1
|
Mi L, Zhang H. Myriad factors and pathways influencing tumor radiotherapy resistance. Open Life Sci 2024; 19:20220992. [PMID: 39655194 PMCID: PMC11627069 DOI: 10.1515/biol-2022-0992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 12/12/2024] Open
Abstract
Radiotherapy is a cornerstone in the treatment of various tumors, yet radioresistance often leads to treatment failure and tumor recurrence. Several factors contribute to this resistance, including hypoxia, DNA repair mechanisms, and cancer stem cells. This review explores the diverse elements that drive tumor radiotherapy resistance. Historically, resistance has been attributed to cellular repair and tumor repopulation, but recent research has expanded this understanding. The tumor microenvironment - characterized by hypoxia, immune evasion, and stromal interactions - further complicates treatment. Additionally, molecular mechanisms such as aberrant signaling pathways, epigenetic modifications, and non-B-DNA structures play significant roles in mediating resistance. This review synthesizes current knowledge, highlighting the interplay of these factors and their clinical implications. Understanding these mechanisms is crucial for developing strategies to overcome resistance and improve therapeutic outcomes in cancer patients.
Collapse
Affiliation(s)
- Lanjuan Mi
- School of Life and Health Sciences, Huzhou College, Hu Zhou, China
| | - Hongquan Zhang
- The First Affiliated Hospital of Huzhou University, Hu Zhou, China
| |
Collapse
|
2
|
Xie R, Luo Y, Bao B, Wu X, Guo J, Wang J, Qu X, Che X, Zheng C. The Role of Fatty Acid Metabolism, the Related Potential Biomarkers, and Targeted Therapeutic Strategies in Gastrointestinal Cancers. Drug Dev Res 2024; 85:e70014. [PMID: 39527665 DOI: 10.1002/ddr.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
Gastrointestinal cancer has emerged as a significant global health concern due to its high incidence and mortality, limited effectiveness of early detection, suboptimal treatment outcomes, and poor prognosis. Metabolic reprogramming is a prominent feature of cancer, and fatty acid metabolism assumes a pivotal role in bridging glucose metabolism and lipid metabolism. Fatty acids play important roles in cellular structural composition, energy supply, signal transduction, and other lipid-related processes. Changes in the levels of fatty acid metabolite may indicate the malignant transformation of gastrointestinal cells, which have an impact on the prognosis of patients and can be used as a marker to monitor the efficacy of anticancer therapy. Therefore, targeting key enzymes involved in fatty acid metabolism, either as monotherapy or in combination with other agents, is a promising strategy for anticancer treatment. This article reviews the potential mechanisms of fatty acid metabolism disorders in the occurrence and development of gastrointestinal tumors, and summarizes the related potential biomarkers and anticancer strategies.
Collapse
Affiliation(s)
- Ruixi Xie
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Luo
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bowen Bao
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinshu Wu
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jia Guo
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jin Wang
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiujuan Qu
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaofang Che
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chunlei Zheng
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Oncology, Shanghai Electric Power Hospital, Shanghai, China
| |
Collapse
|
3
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
4
|
Shouman MA, Fuchs F, Walter F, Corradini S, Westphalen CB, Vornhülz M, Beyer G, Andrade D, Belka C, Niyazi M, Rogowski P. Stereotactic body radiotherapy for pancreatic cancer - A systematic review of prospective data. Clin Transl Radiat Oncol 2024; 45:100738. [PMID: 38370495 PMCID: PMC10873666 DOI: 10.1016/j.ctro.2024.100738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/05/2024] [Accepted: 01/26/2024] [Indexed: 02/20/2024] Open
Abstract
Purpose This systematic review aims to comprehensively summarize the current prospective evidence regarding Stereotactic Body Radiotherapy (SBRT) in various clinical contexts for pancreatic cancer including its use as neoadjuvant therapy for borderline resectable pancreatic cancer (BRPC), induction therapy for locally advanced pancreatic cancer (LAPC), salvage therapy for isolated local recurrence (ILR), adjuvant therapy after radical resection, and as a palliative treatment. Special attention is given to the application of magnetic resonance-guided radiotherapy (MRgRT). Methods Following PRISMA guidelines, a systematic review of the Medline database via PubMed was conducted focusing on prospective studies published within the past decade. Data were extracted concerning study characteristics, outcome measures, toxicity profiles, SBRT dosage and fractionation regimens, as well as additional systemic therapies. Results and conclusion 31 studies with in total 1,571 patients were included in this review encompassing 14 studies for LAPC, 9 for neoadjuvant treatment, 2 for adjuvant treatment, 2 for ILR, with an additional 4 studies evaluating MRgRT. In LAPC, SBRT demonstrates encouraging results, characterized by favorable local control rates. Several studies even report conversion to resectable disease with substantial resection rates reaching 39%. The adoption of MRgRT may provide a solution to the challenge to deliver ablative doses while minimizing severe toxicities. In BRPC, select prospective studies combining preoperative ablative-dose SBRT with modern induction systemic therapies have achieved remarkable resection rates of up to 80%. MRgRT also holds potential in this context. Adjuvant SBRT does not appear to confer relevant advantages over chemotherapy. While prospective data for SBRT in ILR and for palliative pain relief are limited, they corroborate positive findings from retrospective studies.
Collapse
Affiliation(s)
- Mohamed A Shouman
- Department of Radiation Oncology, University Hospital LMU, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Frederik Fuchs
- Department of Radiation Oncology, University Hospital LMU, Munich, Germany
| | - Franziska Walter
- Department of Radiation Oncology, University Hospital LMU, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital LMU, Munich, Germany
| | - C Benedikt Westphalen
- Department of Medicine III and Comprehensive Cancer Center (CCC Munich LMU), University Hospital LMU, Munich, Germany
| | - Marlies Vornhülz
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- Department of Internal Medicine II, LMU University Hospital, Munich, Germany
| | - Georg Beyer
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- Department of Internal Medicine II, LMU University Hospital, Munich, Germany
| | - Dorian Andrade
- Department of General, Visceral, and Transplant Surgery, University Hospital LMU, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital LMU, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital LMU, Munich, Germany
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, Germany
| | - Paul Rogowski
- Department of Radiation Oncology, University Hospital LMU, Munich, Germany
| |
Collapse
|
5
|
Malatesta T, Scaggion A, Giglioli FR, Belmonte G, Casale M, Colleoni P, Falco MD, Giuliano A, Linsalata S, Marino C, Moretti E, Richetto V, Sardo A, Russo S, Mancosu P. Patient specific quality assurance in SBRT: a systematic review of measurement-based methods. Phys Med Biol 2023; 68:21TR01. [PMID: 37625437 DOI: 10.1088/1361-6560/acf43a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/25/2023] [Indexed: 08/27/2023]
Abstract
This topical review focuses on Patient-Specific Quality Assurance (PSQA) approaches to stereotactic body radiation therapy (SBRT). SBRT requires stricter accuracy than standard radiation therapy due to the high dose per fraction and the limited number of fractions. The review considered various PSQA methods reported in 36 articles between 01/2010 and 07/2022 for SBRT treatment. In particular comparison among devices and devices designed for SBRT, sensitivity and resolution, verification methodology, gamma analysis were specifically considered. The review identified a list of essential data needed to reproduce the results in other clinics, highlighted the partial miss of data reported in scientific papers, and formulated recommendations for successful implementation of a PSQA protocol.
Collapse
Affiliation(s)
- Tiziana Malatesta
- Medical Physics Unit, Department of Radiotherapy and Medical Oncology and Radiology, Fatebenefratelli Isola Tiberina-Gemelli Isola Hospital, Rome, Italy
| | - Alessandro Scaggion
- Medical Physics Department, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | | | - Gina Belmonte
- Medical Physics Department, San Luca Hospital, Lucca, Italy
| | - Michelina Casale
- Medical Physics Unit, Azienda Ospedaliera 'Santa Maria', Terni, Italy
| | - Paolo Colleoni
- UOC Medical Physics Unit-ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Maria Daniela Falco
- Department of Radiation Oncology, 'SS. Annunziata' Hospital, 'G. D'Annunzio' University, Chieti, Italy
| | - Alessia Giuliano
- Medical Physics Unit, Pisa University Hospital 'Azienda Ospedaliero-Universitaria Pisana', Pisa, Italy
| | - Stefania Linsalata
- Medical Physics Unit, Pisa University Hospital 'Azienda Ospedaliero-Universitaria Pisana', Pisa, Italy
| | - Carmelo Marino
- Medical Physics and Radioprotection Unit, Humanitas Istituto Clinico Catanese, Misterbianco (CT), Italy
| | - Eugenia Moretti
- Division of Medical Physics, Department of Oncology, ASUFC Udine, Italy
| | - Veronica Richetto
- Medical Physics Unit, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Anna Sardo
- UOSD Medical Physics, ASLCN2, Verduno, Italy
| | - Serenella Russo
- Medical Physics Unit, Azienda USL Toscana Centro, Florence, Italy
| | - Pietro Mancosu
- Medical Physics Unit of Radiotherapy Department, IRCCS Humanitas Research Hospital, Rozzano - Milano, Italy
| |
Collapse
|
6
|
Palm RF, Boyer E, Kim DW, Denbo J, Hodul PJ, Malafa M, Fleming JB, Shridhar R, Chuong MD, Mellon EA, Frakes JM, Hoffe SE. Neoadjuvant chemotherapy and stereotactic body radiation therapy for borderline resectable pancreas adenocarcinoma: influence of vascular margin status and type of chemotherapy. HPB (Oxford) 2023; 25:1110-1120. [PMID: 37286392 DOI: 10.1016/j.hpb.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/29/2023] [Accepted: 04/30/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND The influence of chemotherapy type and vascular margin status after sequential chemotherapy and stereotactic body radiation therapy (SBRT) for borderline resectable pancreatic cancer (BRPC) is unknown. METHODS A retrospective review was performed on BRPC patients treated with chemotherapy and 5-fraction SBRT from 2009 to 2021. Surgical outcomes and SBRT-related toxicity were reported. Clinical outcomes were estimated by Kaplan-Meier with log rank comparisons. RESULTS A total of 303 patients received neoadjuvant chemotherapy and SBRT to a median dose of 40 Gy prescribed to the tumor-vessel interface and median dose of 32.4 Gyto 95% of the gross tumor volume. One hundred and sixty-nine patients (56%) were resected and benefited from improved median OS (41.1 vs 15.5 months, P < 0.001). Close/positive vascular margins were not associated with worse OS or FFLRF. Type of neoadjuvant chemotherapy did not influence OS for resected patients, but FOLFIRINOX was associated with improved median OS in unresected patients (18.2 vs 13.1 months, P = 0.001). CONCLUSION For BRPC, the effect of a positive or close vascular margin may be mitigated by neoadjuvant therapy. Shorter duration neoadjuvant chemotherapy as well as the optimal biological effective dose of radiotherapy should be prospectively explored.
Collapse
Affiliation(s)
- Russell F Palm
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa FL, USA.
| | - Emanuel Boyer
- University of South Florida School of Medicine, Tampa, FL, USA
| | - Dae W Kim
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa FL, USA
| | - Jason Denbo
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa FL, USA
| | - Pamela J Hodul
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa FL, USA
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa FL, USA
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa FL, USA
| | - Ravi Shridhar
- Department of Radiation Oncology, Advent Health, Orlando, FL, USA
| | - Michael D Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami FL, USA
| | - Eric A Mellon
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Jessica M Frakes
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa FL, USA
| | - Sarah E Hoffe
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa FL, USA
| |
Collapse
|
7
|
Feasibility, safety, and efficacy of stereotactic body radiotherapy combined with intradermal heat-killed mycobacterium obuense (IMM-101) vaccination for non-progressive locally advanced pancreatic cancer, after induction chemotherapy with (modified)FOLFIRINOX - The LAPC-2 trial. Radiother Oncol 2023; 183:109541. [PMID: 36813171 DOI: 10.1016/j.radonc.2023.109541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/05/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND AND PURPOSE In this phase I/II trial, non-progressive locally advanced pancreatic cancer (LAPC) patients after (modified)FOLFIRINOX therapy were treated with stereotactic body radiotherapy (SBRT) combined with heat-killed mycobacterium (IMM-101) vaccinations. We aimed to assess safety, feasibility, and efficacy of this treatment approach. MATERIALS AND METHODS On five consecutive days, patients received a total of 40 Gray (Gy) of SBRT with a dose of 8 Gy per fraction. Starting two weeks prior to SBRT, they in addition received six bi-weekly intradermal vaccinations with one milligram of IMM-101. The primary outcomes were the number of grade 4 or higher adverse events and the one-year progression free-survival (PFS) rate. RESULTS Thirty-eight patients were included and started study treatment. Median follow-up was 28.4 months (95 %CI 24.3 - 32.6). We observed one grade 5, no grade 4 and thirteen grade 3 adverse events, none related to IMM-101. The one-year PFS rate was 47 %, the median PFS was 11.7 months (95 %CI 11.0 - 12.5) and the median overall survival was 19.0 months (95 %CI 16.2 - 21.9). Eight (21 %) tumors were resected, of which 6 (75 %) were R0 resections. Outcomes were comparable with the outcomes of the patients from the previous LAPC-1 trial, in which LAPC patients were treated with SBRT, without IMM-101. CONCLUSION Combination treatment with IMM-101 and SBRT was safe and feasible for non-progressive locally advanced pancreatic cancer patients after (modified)FOLFIRINOX. No improvement in the progression-free survival could be demonstrated by adding IMM-101 to SBRT.
Collapse
|
8
|
Advances in Radiation Oncology for Pancreatic Cancer: An Updated Review. Cancers (Basel) 2022; 14:cancers14235725. [PMID: 36497207 PMCID: PMC9736314 DOI: 10.3390/cancers14235725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
This review aims to summarize the recent advances in radiation oncology for pancreatic cancer. A systematic search of the MEDLINE/PubMed database and Clinicaltrials.gov was performed, focusing on studies published within the last 10 years. Our search queried "locally advanced pancreatic cancer [AND] stereotactic body radiation therapy (SBRT) [OR] hypofractionation [OR] magnetic resonance guidance radiation therapy (MRgRT) [OR] proton" and "borderline resectable pancreatic cancer [AND] neoadjuvant radiation" and was limited only to prospective and retrospective studies and metanalyses. For locally advanced pancreatic cancers (LAPC), retrospective evidence supports the notion of radiation dose escalation to improve overall survival (OS). Novel methods for increasing the dose to high risk areas while avoiding dose to organs at risk (OARs) include SBRT or ablative hypofractionation using a simultaneous integrated boost (SIB) technique, MRgRT, or charged particle therapy. The use of molecularly targeted agents with radiation to improve radiosensitization has also shown promise in several prospective studies. For resectable and borderline resectable pancreatic cancers (RPC and BRPC), several randomized trials are currently underway to study whether current neoadjuvant regimens using radiation may be improved with the use of the multi-drug regimen FOLFIRINOX or immune checkpoint inhibitors.
Collapse
|
9
|
Roy A, Bera S, Saso L, Dwarakanath BS. Role of autophagy in tumor response to radiation: Implications for improving radiotherapy. Front Oncol 2022; 12:957373. [PMID: 36172166 PMCID: PMC9510974 DOI: 10.3389/fonc.2022.957373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is an evolutionary conserved, lysosome-involved cellular process that facilitates the recycling of damaged macromolecules, cellular structures, and organelles, thereby generating precursors for macromolecular biosynthesis through the salvage pathway. It plays an important role in mediating biological responses toward various stress, including those caused by ionizing radiation at the cellular, tissue, and systemic levels thereby implying an instrumental role in shaping the tumor responses to radiotherapy. While a successful execution of autophagy appears to facilitate cell survival, abortive or interruptions in the completion of autophagy drive cell death in a context-dependent manner. Pre-clinical studies establishing its ubiquitous role in cells and tissues, and the systemic response to focal irradiation of tumors have prompted the initiation of clinical trials using pharmacologic modifiers of autophagy for enhancing the efficacy of radiotherapy. However, the outcome from the Phase I/II trials in many human malignancies has so far been equivocal. Such observations have not only precluded the advancement of these autophagy modifiers in the Phase III trial but have also raised concerns regarding their introduction as an adjuvant to radiotherapy. This warrants a thorough understanding of the biology of the cancer cells, including its spatio-temporal context, as well as its microenvironment all of which might be the crucial factors that determine the success of an autophagy modifier as an anticancer agent. This review captures the current understanding of the interplay between radiation induced autophagy and the biological responses to radiation damage as well as provides insight into the potentials and limitations of targeting autophagy for improving the radiotherapy of tumors.
Collapse
Affiliation(s)
- Amrita Roy
- Department of Biotechnology, Indian Academy Degree College (Autonomous), Bengaluru, Karnataka, India
- *Correspondence: Amrita Roy, ; ; Soumen Bera, ; ; Bilikere S. Dwarakanath, ;
| | - Soumen Bera
- B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Amrita Roy, ; ; Soumen Bera, ; ; Bilikere S. Dwarakanath, ;
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, Rome, Italy
| | - Bilikere S. Dwarakanath
- Central Research Facility, Sri Ramachandra Institute of Higher Education and Research Institute, Chennai, India
- *Correspondence: Amrita Roy, ; ; Soumen Bera, ; ; Bilikere S. Dwarakanath, ;
| |
Collapse
|
10
|
Huguet F, Cerbai C, Ta MH, Sarrade T, Evin C, Aziez S, Rivin Del Campo E, Durand B, Loi M. Neoadjuvant treatment of pancreatic adenocarcinoma: Chemoradiation or stereotactic body radiation therapy? Cancer Radiother 2022; 26:858-864. [PMID: 35987811 DOI: 10.1016/j.canrad.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 10/15/2022]
Abstract
Despite recent advances, the prognosis of pancreatic adenocarcinomas remains poor, even for patients with resectable tumors. For these latter, new approaches based on neoadjuvant treatment have been developed. Two components are used: chemotherapy and radiation therapy (RT). Indeed, pre-operative RT has many advantages in terms of efficacy and tolerance. It increases notably the chances of subsequent complete tumor resection. Several prospective trials are currently ongoing to clarify its place in the therapeutic arsenal. Another crucial question is to know which is the best RT technique: conventional normofractionated chemoradiotherapy or hypofrationated stereotactic body RT?
Collapse
Affiliation(s)
- F Huguet
- Service d'oncologie radiothérapie, hôpital Tenon, AP-HP, Sorbonne université, institut universitaire de cancérologie, 4, rue de la Chine, Paris, France; Inserm U938 Cancer Biology and Therapeutics, centre de recherche Saint-Antoine, 75012 Paris, France.
| | - C Cerbai
- Service d'oncologie radiothérapie, hôpital Tenon, AP-HP, Sorbonne université, institut universitaire de cancérologie, 4, rue de la Chine, Paris, France; Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - M H Ta
- Service d'oncologie radiothérapie, hôpital Tenon, AP-HP, Sorbonne université, institut universitaire de cancérologie, 4, rue de la Chine, Paris, France
| | - T Sarrade
- Service d'oncologie radiothérapie, hôpital Tenon, AP-HP, Sorbonne université, institut universitaire de cancérologie, 4, rue de la Chine, Paris, France
| | - C Evin
- Service d'oncologie radiothérapie, hôpital Tenon, AP-HP, Sorbonne université, institut universitaire de cancérologie, 4, rue de la Chine, Paris, France
| | - S Aziez
- Service d'oncologie radiothérapie, hôpital Tenon, AP-HP, Sorbonne université, institut universitaire de cancérologie, 4, rue de la Chine, Paris, France
| | - E Rivin Del Campo
- Service d'oncologie radiothérapie, hôpital Tenon, AP-HP, Sorbonne université, institut universitaire de cancérologie, 4, rue de la Chine, Paris, France
| | - B Durand
- Service d'oncologie radiothérapie, hôpital Tenon, AP-HP, Sorbonne université, institut universitaire de cancérologie, 4, rue de la Chine, Paris, France
| | - M Loi
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| |
Collapse
|
11
|
Ji X, Zhou B, Ding W, Wang J, Jiang W, Li Y, Hu J, Sun X. Efficacy of stereotactic body radiation therapy for locoregional recurrent pancreatic cancer after radical resection. Front Oncol 2022; 12:925043. [PMID: 35936670 PMCID: PMC9353056 DOI: 10.3389/fonc.2022.925043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
Objective This study aimed to analyze the efficacy and toxicity of stereotactic body radiotherapy (SBRT) for locoregional recurrent pancreatic cancer after radical resection. Methods Patients with locoregional recurrent pancreatic cancer after surgery treated with SBRT in our institution were retrospectively investigated from January 2010 to January 2020. Absolute neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) recorded at pretreatment were analyzed. Endpoints included overall survival (OS), progression-free survival (PFS) and cumulative incidences of local failure (LF) and metastatic failure (MF). Results A total of 22 patients received SBRT with a median prescribed dose of 40 Gy (range of 30-50 Gy)/4 to 7 fractions. The median OS of all patients was 13.6 months (95% CI, 9.6-17.5 months). 0-1 performance status (HR 12.10, 95% CI 2.04-71.81, P=0.006) and ≤2.1 pre-SBRT NLR (HR 4.05, 95% CI 1.21-13.59, P=0.023) were significant predictors of higher OS on multivariable analysis. The median progression-free survival (PFS) of the cohort was 7.5 months (95% CI, 6.5-8.5 months). The median time to LF and MF were 15.6 months and 6.4 months, respectively. The rate of MF as a first event was higher than that of first event LF. Pain relief was observed in all patients (100%) 6 weeks after SBRT. In terms of acute toxicity, grade 1 including fatigue (6, 27.3%), anorexia (6, 27.3%), nausea (4, 18.2%) and leukopenia (4, 18.2%) was often observed. No acute toxicity of grade 4 or 5 was observed. In terms of late toxicity, no treatment-related toxicity was found during follow-up. Conclusion This study showed that SBRT can significantly reduce pain, effectively control local tumor progression, and have acceptable toxicity for patients with locoregional recurrence after radical resection of primary pancreatic cancer. Good performance status and lower pre-SBRT NLR were associated with improved overall survival.
Collapse
|
12
|
Exploring hypoxic biology to improve radiotherapy outcomes. Expert Rev Mol Med 2022; 24:e21. [DOI: 10.1017/erm.2022.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Chopra S, Goda JS, Mittal P, Mulani J, Pant S, Pai V, Kannan S, Deodhar K, Krishnamurthy MN, Menon S, Charnalia M, Shah S, Rangarajan V, Gota V, Naidu L, Sawant S, Thakkar P, Popat P, Ghosh J, Rath S, Gulia S, Engineer R, Mahantshetty U, Gupta S. Concurrent chemoradiation and brachytherapy alone or in combination with nelfinavir in locally advanced cervical cancer (NELCER): study protocol for a phase III trial. BMJ Open 2022; 12:e055765. [PMID: 35387819 PMCID: PMC8987785 DOI: 10.1136/bmjopen-2021-055765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/08/2022] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION In locally advanced cervical cancer, nodal, local and distant relapse continue to be significant patterns of relapse. Therefore, strategies to improve the efficacy of chemoradiation are desirable such as biological pathway modifiers and immunomodulating agents. This trial will investigate the impact of nelfinavir, a protease inhibitor that targets the protein kinase B (AKT) pathway on disease-free survival (DFS). METHODS AND ANALYSIS Radiosensitising effect of nelfinavir in locally advanced carcinoma of cervix is a single-centre, open-label, parallel-group, 1:1 randomised phase-III study. Patients aged over 18 years with a diagnosis of carcinoma cervix stage III are eligible for the study. After consenting, patients will undergo randomisation to chemoradiation and brachytherapy arm or nelfinavir with chemoradiation and brachytherapy arm. The primary aim of the study is to compare the difference in 3-year DFS between the two arms. Secondary aims are locoregional control, overall survival, toxicity and quality of life between the two arms. Pharmacokinetics of nelfinavir and its impact on tumour AKT, programmed cell death ligand 1, cluster of differentiation 4, cluster of differentiation 8 and natural killer 1.1 expression will be investigated. The overall sample size of 348 with 1 planned interim analysis achieves 80% power at a 0.05 significance level to detect a HR of 0.66 when the proportion surviving in the control arm is 0.65. The planned study duration is 8 years. ETHICS AND DISSEMINATION The trial is approved by the Institutional Ethics Committee-I of Tata Memorial Hospital, Mumbai (reference number: IEC/0317/1543/001) and will be monitored by the data safety monitoring committee. The study results will be disseminated via peer-reviewed scientific journals, and conference presentations. Study participants will be accrued after obtaining written informed consent from them. The confidentiality and privacy of study participants will be maintained. TRIAL REGISTRATION NUMBER The trial is registered with Clinical Trials Registry-India (CTRI/2017/08/009265) and ClinicalTrials.gov (NCT03256916).
Collapse
Affiliation(s)
- Supriya Chopra
- Department of Radiation Oncology, Tata Memorial Hospital and Advanced Centre for Treatment, Research and Education in Cancer, Homi Bhabha National Institute, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Jayant Sastri Goda
- Department of Radiation Oncology, Tata Memorial Hospital and Advanced Centre for Treatment, Research and Education in Cancer, Homi Bhabha National Institute, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Prachi Mittal
- Department of Radiation Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Jaahid Mulani
- Department of Radiation Oncology, Advanced Centre for Treatment, Research and Education in Cancer, Homi Bhabha National Institute, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Sidharth Pant
- Department of Radiation Oncology, Advanced Centre for Treatment, Research and Education in Cancer, Homi Bhabha National Institute, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Venkatesh Pai
- Clinical Biology Laboratory, Department of Radiation Oncology, Advanced Centre for Treatment, Education and Research in Cancer, Homi Bhabha National Institute, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Sadhna Kannan
- Department of Biostatistics, Tata Memorial Hospital and Advanced Centre for Treatment Research and Education in Cancer, Homi Bhabha National Institute, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Kedar Deodhar
- Department of Pathology, Tata Memorial Hospital, Homi Bhabha National Institute, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Manjunath Nookala Krishnamurthy
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Homi Bhabha National Institute, Tata Memorial Centre, Navi Mumbai, India
| | - Santosh Menon
- Department of Pathology, Tata Memorial Hospital and Advanced Centre for Treatment Research and Education in Cancer, Homi Bhabha National Institute, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Mayuri Charnalia
- Department of Radiation Oncology, Advanced Centre for Treatment, Research and Education in Cancer, Homi Bhabha National Institute, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Sneha Shah
- Department of Nuclear Medicine and Bio-Imaging, Tata Memorial Hospital, Homi Bhabha National Institute, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Venkatesh Rangarajan
- Department of Nuclear Medicine and Bio-Imaging, Tata Memorial Hospital, Homi Bhabha National Institute, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Vikram Gota
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Homi Bhabha National Institute, Tata Memorial Centre, Navi Mumbai, India
| | - Lavanya Naidu
- Department of Radiation Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Sheela Sawant
- Department of General Medicine, Tata Memorial Hospital, Homi Bhabha National Institute, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Praffula Thakkar
- Department of General Medicine, Advanced Centre for Treatment, Research and Education in Cancer, Homi Bhabha National Institute, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Palak Popat
- Department of Radiodiagnosis, Tata Memorial Hospital, Homi Bhabha National Institute, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Jaya Ghosh
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Sushmita Rath
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Seema Gulia
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Reena Engineer
- Department of Radiation Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Umesh Mahantshetty
- Department of Radiation Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Sudeep Gupta
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Tata Memorial Centre, Mumbai, Maharashtra, India
| |
Collapse
|
14
|
De Lellis L, Veschi S, Tinari N, Mokini Z, Carradori S, Brocco D, Florio R, Grassadonia A, Cama A. Drug Repurposing, an Attractive Strategy in Pancreatic Cancer Treatment: Preclinical and Clinical Updates. Cancers (Basel) 2021; 13:3946. [PMID: 34439102 PMCID: PMC8394389 DOI: 10.3390/cancers13163946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest malignancies worldwide, since patients rarely display symptoms until an advanced and unresectable stage of the disease. Current chemotherapy options are unsatisfactory and there is an urgent need for more effective and less toxic drugs to improve the dismal PC therapy. Repurposing of non-oncology drugs in PC treatment represents a very promising therapeutic option and different compounds are currently being considered as candidates for repurposing in the treatment of this tumor. In this review, we provide an update on some of the most promising FDA-approved, non-oncology, repurposed drug candidates that show prominent clinical and preclinical data in pancreatic cancer. We also focus on proposed mechanisms of action and known molecular targets that they modulate in PC. Furthermore, we provide an explorative bioinformatic analysis, which suggests that some of the PC repurposed drug candidates have additional, unexplored, oncology-relevant targets. Finally, we discuss recent developments regarding the immunomodulatory role displayed by some of these drugs, which may expand their potential application in synergy with approved anticancer immunomodulatory agents that are mostly ineffective as single agents in PC.
Collapse
Affiliation(s)
- Laura De Lellis
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Serena Veschi
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Nicola Tinari
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (N.T.); (A.G.)
- Center for Advanced Studies and Technology—CAST, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Zhirajr Mokini
- European Society of Anaesthesiology and Intensive Care (ESAIC) Mentorship Programme, ESAIC, 24 Rue des Comédiens, BE-1000 Brussels, Belgium;
| | - Simone Carradori
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Davide Brocco
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Rosalba Florio
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Antonino Grassadonia
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (N.T.); (A.G.)
- Center for Advanced Studies and Technology—CAST, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
- Center for Advanced Studies and Technology—CAST, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
15
|
Ryckman JM, Reames BN, Klute KA, Hall WA, Baine MJ, Abdel-Wahab M, Lin C. The timing and design of stereotactic radiotherapy approaches as a part of neoadjuvant therapy in pancreatic cancer: Is it time for change? Clin Transl Radiat Oncol 2021; 28:124-128. [PMID: 33981865 PMCID: PMC8085778 DOI: 10.1016/j.ctro.2021.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Stereotactic Radiotherapy (SRT) over 5-15 days can be interdigitated without delaying chemotherapy. Bridging chemotherapy may allow for extended intervals to surgery, potentially improving sterilization of surgical margins and overall survival. SRT for pancreatic adenocarcinoma should not be limited to the tumor, and should consider hypofractionated approaches to regional nodes.
Collapse
Affiliation(s)
- Jeffrey M. Ryckman
- Department of Radiation Oncology, West Virginia University Cancer Institute, Parkersburg, WV, USA
| | - Bradley N. Reames
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kelsey A. Klute
- Department of Medical Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - William A. Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael J. Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - May Abdel-Wahab
- Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| | - Chi Lin
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
16
|
Ohira S, Koike Y, Akino Y, Kanayama N, Wada K, Ueda Y, Masaoka A, Washio H, Miyazaki M, Koizumi M, Ogawa K, Teshima T. Improvement of image quality for pancreatic cancer using deep learning-generated virtual monochromatic images: Comparison with single-energy computed tomography. Phys Med 2021; 85:8-14. [PMID: 33940528 DOI: 10.1016/j.ejmp.2021.03.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/25/2021] [Accepted: 03/30/2021] [Indexed: 01/15/2023] Open
Abstract
PURPOSE To construct a deep convolutional neural network that generates virtual monochromatic images (VMIs) from single-energy computed tomography (SECT) images for improved pancreatic cancer imaging quality. MATERIALS AND METHODS Fifty patients with pancreatic cancer underwent a dual-energy CT simulation and VMIs at 77 and 60 keV were reconstructed. A 2D deep densely connected convolutional neural network was modeled to learn the relationship between the VMIs at 77 (input) and 60 keV (ground-truth). Subsequently, VMIs were generated for 20 patients from SECT images using the trained deep learning model. RESULTS The contrast-to-noise ratio was significantly improved (p < 0.001) in the generated VMIs (4.1 ± 1.8) compared to the SECT images (2.8 ± 1.1). The mean overall image quality (4.1 ± 0.6) and tumor enhancement (3.6 ± 0.6) in the generated VMIs assessed on a five-point scale were significantly higher (p < 0.001) than that in the SECT images (3.2 ± 0.4 and 2.8 ± 0.4 for overall image quality and tumor enhancement, respectively). CONCLUSIONS The quality of the SECT image was significantly improved both objectively and subjectively using the proposed deep learning model for pancreatic tumors in radiotherapy.
Collapse
Affiliation(s)
- Shingo Ohira
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan; Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Yuhei Koike
- Department of Radiology, Kansai Medical University, Osaka, Japan
| | - Yuichi Akino
- Division of Medical Physics, Oncology Center, Osaka University Hospital, Suita, Japan
| | - Naoyuki Kanayama
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Kentaro Wada
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Yoshihiro Ueda
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Akira Masaoka
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Hayate Washio
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masayoshi Miyazaki
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Teruki Teshima
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
17
|
Sun Y, Wang Z, Qiu S, Wang R. Therapeutic strategies of different HPV status in Head and Neck Squamous Cell Carcinoma. Int J Biol Sci 2021; 17:1104-1118. [PMID: 33867833 PMCID: PMC8040311 DOI: 10.7150/ijbs.58077] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the 9th most common malignant tumor in the world. Based on the etiology, HNSCC has two main subtypes: human papillomavirus (HPV) -related and HPV-unrelated. HPV-positive HNSCC is more sensitive to treatment with favorable survival. Due to the different biological behaviors, individual therapy is necessary and urgently required to deduce the therapeutic intensity of HPV-positive disease and look for a more effective and toxicity-acceptable regimen for HPV-negative disease. EGFR amplification and PI3K/AKT/mTOR pathway aberrant activation are quite common in HPV-positive HNSCC. Besides, HPV infection alters immune cell infiltrating in HNSCC and encompasses a diverse and heterogeneous landscape with more immune infiltration. On the other hand, the chance of HPV-negative cancers harboring mutation on the P53 gene is significantly higher than that of HPV-positive disease. This review focuses on the updated preclinical and clinical data of HPV-positive and HPV-negative HNSCC and discusses the therapeutic strategies of different HPV status in HNSCC.
Collapse
Affiliation(s)
- Yingming Sun
- Department of Radiation and Medical Oncology, Affiliated Sanming First Hospital of Fujian Medical University, Sanming 365001, P. R. China
| | - Zhe Wang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, P. R. China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian 116001, P. R. China
| | - Sufang Qiu
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, P.R. China
| | - Ruoyu Wang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, P. R. China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian 116001, P. R. China
| |
Collapse
|
18
|
Munshi A. Ablative radiosurgery for cardiac arrhythmias - A systematic review. Cancer Radiother 2021; 25:373-379. [PMID: 33589330 DOI: 10.1016/j.canrad.2021.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
Stereotactic body radiotherapy (SBRT) is a high precision technique that is commonly used for malignant lesions in lung, liver, pancreas and spine. Recent reports suggest promise in use of SBRT as a tool in atrial and ventricular cardiac arrhythmias. The present systematic review deals with the use of SBRT technology for this novel indication. A PubMed search was done for articles published between 1990 and 2020. All original articles, case reports, case series of treated patients were included in the analyses. Out of the 55 articles in PubMed search, our search found 1 phase I/II clinical case series, 3 clinical case reports, 3 animal studies and 4 dosimetric studies related to cardiac SBRT for arrythmias. All studies used a uniform cardiac dose of 25Gy. The available preclinical, dosimetric and clinical studies have suggested that SBRT for cardiac arrhythmias could become a potential alternative in suitable patients. Cardiac and radiation oncology community await further data and experience in this modality, including safety and outcomes.
Collapse
Affiliation(s)
- A Munshi
- Department of Radiation Oncology, Manipal Hospitals, Dwarka, New Delhi, India.
| |
Collapse
|
19
|
Maximizing Tumor Control and Limiting Complications With Stereotactic Body Radiation Therapy for Pancreatic Cancer. Int J Radiat Oncol Biol Phys 2020; 110:206-216. [PMID: 33358561 DOI: 10.1016/j.ijrobp.2020.11.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Stereotactic body radiation therapy (SBRT) and stereotactic ablative body radiation therapy is being increasingly used for pancreatic cancer (PCa), particularly in patients with locally advanced and borderline resectable disease. A wide variety of dose fractionation schemes have been reported in the literature. This HyTEC review uses tumor control probability models to evaluate the comparative effectiveness of the various SBRT treatment regimens used in the treatment of patients with localized PCa. METHODS AND MATERIALS A PubMed search was performed to review the published literature on the use of hypofractionated SBRT (usually in 1-5 fractions) for PCa in various clinical scenarios (eg, preoperative [neoadjuvant], borderline resectable, and locally advanced PCa). The linear quadratic model with α/β= 10 Gy was used to address differences in fractionation. Logistic tumor control probability models were generated using maximum likelihood parameter fitting. RESULTS After converting to 3-fraction equivalent doses, the pooled reported data and associated models suggests that 1-year local control (LC) without surgery is ≈79% to 86% after the equivalent of 30 to 36 Gy in 3 fractions, showing a dose response in the range of 25 to 36 Gy, and decreasing to less than 70% 1-year LC at doses below 24 Gy in 3 fractions. The 33 Gy in 5 fraction regimen (Alliance A021501) corresponds to 28.2 Gy in 3 fractions, for which the HyTEC pooled model had 77% 1-year LC without surgery. Above an equivalent dose of 28 Gy in 3 fractions, with margin-negative resection the 1-year LC exceeded 90%. CONCLUSIONS Pooled analyses of reported tumor control probabilities for commonly used SBRT dose-fractionation schedules for PCa suggests a dose response. These findings should be viewed with caution given the challenges and limitations of this review. Additional data are needed to better understand the dose or fractionation-response of SBRT for PCa.
Collapse
|
20
|
The Anti-Cancer Properties of the HIV Protease Inhibitor Nelfinavir. Cancers (Basel) 2020; 12:cancers12113437. [PMID: 33228205 PMCID: PMC7699465 DOI: 10.3390/cancers12113437] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary To this day, cancer remains a medical challenge despite the development of cutting-edge diagnostic methods and therapeutics. Thus, there is a continual demand for improved therapeutic options for managing cancer patients. However, novel drug development requires decade-long time commitment and financial investments. Repurposing approved and market-available drugs for cancer therapy is a way to reduce cost and the timeframe for developing new therapies. Nelfinavir is an anti-infective agent that has extensively been used to treat acquired immunodeficiency syndrome (AIDS) in adult and pediatric patients. In addition to its anti-infective properties, nelfinavir has demonstrated potent off-target anti-cancer effects, suggesting that it could be a suitable candidate for drug repurposing for cancer. In this review, we systematically compiled the therapeutic benefits of nelfinavir against cancer as a single drug or in combination with chemoradiotherapy, and outlined the possible underlying mechanistic pathways contributing to the anti-cancer effects. Abstract Traditional cancer treatments may lose efficacy following the emergence of novel mutations or the development of chemoradiotherapy resistance. Late diagnosis, high-cost of treatment, and the requirement of highly efficient infrastructure to dispense cancer therapies hinder the availability of adequate treatment in low-income and resource-limited settings. Repositioning approved drugs as cancer therapeutics may reduce the cost and timeline for novel drug development and expedite the availability of newer, efficacious options for patients in need. Nelfinavir is a human immunodeficiency virus (HIV) protease inhibitor that has been approved and is extensively used as an anti-infective agent to treat acquired immunodeficiency syndrome (AIDS). Yet nelfinavir has also shown anti-cancer effects in in vitro and in vivo studies. The anti-cancer mechanism of nelfinavir includes modulation of different cellular conditions, such as unfolded protein response, cell cycle, apoptosis, autophagy, the proteasome pathway, oxidative stress, the tumor microenvironment, and multidrug efflux pumps. Multiple clinical trials indicated tolerable and reversible toxicities during nelfinavir treatment in cancer patients, either as a monotherapy or in combination with chemo- or radiotherapy. Since orally available nelfinavir has been a safe drug of choice for both adult and pediatric HIV-infected patients for over two decades, exploiting its anti-cancer off-target effects will enable fast-tracking this newer option into the existing repertoire of cancer chemotherapeutics.
Collapse
|
21
|
Koay EJ, Hanania AN, Hall WA, Taniguchi CM, Rebueno N, Myrehaug S, Aitken KL, Dawson LA, Crane CH, Herman JM, Erickson B. Dose-Escalated Radiation Therapy for Pancreatic Cancer: A Simultaneous Integrated Boost Approach. Pract Radiat Oncol 2020; 10:e495-e507. [PMID: 32061993 PMCID: PMC7423616 DOI: 10.1016/j.prro.2020.01.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE To provide a detailed description of practical approaches to dose escalation in pancreatic cancer. METHODS AND MATERIALS The current paper represents an international collaborative effort of radiation oncologists from the MR-linac consortium with expertise in pancreatic dose escalation. RESULTS A 15-fraction hypofractionated intensity modulated radiation therapy (67.5 Gy in 15 fractions) and 5-fraction stereotactic body radiation therapy case (50 Gy in 5 fractions) are presented with information regarding patient selection, target volumes, organs at risk, dose constraints, and specific considerations regarding quality assurance. Additionally, we address barriers to dose escalation and briefly discuss future directions in dose escalation for pancreatic cancer, including particle therapy and magnetic resonance guided radiation therapy. CONCLUSIONS This article on dose escalation for pancreatic cancer may help to guide academic and community based physicians and to serve as a reference for future therapeutic trials.
Collapse
Affiliation(s)
- Eugene J Koay
- The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | | | | | | | - Neal Rebueno
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sten Myrehaug
- Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada
| | | | - Laura A Dawson
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | | - Joseph M Herman
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | |
Collapse
|
22
|
Kim KH, Kim HS, Kim SC, Kim D, Kim YB, Chung HC, Rha SY. Gene Expression Profiling Identifies Akt as a Target for Radiosensitization in Gastric Cancer Cells. Front Oncol 2020; 10:562284. [PMID: 33042843 PMCID: PMC7517358 DOI: 10.3389/fonc.2020.562284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
Background Despite the important role of radiotherapy in cancer treatment, a subset of patients responds poorly to treatment majorly due to radioresistance. Particularly the role of radiotherapy has not been established in gastric cancer (GC). Herein, we aimed to identify a radiosensitivity gene signature and to discover relevant targets to enhance radiosensitivity in GC cells. Methods An oligonucleotide microarray (containing 22,740 probes) was performed in 12 GC cell lines prior to radiation. A clonogenic assay was performed to evaluate the survival fraction at 2 Gy (SF2) as a surrogate marker for radiosensitivity. Genes differentially expressed (fold change > 6, q-value < 0.025) were identified between radiosensitive and radioresistant cell lines, and quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was performed for validation. Gene set and pathway analyses were performed using Ingenuity Pathway Analysis (IPA). Results Radiosensitive (SF2 < 0.4) and radioresistant cell lines (SF2 ≥ 0.6) exhibited a marked difference in gene expression. We identified 68 genes that are differentially expressed between radiosensitive and radioresistant cell lines. The identified genes showed interactions via AKT, HIF1A, TGFB1, and TP53, and their functions were associated with the genetic networks associated with cellular growth and proliferation, cellular movement, and cell cycle. The Akt signaling pathway exhibited the highest association with radiosensitivity. Combinatorial treatment with MK-2206, an allosteric Akt inhibitor, and radiotherapy significantly increased cell death compared with radiotherapy alone in two radioresistant cell lines (YCC-2 and YCC-16). Conclusion We identified a GC-specific radiosensitivity gene signature and suggest that the Akt signaling pathway could serve as a therapeutic target for GC radiosensitization.
Collapse
Affiliation(s)
- Kyung Hwan Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Han Sang Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, South Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang Cheol Kim
- Division of Biomedical Informatics, Center for Genome Science, National Institute of Health, KCDC, Cheongju, South Korea
| | - DooA Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, South Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Bae Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun Cheol Chung
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Sun Young Rha
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, South Korea.,Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
23
|
Phase I/II Trial of Neoadjuvant Oregovomab-based Chemoimmunotherapy Followed by Stereotactic Body Radiotherapy and Nelfinavir For Locally Advanced Pancreatic Adenocarcinoma. Am J Clin Oncol 2020; 42:755-760. [PMID: 31513018 DOI: 10.1097/coc.0000000000000599] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Cancer antigen (CA)-125 influences progression, metastasis, and outcomes in pancreatic cancer. This phase I/II trial (NCT01959672) evaluated the safety, efficacy, and immunologic correlates of chemoimmunotherapy (CIT) with oregovomab (anti-CA-125), followed by stereotactic body radiotherapy (SBRT) with the radiosensitizer nelfinavir. MATERIALS AND METHODS Following imaging, pathologic confirmation, and staging laparoscopy, subjects received three 3-week cycles of CIT (gemcitabine/leucovorin/fluorouracil/oregovomab). Thereafter, nelfinavir was delivered (1250 mg bid) for 5 weeks, with SBRT (40 Gy/5 fractions) occurring during the third week of nelfinavir. Following another cycle of CIT, pancreaticoduodenectomy was performed if resectable. Three more cycles of CIT were then delivered (total 7 cycles). In subjects with high (≥10 U/mL) CA-125, oregovomab (2 mg) was administered for 7 total doses (3 pre-SBRT, 1 between SBRT and resection, and 3 postoperatively). The enzyme-linked immunospot assay evaluated the development of CA-125-specific CD8 T-lymphocytes. RESULTS The trial was prematurely closed because gemcitabine/leucovorin/fluorouracil was replaced by FOLFIRINOX and gemcitabine/nab-paclitaxel as the standard of care. Median follow-up was 13 months. Of 11 enrolled patients, 10 had high CA-125; 1 patient suffered an unexpected cardiac-related death, so 9 subjects received oregovomab. Ten received SBRT and 4 underwent resection. Overall, 6/11 patients experienced any grade ≥3 event. The median survival and time to progression were 13 and 8.6 months, respectively. Five patients had samples available for immunospot testing, of whom 2 (40%) developed CA-125-specific CD8 T-lymphocytes. CONCLUSION A combined pancreatic cancer multimodality approach using CIT and radiosensitized radiotherapy is feasible and safe; delivery of immunotherapy can lead to T-cell immunity. Re-evaluation with modern systemic paradigms is recommended.
Collapse
|
24
|
Neilsen BK, Lin C. Changing paradigm of radiation therapy for the treatment of pancreatic cancer. PRECISION RADIATION ONCOLOGY 2019. [DOI: 10.1002/pro6.1080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Beth K Neilsen
- Department of Radiation OncologyUniversity of Nebraska Medical Center Omaha Nebraska USA
| | - Chi Lin
- Department of Radiation OncologyUniversity of Nebraska Medical Center Omaha Nebraska USA
| |
Collapse
|
25
|
Bonds M, Rocha FG. Contemporary Review of Borderline Resectable Pancreatic Ductal Adenocarcinoma. J Clin Med 2019; 8:jcm8081205. [PMID: 31409042 PMCID: PMC6722979 DOI: 10.3390/jcm8081205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/24/2022] Open
Abstract
Borderline resectable pancreatic adenocarcinoma (PDAC) presents challenges in definition and treatment. Many different definitions exist for this disease. Some are based on anatomy alone, while others include factors such as disease biology and patient performance status. Regardless of definition, evidence suggests that borderline resectable PDAC is a systemic disease at the time of diagnosis. There is high-level evidence to support the use of neoadjuvant systemic therapy in these cases. Evidence to support the use of radiation therapy is ongoing. There are ongoing trials investigating the available neoadjuvant therapies for borderline resectable PDAC that may provide clarity in the future.
Collapse
Affiliation(s)
- Morgan Bonds
- Section of General, Thoracic and Vascular Surgery, Virginia Mason Medical Center, Seattle, WA 98101, USA
| | - Flavio G Rocha
- Section of General, Thoracic and Vascular Surgery, Virginia Mason Medical Center, Seattle, WA 98101, USA.
| |
Collapse
|