15/16) of males and 55% (6/11) of females survived 5 months after completion of radiotherapy (p < .01). Among surviving rats, 100% of females and 14% of males developed moderate-to-severe pericardial effusions at 5 months. Females demonstrated increased pleural effusions, with the mean normalized pleural fluid volume for females and males being 56.6 mL/kg ± 12.1 and 10.96 mL/kg ± 6.4 in males (p = .001), respectively. Echocardiogram findings showed evidence of heart failure, which was more pronounced in females. Because age-matched female rats have smaller lungs, a higher percentage of the total lung was treated with radiation in females than males using the same beam size. After using a larger 2 cm beam in males which results in higher lung exposure, there was not a significant difference between males and females in terms of the development of moderate-to-severe pericardial effusions or pleural effusions. Treatment of males with a 2 cm beam resulted in comparable increases in LV mass and reductions in stroke volume to female rats treated with a 1.5 cm beam. CONCLUSION Together, these results illustrate that there are differences in radiation-induced cardiotoxicity between male and female SS rats and add to the data that lung radiation doses, in addition to other factors, may play an important role in cardiac dysfunction following heart radiation exposure. These factors may be important to factor into future mitigation studies of radiation-induced cardiotoxicity.
Collapse
Affiliation(s)
- Neal Andruska
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Rachel A. Schlaak
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anne Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Chieh-Yu Lin
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Brian L. Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Cedric Mpoy
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Jamie L. Pipke
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lauren N. Pedersen
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Michael J. Flister
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ali Javaheri
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, St Louis, Missouri
| | - Carmen Bergom
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
14
|
Zhang J, Zhu H, Wang J, Chen Y, Li Y, Chen X, Chen M, Cai Z, Liu W. Machine learning in non-small cell lung cancer radiotherapy: A bibliometric analysis. Front Oncol 2023; 13:1082423. [PMID: 37025583 PMCID: PMC10072228 DOI: 10.3389/fonc.2023.1082423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
BackgroundMachine learning is now well-developed in non-small cell lung cancer (NSCLC) radiotherapy. But the research trend and hotspots are still unclear. To investigate the progress in machine learning in radiotherapy NSCLC, we performed a bibliometric analysis of associated research and discuss the current research hotspots and potential hot areas in the future.MethodsThe involved researches were obtained from the Web of Science Core Collection database (WoSCC). We used R-studio software, the Bibliometrix package and VOSviewer (Version 1.6.18) software to perform bibliometric analysis.ResultsWe found 197 publications about machine learning in radiotherapy for NSCLC in the WoSCC, and the journal Medical Physics contributed the most articles. The University of Texas MD Anderson Cancer Center was the most frequent publishing institution, and the United States contributed most of the publications. In our bibliometric analysis, “radiomics” was the most frequent keyword, and we found that machine learning is mainly applied to analyze medical images in the radiotherapy of NSCLC.ResultsThe research we identified about machine learning in NSCLC radiotherapy was mainly related to the radiotherapy planning of NSCLC and the prediction of treatment effects and adverse events in NSCLC patients who were under radiotherapy. Our research has added new insights into machine learning in NSCLC radiotherapy and could help researchers better identify hot research areas in the future.
Collapse
Affiliation(s)
- Jiaming Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huijun Zhu
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jue Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yulu Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yihe Li
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinyu Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Menghua Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhengwen Cai
- Department of Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Zhengwen Cai, ; Wenqi Liu,
| | - Wenqi Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Zhengwen Cai, ; Wenqi Liu,
| |
Collapse
|
15
|
Craddock M, Nestle U, Koenig J, Schimek-Jasch T, Kremp S, Lenz S, Banfill K, Davey A, Price G, Salem A, Faivre-Finn C, van Herk M, McWilliam A. Cardiac Function Modifies the Impact of Heart Base Dose on Survival: A Voxel-Wise Analysis of Patients With Lung Cancer From the PET-Plan Trial. J Thorac Oncol 2023; 18:57-66. [PMID: 36130693 DOI: 10.1016/j.jtho.2022.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/05/2022] [Accepted: 09/06/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Heart dose has emerged as an independent predictor of overall survival in patients with NSCLC treated with radiotherapy. Several studies have identified the base of the heart as a region of enhanced dose sensitivity and a potential target for cardiac sparing. We present a dosimetric analysis of overall survival in the multicenter, randomized PET-Plan trial (NCT00697333) and for the first time include left ventricular ejection fraction (EF) at baseline as a metric of cardiac function. METHODS A total of 205 patients with inoperable stage II or III NSCLC treated with 60 to 72 Gy in 2 Gy fractions were included in this study. A voxel-wise image-based data mining methodology was used to identify anatomical regions where higher dose was significantly associated with worse overall survival. Univariable and multivariable Cox proportional hazards models tested the association of survival with dose to the identified region, established prognostic factors, and baseline cardiac function. RESULTS A total of 172 patients remained after processing and censoring for follow-up. At 2-years posttreatment, a highly significant region was identified within the base of the heart (p < 0.005), centered on the origin of the left coronary artery and the region of the atrioventricular node. In multivariable analysis, the number of positron emission tomography-positive nodes (p = 0.02, hazard ratio = 1.13, 95% confidence interval: 1.02-1.25) and mean dose to the cardiac subregion (p = 0.02, hazard ratio = 1.11 Gy-1, 95% confidence interval: 1.02-1.21) were significantly associated with overall survival. There was a significant interaction between EF and region dose (p = 0.04) for survival, with contrast plots revealing a larger effect of region dose on survival in patients with lower EF values. CONCLUSIONS This work validates previous image-based data mining studies by revealing a strong association between dose to the base of the heart and overall survival. For the first time, an interaction between baseline cardiac health and heart base dose was identified, potentially suggesting preexisting cardiac dysfunction exacerbates the impact of heart dose on survival.
Collapse
Affiliation(s)
- Matthew Craddock
- Radiotherapy Related Research Group, Division of Cancer Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom.
| | - Ursula Nestle
- Department of Radiation Oncology, Medical Center, University of Freiburg, Freiburg, Germany; Department of Radiation Oncology, Kliniken Maria Hilf, Mönchengladbach, Germany
| | - Jochem Koenig
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Hospital Mainz, Mainz, Germany
| | - Tanja Schimek-Jasch
- Department of Radiation Oncology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Stephanie Kremp
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center and Faculty of Medicine, Homburg/Saar, Germany
| | - Stefan Lenz
- Faculty of Medicine and Medical Center, University of Freiburg, Institute of Medical Biometry and Statistics, Freiburg, Germany
| | - Kathryn Banfill
- Radiotherapy Related Research Group, Division of Cancer Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Angela Davey
- Radiotherapy Related Research Group, Division of Cancer Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Gareth Price
- Radiotherapy Related Research Group, Division of Cancer Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Ahmed Salem
- Radiotherapy Related Research Group, Division of Cancer Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom; Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqa, Jordan
| | - Corinne Faivre-Finn
- Radiotherapy Related Research Group, Division of Cancer Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom; Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Marcel van Herk
- Radiotherapy Related Research Group, Division of Cancer Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Alan McWilliam
- Radiotherapy Related Research Group, Division of Cancer Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
16
|
Abravan A, Price G, Banfill K, Marchant T, Craddock M, Wood J, Aznar MC, McWilliam A, van Herk M, Faivre-Finn C. Role of Real-World Data in Assessing Cardiac Toxicity After Lung Cancer Radiotherapy. Front Oncol 2022; 12:934369. [PMID: 35928875 PMCID: PMC9344971 DOI: 10.3389/fonc.2022.934369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Radiation-induced heart disease (RIHD) is a recent concern in patients with lung cancer after being treated with radiotherapy. Most of information we have in the field of cardiac toxicity comes from studies utilizing real-world data (RWD) as randomized controlled trials (RCTs) are generally not practical in this field. This article is a narrative review of the literature using RWD to study RIHD in patients with lung cancer following radiotherapy, summarizing heart dosimetric factors associated with outcome, strength, and limitations of the RWD studies, and how RWD can be used to assess a change to cardiac dose constraints.
Collapse
Affiliation(s)
- Azadeh Abravan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Department of Radiotherapy Related Research, The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Gareth Price
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Department of Radiotherapy Related Research, The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Kathryn Banfill
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Tom Marchant
- Department of Radiotherapy Related Research, The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Matthew Craddock
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Department of Radiotherapy Related Research, The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Joe Wood
- Christie Medical Physics and Engineering, The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Marianne C. Aznar
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Department of Radiotherapy Related Research, The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Alan McWilliam
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Department of Radiotherapy Related Research, The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Marcel van Herk
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Department of Radiotherapy Related Research, The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Corinne Faivre-Finn
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Department of Radiotherapy Related Research, The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
17
|
Bainbridge H, Dunlop A, McQuaid D, Gulliford S, Gunapala R, Ahmed M, Locke I, Nill S, Oelfke U, McDonald F. A Comparison of Isotoxic Dose-escalated Radiotherapy in Lung Cancer with Moderate Deep Inspiration Breath Hold, Mid-ventilation and Internal Target Volume Techniques. Clin Oncol (R Coll Radiol) 2022; 34:151-159. [PMID: 34503896 DOI: 10.1016/j.clon.2021.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/31/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022]
Abstract
AIMS With interest in normal tissue sparing and dose-escalated radiotherapy in the treatment of inoperable locally advanced non-small cell lung cancer, this study investigated the impact of motion-managed moderate deep inspiration breath hold (mDIBH) on normal tissue sparing and dose-escalation potential and compared this to planning with a four-dimensional motion-encompassing internal target volume or motion-compensating mid-ventilation approach. MATERIALS AND METHODS Twenty-one patients underwent four-dimensional and mDIBH planning computed tomography scans. Internal and mid-ventilation target volumes were generated on the four-dimensional scan, with mDIBH target volumes generated on the mDIBH scan. Isotoxic target dose-escalation guidelines were used to generate six plans per patient: three with a target dose cap and three without. Target dose-escalation potential, normal tissue complication probability and differences in pre-specified dose-volume metrics were evaluated for the three motion-management techniques. RESULTS The mean total lung volume was significantly greater with mDIBH compared with four-dimensional scans. Lung dose (mean and V21 Gy) and mean heart dose were significantly reduced with mDIBH in comparison with four-dimensional-based approaches, and this translated to a significant reduction in heart and lung normal tissue complication probability with mDIBH. In 20/21 patients, the trial target prescription dose cap of 79.2 Gy was achievable with all motion-management techniques. CONCLUSION mDIBH aids lung and heart dose sparing in isotoxic dose-escalated radiotherapy compared with four-dimensional planning techniques. Given concerns about lung and cardiac toxicity, particularly in an era of consolidation immunotherapy, reduced normal tissue doses may be advantageous for treatment tolerance and outcome.
Collapse
Affiliation(s)
- H Bainbridge
- Department of Radiotherapy at The Royal Marsden NHS Foundation Trust, Sutton, UK; The Institute of Cancer Research, London, UK
| | - A Dunlop
- Joint Department of Physics at The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London, UK
| | - D McQuaid
- Joint Department of Physics at The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London, UK
| | - S Gulliford
- Joint Department of Physics at The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London, UK
| | - R Gunapala
- Department of Statistics at The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - M Ahmed
- Department of Radiotherapy at The Royal Marsden NHS Foundation Trust, Sutton, UK; The Institute of Cancer Research, London, UK
| | - I Locke
- Department of Radiotherapy at The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - S Nill
- Joint Department of Physics at The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London, UK
| | - U Oelfke
- Joint Department of Physics at The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London, UK
| | - F McDonald
- Department of Radiotherapy at The Royal Marsden NHS Foundation Trust, Sutton, UK; The Institute of Cancer Research, London, UK.
| |
Collapse
|
18
|
Tjong MC, Bitterman DS, Brantley K, Nohria A, Hoffmann U, Atkins KM, Mak RH. Major adverse cardiac event risk prediction model incorporating baseline cardiac disease, hypertension, and logarithmic left anterior descending coronary artery radiation dose in lung cancer (CHyLL). Radiother Oncol 2022; 169:105-113. [PMID: 35182687 DOI: 10.1016/j.radonc.2022.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/13/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND PURPOSE In patients with locally advanced non-small cell lung cancer (LA-NSCLC) post-radiotherapy, mean heart dose (MHD) and the percent of left anterior descending (LAD) coronary artery receiving ≥15Gy (LADV15) are associated with major adverse cardiac events (MACE). We developed a MACE prediction model in this population. MATERIALS AND METHODS Total 701 patients with LA-NSCLC treated with curative-intent radiotherapy reviewed, split by diagnosis date into "development" (n=500) and later (n=201) "test" cohorts. Development patients were analyzed using a multivariable Cox-proportional hazard model with backward elimination scheme (Bonferroni-adjusted α=0.025). Potential predictors were selected a priori: age, coronary heart disease (CHD), Framingham Risk, hypertension, MHD, LADV15, intensity modulated radiotherapy use, and CHD and LADV15 interaction (CHD:LADV15). Cardiac doses as quadratic, square root, and logarithmic (ln[X+1]) forms were explored. Models were internally validated with bootstrapping. RESULTS Final model incorporated CHD, Hypertension, Logarithmic LADV15, and CHD:ln[LADV15+1] (CHyLL; β coefficients: 5.51, 1.28, 1.48, -1.36; all p<0.006; bootstrapping c-index: 0.80; test cohort c-index: 0.76). Possible risk score range: 0-8.11. MACE incidence was 6.8% and 23.6% at 48 months (p=0.041), and survival rates were 51.6% and 35.0% (p=0.099), in the low-risk (score <5.00) and high-risk (score ≥5) test groups, respectively. Using the model, calculated LADV15 constraints for patients without CHD were 11.3% and 28.3% for those with and without hypertension, respectively, to remain low-risk. CONCLUSIONS Pre-existing CHD, hypertension, and LADV15 were important factors in predicting MACE after radiotherapy. CHyLL has the potential to estimate personalized LADV15 constraints based on cardiac risk factors and acceptable MACE thresholds.
Collapse
Affiliation(s)
- Michael C Tjong
- Department of Radiation Oncology, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, Canada; Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, 450 Brookline Avenue, Boston, Massachusetts, United States; Department of Epidemiology, Harvard TH Chan School of Public Health, 677 Huntington Ave, Boston, Massachusetts, United States.
| | - Danielle S Bitterman
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, 450 Brookline Avenue, Boston, Massachusetts, United States
| | - Kristen Brantley
- Department of Epidemiology, Harvard TH Chan School of Public Health, 677 Huntington Ave, Boston, Massachusetts, United States
| | - Anju Nohria
- Department of Cardiovascular Medicine, Dana-Farber Cancer Institute and Brigham and Women's Hospital, 450 Brookline Avenue, Boston, Massachusetts, United States
| | - Udo Hoffmann
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, Massachusetts, United States
| | - Katelyn M Atkins
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, 450 Brookline Avenue, Boston, Massachusetts, United States; Department of Radiation Oncology, Cedars-Sinai Medical Center, 8700 Beverly Blvd #2900A, Los Angeles, California, United States
| | - Raymond H Mak
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, 450 Brookline Avenue, Boston, Massachusetts, United States.
| |
Collapse
|
19
|
Abstract
Dose constraints are essential for performing dosimetry, especially for intensity modulation and for radiotherapy under stereotaxic conditions. We present the update of the recommendations of the French society of oncological radiotherapy for the use of these doses in classical current practice but also for reirradiation.
Collapse
Affiliation(s)
- G Noël
- Département de radiothérapie-oncologie, Institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, BP 23025, 67033 Strasbourg, France.
| | - D Antoni
- Département de radiothérapie-oncologie, Institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, BP 23025, 67033 Strasbourg, France
| |
Collapse
|
20
|
Eber J, Nannini S, Chambrelant I, Le Fèvre C, Noël G, Antoni D. [Impact of thoracic irradiation on cardiac structures]. Cancer Radiother 2021; 26:526-536. [PMID: 34728116 DOI: 10.1016/j.canrad.2021.08.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022]
Abstract
Thoracic irradiation requires protection of the heart as an organ at risk of complications. The mean heart dose is the most studied dosimetric parameter in the literature. Recent studies question its relevance in view of the multiplicity of cardiac injuries, the heterogeneity of the cardiac dose distribution and the current technical possibilities to refine cardiac dosimetric protection. The objective of this literature review is to analyze the available scientific data on the impact of the dose received by the cardiac substructures. A search of articles using the PubMed search engine was used to select the most relevant studies. A total of 19 articles were selected according to pre-established criteria to answer the issue. Several studies found significant associations between dosimetric parameters of substructures and clinical cardiological impact. Some proposed dose constraints for substructures.
Collapse
Affiliation(s)
- J Eber
- Department of radiation oncology, institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg, France
| | - S Nannini
- Department of radiation oncology, institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg, France
| | - I Chambrelant
- Department of radiation oncology, institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg, France
| | - C Le Fèvre
- Department of radiation oncology, institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg, France
| | - G Noël
- Department of radiation oncology, institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg, France.
| | - D Antoni
- Department of radiation oncology, institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg, France
| |
Collapse
|
21
|
Niska JR, Hu J, Li J, Herman MG, Thorpe CS, Schild SE, Fatyga M. Using Novel Statistical Techniques to Accurately Determine the Predictive Dose Range in a Study of Overall Survival after Definitive Radiotherapy for Stage III Non-Small Cell Lung Cancer in Association with Heart Dose. JOURNAL OF CANCER THERAPY 2021; 12:505-529. [PMID: 34804634 PMCID: PMC8601657 DOI: 10.4236/jct.2021.129044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE Recent studies of radiotherapy (RT) for stage III non-small-cell lung cancer (NSCLC) have associated high dose to the heart with cardiac toxicity and decreased overall survival (OS). We used advanced statistical techniques to account for correlations between dosimetric variables and more accurately determine the range of heart doses which are associated with reduced OS in patients receiving RT for stage III NSCLC. METHODS From 2006 to 2013, 119 patients with stage III NSCLC received definitive RT at our institution. OS data was obtained from institutional tumor registry. We used multivariate Cox model to determine patient specific covariates predictive for reduced overall survival. We examined age, prescription dose, mean lung dose, lung V20, RT technique, stage, chemotherapy, tumor laterality, tumor volume, and tumor site as candidate covariates. We subsequently used novel statistical techniques within multivariate Cox model to systematically search the whole heart dose-volume histogram (DVH) for dose parameters associated with OS. RESULTS Patients were followed until death or 2.5 to 81.2 months (median 30.4 months) in those alive at last follow up. On multivariate analysis of whole heart DVH, the dose of 51 Gy was identified as a threshold dose above which the dose volume relationship becomes predictive for OS. We identified V55Gy (percentage of the whole heart volume receiving at least 55 Gy) as the best single DVH index which can be used to set treatment optimization constraints (Hazard Ratio = 1.044 per 1% increase in heart volume exposed to at least 55 Gy, P = 0.03). Additional characteristics correlated with OS on multivariate analysis were age, stage (IIIA/IIIB), and administration of chemotherapy. CONCLUSION Doses above 51 Gy, applied to small volumes of the heart, are associated with worse OS in stage III NSCLC patients treated with definitive RT. Higher stage, older age and lack of chemotherapy were also associated with reduced OS.
Collapse
Affiliation(s)
- Joshua R. Niska
- Department of Radiation Oncology, Banner MD Anderson Cancer Center, Phoenix, Arizona, USA
| | - Jiuyun Hu
- School of Computing, Informatics, and Decision Systems Engineering, Tempe, Arizona, USA
| | - Jing Li
- School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Michael G. Herman
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Cameron S. Thorpe
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Steven E. Schild
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Mirek Fatyga
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| |
Collapse
|
22
|
Nagane M, Yasui H, Kuppusamy P, Yamashita T, Inanami O. DNA damage response in vascular endothelial senescence: Implication for radiation-induced cardiovascular diseases. JOURNAL OF RADIATION RESEARCH 2021; 62:564-573. [PMID: 33912932 PMCID: PMC8273807 DOI: 10.1093/jrr/rrab032] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/24/2021] [Indexed: 05/27/2023]
Abstract
A post-exposure cohort study in Hiroshima and Nagasaki reported that low-dose exposure to radiation heightened the risk of cardiovascular diseases (CVD), such as stroke and myocardial infarction, by 14-18% per Gy. Moreover, the risk of atherosclerosis in the coronary arteries reportedly increases with radiation therapy of the chest, including breast and lung cancer treatment. Cellular senescence of vascular endothelial cells (ECs) is believed to play an important role in radiation-induced CVDs. The molecular mechanism of age-related cellular senescence is believed to involve genomic instability and DNA damage response (DDR); the chronic inflammation associated with senescence causes cardiovascular damage. Therefore, vascular endothelial cell senescence is believed to induce the pathogenesis of CVDs after radiation exposure. The findings of several prior studies have revealed that ionizing radiation (IR) induces cellular senescence as well as cell death in ECs. We have previously reported that DDR activates endothelial nitric oxide (NO) synthase, and NO production promotes endothelial senescence. Endothelial NO synthase (eNOS) is a major isoform expressed in ECs that maintains cardiovascular homeostasis. Therefore, radiation-induced NO production, a component of the DDR in ECs, may be involved in CVDs after radiation exposure. In this article, we describe the pathology of radiation-induced CVD and the unique radio-response to radiation exposure in ECs.
Collapse
Affiliation(s)
- Masaki Nagane
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Hironobu Yasui
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Periannan Kuppusamy
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756, US
| | - Tadashi Yamashita
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Osamu Inanami
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
23
|
Cella L, Monti S, Xu T, Liuzzi R, Stanzione A, Durante M, Mohan R, Liao Z, Palma G. Probing thoracic dose patterns associated to pericardial effusion and mortality in patients treated with photons and protons for locally advanced non-small-cell lung cancer. Radiother Oncol 2021; 160:148-158. [PMID: 33979653 PMCID: PMC8238861 DOI: 10.1016/j.radonc.2021.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/26/2021] [Accepted: 04/29/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE To investigate thoracic dose-response patterns for pericardial effusion (PCE) and mortality in patients treated for locally advanced Non-Small-Cell Lung Cancer (NSCLC) by Intensity Modulated RT (IMRT) or Passive-Scattering Proton Therapy (PSPT). METHODS Among 178 patients, 43.5% developed grade ≥ 2 PCE. Clinical and dosimetric factors associated with PCE or overall survival (OS) were identified via multi-variable Cox proportional hazards modeling. The Voxel-Based Analyses (VBAs) of local dose differences between patients with and without PCE and mortality was performed. The robustness of VBA results was assessed by a novel characterization of spatial properties of dose distributions based on probabilistic independent component analysis (PICA) and connectograms. RESULTS Several non-dosimetric variables were selected by the multivariable analysis for the considered outcomes, while the time-dependent PCE onset was uncorrelated with the OS (p = 0.34) at a multi-variable Cox analysis. Despite the significant PSPT dosimetric advantage, the RT technique did not affect the occurrence of PCE or OS. VBAs highlighted largely overlapping clusters significantly associated with PCE endpoints in heart and lungs. No significant dosimetric patterns related to mortality endpoints were found. PICA identified 43 components homogeneously scattered within thorax, while connectograms showed modest correlations between doses in main cardio-pulmonary substructures. CONCLUSIONS Spatially resolved analysis highlighted dose patterns related to radiation-induced cardiac toxiciy and the observed organ-based dose-response mismatch in PSPT and IMRT. Indeed, the thoracic regions spared by PSPT poorly overlapped with the areas involved in PCE development, as highlited by VBA. PICA and connectograms proved valuable tools for assessing the robusteness of obtained VBA inferences.
Collapse
Affiliation(s)
- Laura Cella
- National Research Council, Institute of Biostructures and Bioimaging, Napoli, Italy.
| | - Serena Monti
- National Research Council, Institute of Biostructures and Bioimaging, Napoli, Italy
| | - Ting Xu
- MD Anderson Cancer Center, Department of Radiation Oncology, Houston, USA
| | - Raffaele Liuzzi
- National Research Council, Institute of Biostructures and Bioimaging, Napoli, Italy
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Napoli, Italy
| | - Marco Durante
- GSI Helmholtz Centre for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany
| | - Radhe Mohan
- MD Anderson Cancer Center, Department of Radiation Physics, Houston, USA
| | - Zhongxing Liao
- MD Anderson Cancer Center, Department of Radiation Oncology, Houston, USA
| | - Giuseppe Palma
- National Research Council, Institute of Biostructures and Bioimaging, Napoli, Italy.
| |
Collapse
|
24
|
Ren XY, He PK, Gao XS, Zhao ZL, Zhao B, Bai Y, Liu SW, Li K, Qin SB, Ma MW, Zhou J, Rong Y. Dosimetric feasibility of stereotactic ablative radiotherapy in pulmonary vein isolation for atrial fibrillation using intensity-modulated proton therapy. J Appl Clin Med Phys 2021; 22:79-88. [PMID: 33817981 PMCID: PMC8130224 DOI: 10.1002/acm2.13239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose To evaluate dosimetric properties of intensity‐modulated proton therapy (IMPT) for simulated treatment planning in patients with atrial fibrillation (AF) targeting left atrial‐pulmonary vein junction (LA‐PVJ), in comparison with volumetric‐modulated arc therapy (VMAT) and helical tomotherapy (TOMO). Methods Ten thoracic 4D‐CT scans with respiratory motion and one with cardiac motion were used for the study. Ten respiratory 4D‐CTs were planned with VMAT, TOMO, and IMPT for simulated AF. Targets at the LA‐PVJ were defined as wide‐area circumferential ablation line. A single fraction of 25 Gy was prescribed to all plans. The interplay effects from cardiac motion were evaluated based on the cardiac 4D‐CT scan. Dose‐volume histograms (DVHs) of the ITV and normal tissues were compared. Statistical analysis was evaluated via one‐way Repeated‐Measures ANOVA and Friedman’s test with Bonferroni’s multiple comparisons test. Results The median volume of ITV was 8.72cc. All plans had adequate target coverage (V23.75Gy ≥ 99%). Compared with VMAT and TOMO, IMPT resulted in significantly lower dose of most normal tissues. For VMAT, TOMO, and IMPT plans, Dmean of the whole heart was 5.52 ± 0.90 Gy, 5.89 ± 0.78 Gy, and 3.01 ± 0.57 Gy (P < 0.001), mean dose of pericardium was 4.74 ± 0.76 Gy, 4.98 ± 0.62 Gy, and 2.59 ± 0.44 Gy (P < 0.001), and D0.03cc of left circumflex artery (LCX) was 13.96 ± 5.45 Gy, 14.34 ± 5.91 Gy, and 8.43 ± 7.24 Gy (P < 0.001), respectively. However, no significant advantage for one technique over the others was observed when examining the D0.03cc of esophagus and main bronchi. Conclusions IMPT targeting LA‐PVJ for patients with AF has high potential to reduce dose to surrounding tissues compared to VMAT or TOMO. Motion mitigation techniques are critical for a particle‐therapy approach.
Collapse
Affiliation(s)
- Xue-Ying Ren
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Peng-Kang He
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Xian-Shu Gao
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Zhi-Lei Zhao
- Department of Radiation Oncology, Yizhou International Proton Therapy Medical Center, Hebei, China
| | - Bo Zhao
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Yun Bai
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Si-Wei Liu
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Kang Li
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Shang-Bin Qin
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Ming-Wei Ma
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Jing Zhou
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yi Rong
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| |
Collapse
|
25
|
Abstract
Radiation therapy plays an integral role in the treatment of all stages of non-small cell lung cancer. Survival outcomes are improving, but radiation therapy remains associated with long-term toxicity. Recently, it has become evident that the heart is an important organ at risk for treatment-related morbidity. In this review, we discuss the hypothesis that particle radiation therapy offers superior dosimetry compared with photon-based treatment, and that this comparative advantage translates into clinically meaningful cardiac toxicity reduction with similar local tumor control. We discuss the evidence in non-small cell lung cancer to date, the ongoing prospective trials that may provide additional insight, and the opportunities to optimally integrate particle therapy into future prospective investigation.
Collapse
|
26
|
Ablative radiotherapy for ultracentral lung cancers: Dosimetric, geometric, and volumetric predictors of outcomes and toxicity. Radiother Oncol 2021; 158:246-252. [PMID: 33711411 DOI: 10.1016/j.radonc.2021.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/27/2021] [Accepted: 03/01/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Ultracentral lung cancers arise near the proximal bronchial tree (PBT), trachea, or esophagus, and have been associated with worse outcomes and increased toxicity after radiotherapy. We sought to associate dosimetric and anatomic factors with oncologic outcomes and toxicities. METHODS One-hundred ten patients treated with ablative, curative-intent radiotherapy for ultracentral, node-negative, non-small cell lung cancer were included. Dosimetric and geometric data obtained using custom software that calculated volumes of target structures and organs-at-risk and measured the shortest vector length between these volumes were associated with outcomes and toxicity. RESULTS Common dose/fractionation schemes included 50 Gy in 5 fractions (57%), 60 Gy in 8 fractions (15%), and 48 Gy in 4 fractions (13%). Overall survival at 1, 2, and 5 years was 78%, 57%, and 32%, respectively. Factors significantly associated with death included endobronchial tumor, gross tumor volume (GTV) or planning target volume (PTV) contacting PBT, shorter distance from GTV to PBT or esophagus, volume of PBT receiving prescription dose, higher pericardium max dose, lung V20Gy, and mean lung dose. Local progression at 1, 2, and 5 years was 4%, 16%, and 21%. Factors associated with local progression were lower GTV minimum dose and higher GTV/PTV volume ratio. Acute and late grade 2 + toxicity was seen in 18% and 27%, respectively. Four patients (4%) had fatal toxicity. CONCLUSIONS Lower GTV minimum dose and smaller volumetric PTV expansions may increase risk of local progression, and should be balanced against normal tissue doses including pericardium maximum dose, lung V20Gy, and mean lung dose.
Collapse
|
27
|
Banfill K, Giuliani M, Aznar M, Franks K, McWilliam A, Schmitt M, Sun F, Vozenin MC, Faivre Finn C. Cardiac Toxicity of Thoracic Radiotherapy: Existing Evidence and Future Directions. J Thorac Oncol 2021; 16:216-227. [PMID: 33278607 PMCID: PMC7870458 DOI: 10.1016/j.jtho.2020.11.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
The impact of radiotherapy on the heart has become an area of interest in recent years. Many different cardiac dose-volume constraints have been associated with cardiac toxicity and survival; however, no consistent constraint has been found. Many patients undergoing treatment for lung cancer have risk factors for cardiovascular disease or known cardiac comorbidities; however, there is little evidence on the effects of radiotherapy on the heart in these patients. We aim to provide a summary of the existing literature on cardiac toxicity of lung cancer radiotherapy, propose strategies to avoid and manage cardiac toxicity, and suggest avenues for future research.
Collapse
Affiliation(s)
- Kathryn Banfill
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; The Christie NHS Foundation Trust, Manchester, United Kingdom.
| | - Meredith Giuliani
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Marianne Aznar
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Kevin Franks
- Leeds Cancer Centre, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom; Radiotherapy Research Group, Leeds Institute of Medical Research at St James's, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Alan McWilliam
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Matthias Schmitt
- Cardiovascular Division, Manchester University Foundation Trust, North West Heart Centre, Wythenshawe Campus, Manchester, United Kingdom
| | - Fei Sun
- Leeds Cancer Centre, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom; Radiotherapy Research Group, Leeds Institute of Medical Research at St James's, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Marie Catherine Vozenin
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Corinne Faivre Finn
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; The Christie NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
28
|
Iwata H, Akita K, Yamaba Y, Kunii E, Takakuwa O, Yoshihara M, Hattori Y, Nakajima K, Hayashi K, Toshito T, Ogino H, Shibamoto Y. Concurrent Chemo-Proton Therapy Using Adaptive Planning for Unresectable Stage 3 Non-Small Cell Lung Cancer: A Phase 2 Study. Int J Radiat Oncol Biol Phys 2020; 109:1359-1367. [PMID: 33227444 DOI: 10.1016/j.ijrobp.2020.11.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE This study prospectively evaluated the efficacy and safety of concurrent chemo-proton therapy (CCPT) using adaptive planning for unresectable stage III non-small cell lung cancer (NSCLC). METHODS AND MATERIALS The primary endpoint was overall survival (OS). Secondary endpoints were local control rate (LCR), progression-free survival (PFS), incidence of grade 3 or higher adverse events, and changes in quality of life (QOL). Patients received cisplatin (60 mg/m2) on day 1 and S-1 (∼40 mg/m2 twice daily) on days 1 to 14, q4w, for up to 4 cycles, plus concurrent proton therapy at a total dose of 70 GyRBE for the primary lesion and 66 GyRBE for lymph node metastasis with 2 GyRBE per day. Proton therapy was performed using respiratory-gated and image guided techniques, and adaptive plans were implemented. RESULTS Forty-seven patients were enrolled between August 2013 and August 2018. Four cycles of cisplatin plus S-1 were completed in 34 patients. The mean number of cycles was 4 (range, 1-4). The median follow-up of all and surviving patients was 37 (range, 4-84) and 52 months (range, 26-84), respectively. The mean number of replanning sessions was 2.5 (range, 1-4). The 2- and 5-year OS, LCR, and PFS were 77% (95% confidence interval 64%-89%) and 59% (43%-76%), 84% (73%-95%) and 61% (44%-78%), and 43% (28%-57%) and 37% (22%-51%), respectively. The median OS was not reached. No grade 3 or higher radiation pneumonitis was observed. There was no significant deterioration in the QOL scores after 24 months except for alopecia. CONCLUSIONS CCPT with adaptive planning was well tolerated and yielded remarkable OS for unresectable stage III NSCLC.
Collapse
Affiliation(s)
- Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan; Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Kenji Akita
- Department of Respiratory Tract Oncology Center, Nagoya City West Medical Center, Nagoya, Japan
| | - Yusuke Yamaba
- Department of Respiratory Tract Oncology Center, Nagoya City West Medical Center, Nagoya, Japan
| | - Eiji Kunii
- Department of Respiratory Tract Oncology Center, Nagoya City West Medical Center, Nagoya, Japan
| | - Osamu Takakuwa
- Department of Respiratory Tract Oncology Center, Nagoya City West Medical Center, Nagoya, Japan
| | - Misuzu Yoshihara
- Department of Respiratory Tract Oncology Center, Nagoya City West Medical Center, Nagoya, Japan
| | - Yukiko Hattori
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan
| | - Koichiro Nakajima
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan; Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kensuke Hayashi
- Department of Proton Therapy Technology, Nagoya Proton Therapy Center, Nagoya, Japan
| | - Toshiyuki Toshito
- Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya, Japan
| | - Hiroyuki Ogino
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan; Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuta Shibamoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
29
|
Thor M, Apte A, Haq R, Iyer A, LoCastro E, Deasy JO. Using Auto-Segmentation to Reduce Contouring and Dose Inconsistency in Clinical Trials: The Simulated Impact on RTOG 0617. Int J Radiat Oncol Biol Phys 2020; 109:1619-1626. [PMID: 33197531 DOI: 10.1016/j.ijrobp.2020.11.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/14/2020] [Accepted: 11/05/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE Contouring inconsistencies are known but understudied in clinical radiation therapy trials. We applied auto-contouring to the Radiation Therapy Oncology Group (RTOG) 0617 dose escalation trial data. We hypothesized that the trial heart doses were higher than reported due to inconsistent and insufficient heart segmentation. We tested our hypothesis by comparing doses between deep-learning (DL) segmented hearts and trial hearts. METHODS AND MATERIALS The RTOG 0617 data were downloaded from The Cancer Imaging Archive; the 442 patients with trial hearts and dose distributions were included. All hearts were resegmented using our DL pipeline and quality assured to meet the requirements for clinical implementation. Dose (V5%, V30%, and mean heart dose) was compared between the 2 sets of hearts (Wilcoxon signed-rank test). Each dose metric was associated with overall survival (Cox proportional hazards). Lastly, 18 volume similarity metrics were assessed for the hearts and correlated with |DoseDL - DoseRTOG0617| (linear regression; significance: P ≤ .0028; corrected for 18 tests). RESULTS Dose metrics were significantly higher for DL hearts compared with trial hearts (eg, mean heart dose: 15 Gy vs 12 Gy; P = 5.8E-16). All 3 DL heart dose metrics were stronger overall survival predictors than those of the trial hearts (median, P = 2.8E-5 vs 2.0E-4). Thirteen similarity metrics explained |DoseDL - DoseRTOG0617|; the axial distance between the 2 centers of mass was the strongest predictor (CENTAxial; median, R2 = 0.47; P = 6.1E-62). CENTAxial agreed with the qualitatively identified inconsistencies in the superior direction. The trial's qualitative heart contouring score was not correlated with |DoseDL - DoseRTOG0617| (median, R2 = 0.01; P = .02) or with any of the similarity metrics (median, Rs = 0.13 [range, -0.22 to 0.31]). CONCLUSIONS Using a coherent heart definition, as enabled through our open-source DL algorithm, the trial heart doses in RTOG 0617 were found to be significantly higher than previously reported, which may have led to an even more rapid mortality accumulation. Auto-segmentation is likely to reduce contouring and dose inconsistencies and increase the quality of clinical RT trials.
Collapse
Affiliation(s)
- Maria Thor
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Aditya Apte
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rabia Haq
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Aditi Iyer
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eve LoCastro
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
30
|
Xue J, Lu Y, Kong FM(S. Why aren't we getting consistent results for heart dose and mortality during thoracic radiotherapy? ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1252. [PMID: 33178784 PMCID: PMC7607132 DOI: 10.21037/atm-2020-51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/22/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Jianxin Xue
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - You Lu
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | | |
Collapse
|
31
|
Protecting the Heart: A Practical Approach to Account for the Full Extent of Heart Motion in Radiation Therapy Planning. Int J Radiat Oncol Biol Phys 2020; 108:1082-1090. [PMID: 32629080 DOI: 10.1016/j.ijrobp.2020.06.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 05/04/2020] [Accepted: 06/26/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE Emerging evidence suggests that the heart is more radiosensitive than previously assumed; therefore, accounting for heart motion in radiation therapy planning is becoming more critical. In this study, we determined how much heart delineations based on 3-dimensional (3D) computed tomography (CT), 4-dimensional (4D) average projection (AVG), and maximum intensity projection (MIP) images should be extended to represent the full extent of heart motion during 4D imaging acquisition. METHODS AND MATERIALS The 3D and 4D CT scans of 10 lung cancer patients treated with stereotactic ablative radiation therapy were used. Median surfaces were derived from heart delineations of 3 observers on the 3D CT, AVG, MIP, and 25% exhale scans. Per patient, the 25% exhale contour was propagated on every phase of the 4D scan. The union of all 4D phase delineations (U4D) represented the full extent of heart motion during imaging acquisition. Surface distances from U4D to 3D, AVG, and MIP volumes were calculated. Distances in the most extreme surface points (1.5 cm most superoinferior, 10% most right/left/anteroposterior) were used to derive margins accounting only for systematic (delineation) errors. RESULTS Heart delineations on the MIP were the closest to the full extent of motion, requiring only ≤2.5-mm margins. Delineations on the AVG and 3D scans required margins up to 3.4 and 7.1 mm, respectively. The largest margins were for the inferior, right, and anterior aspects for the delineations on the 3D, AVG, and MIP scans, respectively. CONCLUSION Delineations on 3D, AVG, or MIP scans required extensions for representing the heart's full extent of motion, with the MIP requiring the smallest margins. Research including daily imaging to determine the random components for the margins and dosimetric measurements to determine the relevance of creating a planning organ at risk volume of the heart is required.
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW This review highlights the literature related to pericardial injury following radiation for oncologic diseases. RECENT FINDINGS Radiation-associated pericardial disease can have devastating consequences. Unfortunately, there is considerably less evidence regarding pericardial syndromes following thoracic radiation as compared to other cardiovascular outcomes. Pericardial complications of radiation may arise acutely or have an insidious onset several decades after treatment. Transthoracic echocardiography is the screening imaging modality of choice, while cardiac magnetic resonance imaging further characterizes the pericardium and guides treatment decision-making. Cardiac CT can be useful for assessing pericardial calcification. Ongoing efforts to lessen inadvertent cardiac injury are directed towards the revision of radiation techniques and protocols. As survival of mediastinal and thoracic malignancies continues to improve, radiation-associated pericardial disease is increasingly relevant. Though advances in radiation oncology demonstrate promise in curtailing cardiotoxicity, the long-term effects pertaining to pericardial complications remain to be seen.
Collapse
Affiliation(s)
- Natalie Szpakowski
- Heart and Vascular Institute, Department of Cardiovascular Medicine, Cleveland Clinic, 9500 Euclid Avenue, Desk J1-5, Cleveland, OH, 44195, USA
| | - Milind Y Desai
- Heart and Vascular Institute, Department of Cardiovascular Medicine, Cleveland Clinic, 9500 Euclid Avenue, Desk J1-5, Cleveland, OH, 44195, USA.
| |
Collapse
|