1
|
Bennebroek CA, Montauban van Swijndregt MC, van Zwol J, Bhusal S, Dittrich AT, Oostenbrink R, Pott JWR, Buijs EA, Schouten-van Meeteren AY, Porro GL, de Graaf P, Saeed P. Treatment of isolated pediatric optic nerve glioma: A nationwide retrospective cohort study and systematic literature review on visual and radiological outcome. Pediatr Blood Cancer 2024; 71:e31358. [PMID: 39380191 DOI: 10.1002/pbc.31358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 09/14/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Progressive isolated optic nerve glioma (ONG) in children is a rare disease, treated with various modalities. A global treatment consensus is not available. METHODS We conducted a national retrospective multicenter cohort study (1995-2020) to investigate how different treatment strategies impact outcome for ONG in children, by assessing treatment responses to systemic anticancer therapy (SAT), surgery, and radiotherapy for ONG. The primary endpoints included changes in best-corrected visual acuity (BCVA) and tumor volume (TV) on MRI, both evaluated at the start and end of therapy and at long-term follow up. RESULTS A total of 21 ONGs (20 patients) received SAT (n = 14 (66.7%)), surgery (n = 4 (19.0%)), and radiotherapy (n = 3 (14.3%)). After SAT BCVA stabilized or improved in 66.6% (n = 4) and the TV decreased by a median of 45.1% (range: -88.6% to +31.5%) (n = 13). Before resection two eyes were already blind. After resection BCVA decreased to blindness in one eye. In total all four eyes were blind after resection. After first-line RT BCVA decreased in 66.7% of ONG to counting fingers or less, TV increased <3 months after RT by a median of 47.3% (range: -42.8% to +245.1%) (n = 3), followed by a long-term decrease of 94.4 and 13.8% (n = 2), respectively. CONCLUSION SAT appears to be the preferred modality for progressive ONG in case of potential rescue of visual functions. Complete resection of ONG appears effective to reduce proptosis in case of preexisting blindness. The use of radiotherapy requires careful consideration due to the risk of severe visual impairment and secondary disease.
Collapse
Affiliation(s)
- Carlien A Bennebroek
- Orbital Center, Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, The Netherlands
| | | | - Judith van Zwol
- Orbital Center, Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sanjhana Bhusal
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anne T Dittrich
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rianne Oostenbrink
- ENCORE-NF1 Center, Department of General Pediatrics, Erasmus MC, Rotterdam, The Netherlands
| | - Jan Willem R Pott
- Department of Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Erik A Buijs
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Antoinette Y Schouten-van Meeteren
- Orbital Center, Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Neuro-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Giorgio L Porro
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pim de Graaf
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Peerooz Saeed
- Orbital Center, Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, The Netherlands
| |
Collapse
|
2
|
O’Hare P, Cooney T, de Blank P, Gutmann DH, Kieran M, Milde T, Fangusaro J, Fisher M, Avula S, Packer R, Fukuoka K, Mankad K, Mueller S, Waanders AJ, Opocher E, Bouffet E, Raabe E, Werle NE, Azizi AA, Robison NJ, Hernáiz Driever P, Russo M, Schouten N, van Tilburg CM, Sehested A, Grill J, Bandopadhayay P, Kilday JP, Witt O, Ashley DM, Ertl-Wagner BB, Tabori U, Hargrave DR. Resistance, rebound, and recurrence regrowth patterns in pediatric low-grade glioma treated by MAPK inhibition: A modified Delphi approach to build international consensus-based definitions-International Pediatric Low-Grade Glioma Coalition. Neuro Oncol 2024; 26:1357-1366. [PMID: 38743009 PMCID: PMC11300023 DOI: 10.1093/neuonc/noae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Pediatric low-grade glioma (pLGG) is the most common childhood brain tumor group. The natural history, when curative resection is not possible, is one of a chronic disease with periods of tumor stability and episodes of tumor progression. While there is a high overall survival rate, many patients experience significant and potentially lifelong morbidities. The majority of pLGGs have an underlying activation of the RAS/MAPK pathway due to mutational events, leading to the use of molecularly targeted therapies in clinical trials, with recent regulatory approval for the combination of BRAF and MEK inhibition for BRAFV600E mutated pLGG. Despite encouraging activity, tumor regrowth can occur during therapy due to drug resistance, off treatment as tumor recurrence, or as reported in some patients as a rapid rebound growth within 3 months of discontinuing targeted therapy. Definitions of these patterns of regrowth have not been well described in pLGG. For this reason, the International Pediatric Low-Grade Glioma Coalition, a global group of physicians and scientists, formed the Resistance, Rebound, and Recurrence (R3) working group to study resistance, rebound, and recurrence. A modified Delphi approach was undertaken to produce consensus-based definitions and recommendations for regrowth patterns in pLGG with specific reference to targeted therapies.
Collapse
Affiliation(s)
- Patricia O’Hare
- Department of Paediatric Oncology, Royal Belfast Hospital for Sick Children, Northern Ireland, UK
| | - Tabitha Cooney
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Broad Institute, Cambridge, Massachusetts, USA
- Day One Biopharmaceuticals, Boston, Massachusetts, USA
| | - Peter de Blank
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Broad Institute, Cambridge, Massachusetts, USA
- University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mark Kieran
- Day One Biopharmaceuticals, Boston, Massachusetts, USA
| | - Till Milde
- Clinical Pediatric Oncology, Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jason Fangusaro
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael Fisher
- Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Shivaram Avula
- Department of Radiology, Alder Hey Children’s NHS Foundation Trust, Liverpool, UK
| | - Roger Packer
- Brain Tumor Institute, Center for Neuroscience and Behavioral Medicine, Children’s National Hospital, Washington, District of Columbia, USA
| | - Kohei Fukuoka
- Department of Hematology/Oncology, Saitama Children’s Medical Center, Saitama, Japan
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Department of Radiology, London, UK
| | - Sabine Mueller
- Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Angela J Waanders
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Enrico Opocher
- Paediatric Haematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Eric Bouffet
- The Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Eric Raabe
- Division of Pediatric Oncology, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natacha Entz Werle
- Pediatric Onco-Hematology Department, University Hospital of Strasbourg. UMR CNRS 7021, University of Strasbourg, Strasbourg, France
| | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine and Comprehensive Centre of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Nathan J Robison
- Division of Hematology & Oncology, Children’s Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Pablo Hernáiz Driever
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, German HIT-LOGGIC-Registry for LGG in children and adolescents, Department of Pediatric Oncology/Hematology, Berlin, Germany
| | - Mark Russo
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Netteke Schouten
- Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Cornelis M van Tilburg
- Clinical Pediatric Oncology, Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Astrid Sehested
- Department of Paediatrics and Adolescent Medicine, The University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jacques Grill
- Department of Pediatric and Adolescent Oncology, Villejuif, France
| | - Pratiti Bandopadhayay
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Broad Institute, Cambridge, Massachusetts, USA
| | - John-Paul Kilday
- The Centre for Paediatric, Teenage and Young Adult Cancer, Institute of Cancer Sciences, University of Manchester, and Royal Manchester Children’s Hospital, Manchester, UK
| | - Olaf Witt
- Clinical Pediatric Oncology, Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - David M Ashley
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center. Pediatric Neuro-Oncology, Preuss Laboratory for Brain Tumor Research, Durham, North Carolina, USA
| | | | - Uri Tabori
- The Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Darren R Hargrave
- UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, London, UK
| |
Collapse
|
3
|
Joh-Carnella N, Bauman G, Yock TI, Zelcer S, Youkhanna S, Cacciotti C. Case report: Pediatric low-grade gliomas: a fine balance between treatment options, timing of therapy, symptom management and quality of life. Front Oncol 2024; 14:1366251. [PMID: 38912055 PMCID: PMC11190070 DOI: 10.3389/fonc.2024.1366251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Pediatric low-grade gliomas (pLGG) are the most common brain tumor in children and encompass a wide range of histologies. Treatment may pose challenges, especially in those incompletely resected or those with multiple recurrence or progression. Case description We report the clinical course of a girl diagnosed with pilocytic astrocytoma and profound hydrocephalus at age 12 years treated with subtotal resection, vinblastine chemotherapy, and focal proton radiotherapy. After radiotherapy the tumor increased in enhancement temporarily with subsequent resolution consistent with pseudoprogression. Despite improvement in imaging and radiographic local control, the patient continues to have challenges with headaches, visual and auditory concerns, stroke-like symptoms, and poor quality of life. Conclusion pLGG have excellent long-term survival; thus, treatments should focus on maintaining disease control and limiting long-term toxicities. Various treatment options exist including surgery, chemotherapy, targeted agents, and radiation therapy. Given the morbidity associated with pLGG, individualized treatment approaches are necessary, with a multi-disciplinary approach to care focused on minimizing treatment side effects, and promoting optimal quality of life for patients.
Collapse
Affiliation(s)
| | - Glenn Bauman
- Division of Radiation Oncology, Department of Oncology, London Health Sciences Centre & Western University, London, ON, Canada
| | - Torunn I. Yock
- Department of Pediatric Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States
| | - Shayna Zelcer
- Division of Hematology/Oncology, Department of Pediatrics, London Health Sciences Centre & Western University, London, ON, Canada
| | - Sabin Youkhanna
- Department Radiation Oncology, London Regional Cancer Centre, London, ON, Canada
| | - Chantel Cacciotti
- Division of Hematology/Oncology, Department of Pediatrics, London Health Sciences Centre & Western University, London, ON, Canada
| |
Collapse
|
4
|
Eichkorn T, Lischalk JW, Schwarz R, Bauer L, Deng M, Regnery S, Jungk C, Hörner-Rieber J, Herfarth K, König L, Debus J. Radiation-Induced Cerebral Contrast Enhancements Strongly Share Ischemic Stroke Risk Factors. Int J Radiat Oncol Biol Phys 2024; 118:1192-1205. [PMID: 38237810 DOI: 10.1016/j.ijrobp.2023.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/12/2023] [Accepted: 12/31/2023] [Indexed: 03/18/2024]
Abstract
PURPOSE Radiation-induced cerebral contrast enhancements (RICE) are frequent after photon and particularly proton radiation therapy and are associated with a significant risk for neurologic morbidity. Nevertheless, risk factors are poorly understood. A more robust understanding of RICE risk factors is crucial to improve management and offer adaptive therapy at the outset and during follow-up. METHODS AND MATERIALS We analyzed the comorbidities in detail of 190 consecutive adult patients treated at a single European national comprehensive cancer center with proton radiation therapy (54 Gy relative biological effectiveness) for LGG from 2010 to 2020 who were followed with serial clinical examinations and magnetic resonance imaging for a median 5.6 years. RESULTS Classical vascular risk factors including age (≥50 vs <50 years: 1.6-fold; P = .0024), hypertension (2.7-fold; P = .00012), and diabetes (11.7-fold; P = .0066) were observed more frequently in the cohort that developed RICE. Dyslipidemia (2.1-fold), being overweight (2.0-fold), and smoking (2.6-fold), as well as history of previous stroke (1.7-fold), were also more frequently observed in the RICE cohort, although these factors did not reach the threshold for significance. Multivariable regression modeling supported the influence of age (P = .05), arterial hypertension (P = .01), and potentially male sex (P = .02), diabetes (P = .0008), and smoking (P = .001) on RICE occurrence over time, independent of each other and further vascular risk factors. If RICE occurred, bevacizumab treatment was 2-fold more frequently needed in the cohort with vascular risk factors, but RICE long-term prognosis did not differ between the RICE subcohorts with and without vascular risk factors. CONCLUSIONS This is the first report in the literature demonstrating that RICE strongly shares vascular risk factors with ischemic stroke, which further enhances the nebulous understanding of the multifactorial pathophysiology of RICE. Classical vascular risk factors, especially age, hypertension, and diabetes, clearly correlated independently with RICE risk. Risk-adapted screening and management for RICE can be directly derived from these data to assist in clinical management.
Collapse
Affiliation(s)
- Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Jonathan W Lischalk
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University Langone Health at Long Island, New York, New York
| | - Robert Schwarz
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lena Bauer
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Maximilian Deng
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christine Jungk
- National Center for Tumor Diseases (NCT), Heidelberg, Germany; Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Lütgendorf-Caucig C, Pelak M, Hug E, Flechl B, Surböck B, Marosi C, Mock U, Zach L, Mardor Y, Furman O, Hentschel H, Gora J, Fossati P, Stock M, Graichen U, Klee S, Georg P. Prospective Analysis of Radiation-Induced Contrast Enhancement and Health-Related Quality of Life After Proton Therapy for Central Nervous System and Skull Base Tumors. Int J Radiat Oncol Biol Phys 2024; 118:1206-1216. [PMID: 38244874 DOI: 10.1016/j.ijrobp.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/22/2024]
Abstract
PURPOSE Intracerebral radiation-induced contrast enhancement (RICE) can occur after photon as well as proton beam therapy (PBT). This study evaluated the incidence, characteristics, and risk factors of RICE after PBT delivered to, or in direct proximity to, the brain and its effect on health-related quality of life (HRQoL). METHODS AND MATERIALS Four hundred twenty-one patients treated with pencil beam scanning PBT between 2017 and 2021 were included. Follow-up included clinical evaluation and contrast-enhanced magnetic resonance imaging at 3, 6, and 12 months after treatment completion and annually thereafter. RICE was graded according to Common Terminology Criteria for Adverse Events version 4, and HRQoL parameters were assessed via European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ)-C30 questionnaires. RESULTS The median follow-up was 24 months (range, 6-54), and median dose to 1% relative volume of noninvolved central nervous system (D1%CNS) was 54.3 Gy relative biologic effectiveness (RBE; range, 30-76 Gy RBE). The cumulative RICE incidence was 15% (n = 63), of which 10.5% (n = 44) were grade 1, 3.1% (n = 13) were grade 2, and 1.4% (n = 6) were grade 3. No grade 4 or 5 events were observed. Twenty-six of 63 RICE (41.3%) had resolved at the latest follow-up. The median onset after PBT and duration of RICE in patients in whom the lesions resolved were 11.8 and 9.0 months, respectively. On multivariable analysis, D1%CNS > 57.6 Gy RBE, previous in-field radiation, and diabetes mellitus were identified as significant risk factors for RICE development. Previous radiation was the only factor influencing the risk of symptomatic RICE. After PBT, general HRQoL parameters were not compromised. In a matched cohort analysis of 54/50 patients with and without RICE, no differences in global health score or functional and symptom scales were seen. CONCLUSIONS The overall incidence of clinically relevant RICE after PBT is very low and has no significant negative effect on long-term patient QoL.
Collapse
Affiliation(s)
| | - Maciej Pelak
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria; University Clinic for Radiotherapy and Radiation Oncology, Uniklinikum Salzburg, Salzburg, Austria.
| | - Eugen Hug
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Birgit Flechl
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Birgit Surböck
- Department of Neurology, Klinikum Favoriten, Vienna, Austria
| | - Christine Marosi
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ulrike Mock
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Leor Zach
- Department of Radiation Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Yael Mardor
- Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv, Israel; Advanced Technology Center, Sheba Medical Center, Ramat Gan, Israel
| | - Orit Furman
- Department of Radiation Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | - Joanna Gora
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Piero Fossati
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Markus Stock
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Uwe Graichen
- Department of General Health Studies, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Sascha Klee
- Department of General Health Studies, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Petra Georg
- Department of Radiotherapy, Karl Landsteiner University of Health Sciences, University Hospital Krems, Krems, Austria
| |
Collapse
|
6
|
Xiang Y, Tang W, Wang J, Wang Z, Bi N. Pseudoprogression of thoracic tumor after radiotherapy in the era of immunotherapy: a case series. Front Oncol 2023; 13:1021253. [PMID: 37576884 PMCID: PMC10419187 DOI: 10.3389/fonc.2023.1021253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Pseudoprogression is rarely mentioned after radiotherapy except for central nervous system tumors. With the widespread of immunotherapy, the incidence of pseudoprogression of thoracic tumor after radiotherapy is increasing. This study summarized the clinical features of pseudoprogression in 4 patients who had underwent thoracic radiotherapy after and/or followed by immunotherapy. All of them had received chemotherapy and immunotherapy before thoracic radiotherapy. After radiotherapy, pseudoprogression occurred within 3 months after initiation of immune consolidation/rechallenge therapy. At least a 20% increase in the sum of the longest diameter of target lesions were measured on their chest image. During this period, patients' ECOG PS scores remained stable, specific serum tumor markers did not increase significantly. Treatment strategies did not change after pseudoprogression. The causes of radiographic pseudoprogression in this case series may be attributed to disturbances such as pneumonitis, atelectasis, mucus blockages and infection. In the era of immunotherapy, pseudoprogression of thoracic tumors after chest radiotherapy might become a common phenomenon. It is important for us to identify pseudoprogression based on patient's general status, radiological changes, and laboratory tests.
Collapse
Affiliation(s)
- Yongbo Xiang
- Department of Radiation Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Tang
- Center for National Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianyang Wang
- Department of Radiation Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhijie Wang
- Department of Medical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Bi
- Department of Radiation Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Seyve A, Dehais C, Chinot O, Djelad A, Cohen-Moyal E, Bronnimann C, Gourmelon C, Emery E, Colin P, Boone M, Vauléon E, Langlois O, di Stefano AL, Seizeur R, Ghiringhelli F, D’Hombres A, Feuvret L, Guyotat J, Capelle L, Carpentier C, Garnier L, Honnorat J, Meyronet D, Mokhtari K, Figarella-Branger D, Ducray F. Incidence and characteristics of pseudoprogression in IDH-mutant high-grade gliomas: A POLA network study. Neuro Oncol 2023; 25:495-507. [PMID: 35953421 PMCID: PMC10013645 DOI: 10.1093/neuonc/noac194] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Incidence and characteristics of pseudoprogression in isocitrate dehydrogenase-mutant high-grade gliomas (IDHmt HGG) remain to be specifically described. METHODS We analyzed pseudoprogression characteristics and explored the possibility of pseudoprogression misdiagnosis in IDHmt HGG patients, treated with radiotherapy (RT) (with or without chemotherapy [CT]), included in the French POLA network. Pseudoprogression was analyzed in patients with MRI available for review (reference cohort, n = 200). Pseudoprogression misdiagnosis was estimated in this cohort and in an independent cohort (control cohort, n = 543) based on progression-free survival before and after first progression. RESULTS In the reference cohort, 38 patients (19%) presented a pseudoprogression after a median time of 10.5 months after RT. Pseudoprogression characteristics were similar across IDHmt HGG subtypes. In most patients, it consisted of the appearance of one or several infracentimetric, asymptomatic, contrast-enhanced lesions occurring within 2 years after RT. The only factor associated with pseudoprogression occurrence was adjuvant PCV CT. Among patients considered as having a first true progression, 7 out of 41 (17%) in the reference cohort and 35 out of 203 (17%) in the control cohort were retrospectively suspected to have a misdiagnosed pseudoprogression. Patients with a misdiagnosed pseudoprogression were characterized by a time to event and an outcome similar to that of patients with a pseudoprogression but presented with larger and more symptomatic lesions. CONCLUSION In patients with an IDHmt HGG, pseudoprogression occurs later than in IDH-wildtype glioblastomas and seems not only frequent but also frequently misdiagnosed. Within the first 2 years after RT, the possibility of a pseudoprogression should be carefully considered.
Collapse
Affiliation(s)
- Antoine Seyve
- Department of Neuro-Oncology, East Group Hospital, Hospices Civils de Lyon, Lyon, France
| | - Caroline Dehais
- Department of Neurology 2-Mazarin, APHP, University Hospital Pitié Salpêtrière-Charles Foix, Paris, France
| | - Olivier Chinot
- Department of Neuro-Oncology, AP-HM, University Hospital Timone, Marseille, France
| | - Apolline Djelad
- Department of Neurosurgery, University Hospital of Lille, Lille, France
| | - Elisabeth Cohen-Moyal
- Department of Radiotherapy, Claudius Regaud Institut, Cancer University Institut of Toulouse, Oncopole 1, Paul Sabatier University, Toulouse III, Toulouse, France
| | - Charlotte Bronnimann
- Department of Medical Oncology, University Hospital of Bordeaux, Bordeaux, France
| | - Carole Gourmelon
- Department of Medical Oncology, West Cancerology Institut René Gauducheau, Saint-Herblain, France
| | - Evelyne Emery
- Department of Neurosurgery, Caen University Hospital, Caen, France
| | - Philippe Colin
- Department of Radiotherapy, Courlancy Institut of Cancer, Rouen, France
| | - Mathieu Boone
- Medical Oncology Department, Amiens University Hospital, Amiens, France
| | | | - Olivier Langlois
- Department of Neurosurgery, University Hospital of Rouen, Rouen, France
| | | | - Romuald Seizeur
- Neurosurgery Department, Hôpital de la cavale blanche, CHU Brest, Brest, France
| | | | - Anne D’Hombres
- Department of Radiotherapy, South Group Hospital, Hospices Civils de Lyon, Lyon, France
| | - Loic Feuvret
- Department of Radiotherapy, APHP, University Hospital Pitié Salpêtrière-Charles Foix, Paris, France
| | - Jacques Guyotat
- Department of Neurosurgery, East Group Hospital, Hospices Civils de Lyon, Lyon, France
| | - Laurent Capelle
- Department of Neurosurgery, APHP, University Hospital Pitié Salpêtrière-Charles Foix, Paris, France
| | - Catherine Carpentier
- Department of Neurology 2-Mazarin, National Institute of Health and Medical Research (Inserm), CNRS, Brain and Spinal Cord Institute, University Hospital Pitié Salpêtrière-Charles Foix, Sorbonne University, Paris, France
| | - Louis Garnier
- Department of Neuro-Oncology, East Group Hospital, Hospices Civils de Lyon, Lyon, France
| | - Jérôme Honnorat
- Department of Neuro-Oncology, East Group Hospital, Hospices Civils de Lyon, Lyon, France
- SynatAc Team, Institute NeuroMyoGène, MeLis INSERM U1314/CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - David Meyronet
- Pathology Department, East Group Hospital, Hospices Civils de Lyon, Lyon, France
- Centre de recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Cancer Cell Plasticity Department, Transcriptome Diversity in Stem Cells Laboratory, Lyon, France
| | - Karima Mokhtari
- Pathology Department, APHP, University Hospital Pitié Salpêtrière-Charles Foix, Paris, France
| | - Dominique Figarella-Branger
- APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d’Anatomie Pathologique et de Neuropathologie, Aix-Marseille University, Marseille, France
| | - François Ducray
- Department of Neuro-Oncology, East Group Hospital, Hospices Civils de Lyon, Lyon, France
- Centre de recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Cancer Cell Plasticity Department, Transcriptome Diversity in Stem Cells Laboratory, Lyon, France
| |
Collapse
|
8
|
Vaniqui A, Vaassen F, Di Perri D, Eekers D, Compter I, Rinaldi I, van Elmpt W, Unipan M. Linear Energy Transfer and Relative Biological Effectiveness Investigation of Various Structures for a Cohort of Proton Patients With Brain Tumors. Adv Radiat Oncol 2023; 8:101128. [PMID: 36632089 PMCID: PMC9827037 DOI: 10.1016/j.adro.2022.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Purpose The current knowledge on biological effects associated with proton therapy is limited. Therefore, we investigated the distributions of dose, dose-averaged linear energy transfer (LETd), and the product between dose and LETd (DLETd) for a patient cohort treated with proton therapy. Different treatment planning system features and visualization tools were explored. Methods and Materials For a cohort of 24 patients with brain tumors, the LETd, DLETd, and dose was calculated for a fixed relative biological effectiveness value and 2 variable models: plan-based and phenomenological. Dose threshold levels of 0, 5, and 20 Gy were imposed for LETd visualization. The relationship between physical dose and LETd and the frequency of LETd hotspots were investigated. Results The phenomenological relative biological effectiveness model presented consistently higher dose values. For lower dose thresholds, the LETd distribution was steered toward higher values related to low treatment doses. Differences up to 26.0% were found according to the threshold. Maximum LETd values were identified in the brain, periventricular space, and ventricles. An inverse relationship between LETd and dose was observed. Frequency information to the domain of dose and LETd allowed for the identification of clusters, which steer the mean LETd values, and the identification of higher, but sparse, LETd values. Conclusions Identifying, quantifying, and recording LET distributions in a standardized fashion is necessary, because concern exists over a link between toxicity and LET hotspots. Visualizing DLETd or dose × LETd during treatment planning could allow for clinicians to make informed decisions.
Collapse
Affiliation(s)
- Ana Vaniqui
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Femke Vaassen
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Dario Di Perri
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Daniëlle Eekers
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Inge Compter
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ilaria Rinaldi
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Mirko Unipan
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
9
|
Eichkorn T, Lischalk JW, Hörner-Rieber J, Deng M, Meixner E, Krämer A, Hoegen P, Sandrini E, Regnery S, Held T, Harrabi S, Jungk C, Herfarth K, Debus J, König L. Analysis of safety and efficacy of proton radiotherapy for IDH-mutated glioma WHO grade 2 and 3. J Neurooncol 2023; 162:489-501. [PMID: 36598613 DOI: 10.1007/s11060-022-04217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE Proton beam radiotherapy (PRT) has been demonstrated to improve neurocognitive sequelae particularly. Nevertheless, following PRT, increased rates of radiation-induced contrast enhancements (RICE) are feared. How safe and effective is PRT for IDH-mutated glioma WHO grade 2 and 3? METHODS We analyzed 194 patients diagnosed with IDH-mutated WHO grade 2 (n = 128) and WHO grade 3 (n = 66) glioma who were treated with PRT from 2010 to 2020. Serial clinical and imaging follow-up was performed for a median of 5.1 years. RESULTS For WHO grade 2, 61% were astrocytoma and 39% oligodendroglioma while for WHO grade 3, 55% were astrocytoma and 45% oligodendroglioma. Median dose for IDH-mutated glioma was 54 Gy(RBE) [range 50.4-60 Gy(RBE)] for WHO grade 2 and 60 Gy(RBE) [range 54-60 Gy(RBE)] for WHO grade 3. Five year overall survival was 85% in patients with WHO grade 2 and 67% in patients with WHO grade 3 tumors. Overall RICE risk was 25%, being higher in patients with WHO grade 2 (29%) versus in patients with WHO grade 3 (17%, p = 0.13). RICE risk increased independent of tumor characteristics with older age (p = 0.017). Overall RICE was symptomatic in 31% of patients with corresponding CTCAE grades as follows: 80% grade 1, 7% grade 2, 13% grade 3, and 0% grade 3 + . Overall need for RICE-directed therapy was 35%. CONCLUSION These data demonstrate the effectiveness of PRT for IDH-mutated glioma WHO grade 2 and 3. The RICE risk differs with WHO grading and is higher in older patients with IDH-mutated Glioma WHO grade 2 and 3.
Collapse
Affiliation(s)
- Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Jonathan W Lischalk
- Department of Radiation Oncology, Perlmutter Cancer Center at New York, University Langone Health at Long Island, New York, NY, USA
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site, Heidelberg, Germany
| | - Maximilian Deng
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Eva Meixner
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna Krämer
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Hoegen
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Elisabetta Sandrini
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Held
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Semi Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christine Jungk
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
10
|
van den Elshout R, Scheenen TWJ, Driessen CML, Smeenk RJ, Meijer FJA, Henssen D. Diffusion imaging could aid to differentiate between glioma progression and treatment-related abnormalities: a meta-analysis. Insights Imaging 2022; 13:158. [PMID: 36194373 PMCID: PMC9532499 DOI: 10.1186/s13244-022-01295-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background In a considerable subgroup of glioma patients treated with (chemo) radiation new lesions develop either representing tumor progression (TP) or treatment-related abnormalities (TRA). Quantitative diffusion imaging metrics such as the Apparent Diffusion Coefficient (ADC) and Fractional Anisotropy (FA) have been reported as potential metrics to noninvasively differentiate between these two phenomena. Variability in performance scores of these metrics and absence of a critical overview of the literature contribute to the lack of clinical implementation. This meta-analysis therefore critically reviewed the literature and meta-analyzed the performance scores. Methods Systematic searching was carried out in PubMed, EMBASE and The Cochrane Library. Using predefined criteria, papers were reviewed. Diagnostic accuracy values of suitable papers were meta-analyzed quantitatively. Results Of 1252 identified papers, 10 ADC papers, totaling 414 patients, and 4 FA papers, with 154 patients were eligible for meta-analysis. Mean ADC values of the patients in the TP/TRA groups were 1.13 × 10−3mm2/s (95% CI 0.912 × 10–3–1.32 × 10−3mm2/s) and 1.38 × 10−3mm2/s (95% CI 1.33 × 10–3–1.45 × 10−3mm2/s, respectively. Mean FA values of TP/TRA was 0.19 (95% CI 0.189–0.194) and 0.14 (95% CI 0.137–0.143) respectively. A significant mean difference between ADC and FA values in TP versus TRA was observed (p = 0.005). Conclusions Quantitative ADC and FA values could be useful for distinguishing TP from TRA on a meta-level. Further studies using serial imaging of individual patients are warranted to determine the role of diffusion imaging in glioma patients.
Collapse
Affiliation(s)
- Rik van den Elshout
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Tom W J Scheenen
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Chantal M L Driessen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robert J Smeenk
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frederick J A Meijer
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Dylan Henssen
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands.
| |
Collapse
|
11
|
Eichkorn T, Lischalk JW, Sandrini E, Meixner E, Regnery S, Held T, Bauer J, Bahn E, Harrabi S, Hörner-Rieber J, Herfarth K, Debus J, König L. Iatrogenic Influence on Prognosis of Radiation-Induced Contrast Enhancements in Patients with Glioma WHO 1-3 following Photon and Proton Radiotherapy. Radiother Oncol 2022; 175:133-143. [PMID: 36041565 DOI: 10.1016/j.radonc.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/20/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Radiation-induced contrast enhancement (RICE) is a common side effect following radiotherapy for glioma, but both diagnosis and handling are challenging. Due to the potential risks associated with RICE and its challenges in differentiating RICE from tumor progression, it is critical to better understand how RICE prognosis depends on iatrogenic influence. MATERIALS AND METHODS We identified 99 patients diagnosed with RICE who were previously treated with either photon or proton therapy for World Health Organization (WHO) grade 1-3 primary gliomas. Post-treatment brain MRI-based volumetric analysis and clinical data collection was performed at multiple time points. RESULTS The most common histologic subtypes were astrocytoma (50%) and oligodendroglioma (46%). In 67%, it was graded WHO grade 2 and in 86% an IDH mutation was present. RICE first occurred after 16 months (range: 1 - 160) in median. At initial RICE occurrence, 39% were misinterpreted as tumor progression. A tumor-specific therapy including chemotherapy or re-irradiation led to a RICE size progression in 86% and 92% of cases, respectively and RICE symptom progression in 57% and 65% of cases, respectively. A RICE-specific therapy such as corticosteroids or Bevacizumab for larger or symptomatic RICE led to a RICE size regression in 81% of cases with symptom stability or regression in 62% of cases. CONCLUSIONS While with chemotherapy and re-irradiation a RICE progression was frequently observed, anti-edematous or anti-VEGF treatment frequently went along with a RICE regression. For RICE, correct diagnosis and treatment decisions are challenging and critical and should be made interdisciplinarily.
Collapse
Affiliation(s)
- Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Jonathan W Lischalk
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University Langone Health at Long Island, New York, NY, USA.
| | - Elisabetta Sandrini
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Eva Meixner
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Thomas Held
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Julia Bauer
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Emanuel Bahn
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Semi Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; German Cancer Consortium (DKTK), partner site Heidelberg, Germany.
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; German Cancer Consortium (DKTK), partner site Heidelberg, Germany.
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
12
|
A systematic review of clinical studies on variable proton Relative Biological Effectiveness (RBE). Radiother Oncol 2022; 175:79-92. [PMID: 35988776 DOI: 10.1016/j.radonc.2022.08.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022]
Abstract
Recently, a number of clinical studies have explored links between possible Relative Biological Effectiveness (RBE) elevations and patient toxicities and/or image changes following proton therapy. Our objective was to perform a systematic review of such studies. We applied a "Problem [RBE], Intervention [Protons], Population [Patients], Outcome [Side effect]" search strategy to the PubMed database. From our search, we retrieved studies which: (a) performed novel voxel-wise analyses of patient effects versus physical dose and LET (n = 13), and (b) compared image changes between proton and photon cohorts with regard to proton RBE (n = 9). For each retrieved study, we extracted data regarding: primary tumour type; size of patient cohort; type of image change studied; image-registration method (deformable or rigid); LET calculation method, and statistical methodology. We compared and contrasted their methods in order to discuss the weight of clinical evidence for variable proton RBE. We concluded that clinical evidence for variable proton RBE remains statistically weak at present. Our principal recommendation is that proton centres and clinical trial teams collaborate to standardize follow-up protocols and statistical analysis methods, so that larger patient cohorts can ultimately be considered for RBE analyses.
Collapse
|
13
|
Radiation-induced contrast enhancement following proton radiotherapy for low-grade glioma depends on tumor characteristics and is rarer in children than adults. Radiother Oncol 2022; 172:54-64. [PMID: 35568281 DOI: 10.1016/j.radonc.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND PURPOSE Proton beam radiotherapy (PRT) is used in the treatment of low-grade glioma (LGG) to mitigate long-term sequelae. Following PRT, increased rates of radiation-induced contrast enhancements (RICE) are suspected but poorly understood. MATERIALS AND METHODS We analyzed consecutive 227 patients (42 children and 185 adults) treated with PRT (54Gy RBE) for LGG from 2010 to 2020 and followed with serial clinical exams and magnetic resonance imaging for in median 5.6 years. RESULTS Tumors were graded WHO 1 in a minority (n = 22, 12%) of adults, but a majority of children (n = 29, 69%). In contrast, tumors were graded WHO 2 in the majority (n = 160, 87%) of adults and a minority of children (n = 10, 24%). Five-year overall survival following PRT was 81% in adults and 91% in children. The risk of RICE was 5-fold more frequent in adults (25%) versus children (5%) (p = 0.0043). In children and adults, RICE were symptomatic in 50% and 55% (n=1 and 26) of cases with CTCAE grade 0 in 47% (n=23), grade 1 in 25% (n=12), 0% grade 2 (n=0) and 29% grade 3 (n=14), respectively. In adults, RICE risk was associated to WHO grading (8% in WHO grade 1 vs. 24% in WHO grade 2, p = 0.026), independent of age (p=0.44) and irradiation dose (p=0.005), but not independent of IDH mutational status. CONCLUSIONS These data demonstrate effectiveness of PRT for LGG in both children and adults. The RICE risk is lower in children which are a main target group for PRT and differs with WHO grading.
Collapse
|
14
|
Youn SH, Kim H, Lee SH, Kim JY. Regression and pseudoprogression of pediatric optic pathway glioma in patients treated with proton beam therapy. Pediatr Blood Cancer 2022; 69:e29434. [PMID: 34766717 DOI: 10.1002/pbc.29434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE We examined regression patterns in pediatric optic pathway gliomas (OPGs) after proton beam therapy (PBT) and evaluated local control and visual outcomes. METHODS A total of 42 brain magnetic resonance imaging (MRI) scans from seven consecutive sporadic OPGs that were initially treated with chemotherapy and received PBT between June 2007 and September 2016 at the National Cancer Center, Korea were analyzed. Patients underwent brain MRI regularly before and after PBT. Total tumor, cystic lesion, and solid enhancing lesion area delineation and volume calculations were performed on gadolinium-enhanced T1-weighted MRI using Eclipse version 13, Varian. RESULTS The median follow-up period after PBT was 70 months (range 47-88). The median age at the time of PBT was 7 years (range 4-16) and the median duration of chemotherapy before referral to PBT center was 25 months (range 3-70). The median time to the greatest increase in cystic volume was 32 months (range 12-43) after PBT. Solid enhancing lesion volume gradually decreased throughout the follow-up period. On an individual basis, total volume change was varied. However, on average, it regressed, although at a slower rate than solid enhancing lesion volume did. The local control rate was 85.7% (5-year progression-free survival rate, 80%; 5-year overall survival rate, 100%) and the rate of vision preservation was 71.4% (five of seven patients). CONCLUSION The regression patterns in pediatric OPGs after PBT involve significant cystic change. Therefore, total volume is not appropriate for evaluating response. Care by a multidisciplinary team is necessary to manage clinical symptoms related to radiologic changes.
Collapse
Affiliation(s)
- Sang Hee Youn
- Proton Therapy Center, National Cancer Center, Goyang-si, Republic of Korea
| | - Haksoo Kim
- Proton Therapy Center, National Cancer Center, Goyang-si, Republic of Korea
| | - Sang Hyeon Lee
- Department of Radiology, National Cancer Center, Goyang-si, Republic of Korea
| | - Joo-Young Kim
- Proton Therapy Center, National Cancer Center, Goyang-si, Republic of Korea
| |
Collapse
|
15
|
The european particle therapy network (EPTN) consensus on the follow-up of adult patients with brain and skull base tumours treated with photon or proton irradiation. Radiother Oncol 2022; 168:241-249. [DOI: 10.1016/j.radonc.2022.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/19/2022] [Indexed: 12/25/2022]
|
16
|
Stock A, Hancken CV, Kandels D, Kortmann RD, Dietzsch S, Timmermann B, Pietsch T, Bison B, Schmidt R, Pham M, Gnekow AK, Warmuth-Metz M. Pseudoprogression is frequent following front-line radiotherapy in pediatric low-grade glioma - results from the German LGG cohort. Int J Radiat Oncol Biol Phys 2021; 112:1190-1202. [PMID: 34933039 DOI: 10.1016/j.ijrobp.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/03/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Expansion of MRI T2- and/or T1-tumor lesion volume after radiotherapy (RT) may indicate pseudoprogression (PsPD). The differentiation between true progression and PsPD is a clinical challenge and under-investigated in pediatric low-grade glioma (LGG). We evaluated radiological criteria for PsPD following front-line RT and investigated the frequency and duration of PsPD following three RT-modalities within the framework of the [Anonymized for Review] LGG-studies. METHODS Baseline and follow-up MRI-scans of 136 patients (72 [52.9%] male, median age at start of RT 11.3 years [range 0.8-25.9]) of the [Anonymized for Review] cohorts (125iodine-interstitial RT [IS; n=51], photon-beam [XRT; n=60] or proton-beam RT [PBT; n=25]) were centrally evaluated for: Increasing 1) total tumor-associated T2-lesion, 2) focal tumor-associated T2-lesion and 3) contrast-enhancing tumor over a period of 24 months following RT. The pattern of these criteria initiated "suspicion" of PsPD, their evolution determined "definite" PsPD. RESULTS Definite PsPD was radiologically determined in 54/136 (39.7%) without differences in frequency between RT-modalities: IS 22/48 vs. XRT 24/54 vs. PBT 11/20; p=0.780. Definite PsPD occurred at median 6.3 months (IS 7.2 months; XRT 4.4 months; PBT 6.5 months) after RT-initiation and persisted for median 7.2 months (IS 8.5 months; XRT 7 months; PBT 7.4 months). Appearance of necrosis within the focal tumor-associated T2-lesion proved to be a relevant associated predictor of definite PsPD (p<0.001). CONCLUSIONS PsPD is frequent following irradiation of pediatric LGG and independent of the RT-modality (IS vs. XRT vs. PBT). Adequate identification of PsPD versus true progression is imperative to prevent unneeded salvage treatment.
Collapse
Affiliation(s)
- Annika Stock
- Department of Neuroradiology, University Hospital Wuerzburg, Wuerzburg, Germany; Neuroradiological Reference Center for the pediatric brain tumor (HIT) studies of the German Society of Pediatric Oncology and Hematology, University Hospital Wuerzburg (until 2020), University Augsburg, Faculty of Medicine (since 2021), Germany.
| | | | - Daniela Kandels
- Swabian Children's Cancer Center, Faculty of Medicine, University Augsburg, Augsburg, Germany
| | | | - Stefan Dietzsch
- Department of Radiation Oncology, University Leipzig, Leipzig, Germany
| | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Centre (WTZ), German Cancer Consortium (DKTK), Germany
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany
| | - Brigitte Bison
- Department of Neuroradiology, University Hospital Wuerzburg, Wuerzburg, Germany; Neuroradiological Reference Center for the pediatric brain tumor (HIT) studies of the German Society of Pediatric Oncology and Hematology, University Hospital Wuerzburg (until 2020), University Augsburg, Faculty of Medicine (since 2021), Germany
| | - Rene Schmidt
- Institute of Biostatistics and Clinical Research, University of Muenster, Muenster, Germany.
| | - Mirko Pham
- Department of Neuroradiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Astrid Katharina Gnekow
- Swabian Children's Cancer Center, Faculty of Medicine, University Augsburg, Augsburg, Germany
| | - Monika Warmuth-Metz
- Department of Neuroradiology, University Hospital Wuerzburg, Wuerzburg, Germany; Neuroradiological Reference Center for the pediatric brain tumor (HIT) studies of the German Society of Pediatric Oncology and Hematology, University Hospital Wuerzburg (until 2020), University Augsburg, Faculty of Medicine (since 2021), Germany
| |
Collapse
|
17
|
Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021; 22:ijms222011047. [PMID: 34681703 PMCID: PMC8541263 DOI: 10.3390/ijms222011047] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Correspondence:
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| |
Collapse
|
18
|
Abstract
Background: Gliomas are primary cerebral tumors. Radiation therapy plays a key role in their treatment but with a risk of toxicity associated with the dose to and volume of normal tissue that is irradiated. With its precision properties allowing for the increased sparing of healthy tissue, proton therapy could be an interesting option for this pathology. Methods: Two reviewers performed a systematic review of original papers published between 2010 and July 2021 following PRISMA guidelines. We analyzed disease outcomes, toxicity outcomes, or dosimetry data in four separate groups: children/adults and individuals with low-/high-grade gliomas. Results: Among 15 studies, 11 concerned clinical and toxicity outcomes, and 4 reported dosimetry data. Proton therapy showed similar disease outcomes with greater tolerance than conventional radiation therapy, partly due to the better dosimetry plans. Conclusions: This review suggests that proton therapy is a promising technique for glioma treatment. However, studies with a high level of evidence are still needed to validate this finding.
Collapse
|
19
|
Distinct imaging patterns of pseudoprogression in glioma patients following proton versus photon radiation therapy. J Neurooncol 2021; 152:583-590. [PMID: 33751335 DOI: 10.1007/s11060-021-03734-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/05/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Criteria by the Radiologic Assessment in Neuro-Oncology (RANO) group outline the diagnosis of pseudoprogression (Ps) after photon therapy for gliomas based on timing and location. We noted that patients receiving proton therapy manifested radiographic changes that appear different than Ps after photon therapy, which could be interpreted as tumor progression. In this study, we retrospectively reviewed MR imaging after proton or photon radiation for gliomas. We propose criteria to characterize proton pseudoprogression (ProPs) as distinct from Ps seen after photons. METHODS Post-treatment MR imaging, clinical and pathological data of low grade glioma patients were reviewed. Overall, 57 patients receiving protons were reviewed for the presence of ProPs, and 43 patients receiving photons were reviewed for any equivalent imaging changes. Data collected included the location and timing of the new enhancement, tumor grade, molecular subtype, chemotherapy received, and clinical symptoms. RESULTS Fourteen patients (24.6%) had new enhancement following radiation therapy that was unique to treatment with protons. The mean time to development of the ProPs was 15.4 months (7-27 months). We established the following criteria to characterize ProPs: located at the distal end of the proton beam; resolves without tumor-directed therapy; and subjectively multifocal, patchy, and small (< 1 cm). In the group receiving photons, none had changes that met our criteria for ProPs. CONCLUSION Patients who receive protons have unique imaging changes after radiation therapy. ProPs could be mistaken for tumor progression, but typically resolves on follow up. Further studies are needed to understand the radiobiology and pathophysiology underlying these imaging changes.
Collapse
|
20
|
Dynamic Susceptibility Perfusion Imaging for Differentiating Progressive Disease from Pseudoprogression in Diffuse Glioma Molecular Subtypes. J Clin Med 2021; 10:jcm10040598. [PMID: 33562558 PMCID: PMC7915936 DOI: 10.3390/jcm10040598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 01/22/2023] Open
Abstract
Rationale and Objectives: Advanced adjuvant therapy of diffuse gliomas can result in equivocal findings in follow-up imaging. We aimed to assess the additional value of dynamic susceptibility perfusion imaging in the differentiation of progressive disease (PD) from pseudoprogression (PsP) in different molecular glioma subtypes. Materials and Methods: 89 patients with treated diffuse glioma with different molecular subtypes (IDH wild type (Astro-IDHwt), IDH mutant astrocytomas (Astro-IDHmut) and oligodendrogliomas), and tumor-suspect lesions on post-treatment follow-up imaging were classified into two outcome groups (PD or PsP) retrospectively by histopathology or clinical follow-up. The relative cerebral blood volume (rCBV) was assessed in the tumor-suspect FLAIR and contrast-enhancing (CE) lesions. We analyzed how a multilevel classification using a molecular subtype, the presence of a CE lesion, and two rCBV histogram parameters performed for PD prediction compared with a decision tree model (DTM) using additional rCBV parameters. Results: The PD rate was 69% in the whole cohort, 86% in Astro-IDHwt, 52% in Astro-IDHmut, and 55% in oligodendrogliomas. In the presence of a CE lesion, the PD rate was higher with 82%, 94%, 59%, and 88%, respectively; if there was no CE lesion, however, the PD rate was only 44%, 60%, 40%, and 33%, respectively. The additional use of the rCBV parameters in the DTM yielded a prediction accuracy for PD of 99%, 100%, 93%, and 95%, respectively. Conclusion: Utilizing combined information about the molecular tumor type, the presence or absence of CE lesions and rCBV parameters increases PD prediction accuracy in diffuse glioma.
Collapse
|
21
|
Tan S, Hou X, Mei L. Dihydrotanshinone I inhibits human glioma cell proliferation via the activation of ferroptosis. Oncol Lett 2020; 20:122. [PMID: 32863935 PMCID: PMC7448571 DOI: 10.3892/ol.2020.11980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/24/2020] [Indexed: 01/14/2023] Open
Abstract
The aim of the present study was to investigate the effect of dihydrotanshinone I (DHI) on the survival of human glioma cells and the expression levels of ferroptosis-associated proteins. Human U251 and U87 glioma cells were cultured in vitro and treated with different concentrations of DHI and/or the ferroptosis inhibitor ferrostatin-1. A Cell Counting Kit-8 assay was used to determine the cell survival rate. The cells were further analyzed to determine their 5-, 12- and 15-hydroxyeicosatetraenoic acid (HETE), lactate dehydrogenase (LDH) and malondialdehyde (MDA) levels, and reduced glutathione (GSH)/oxidized glutathione (GSSG) ratios. Western blotting was used to detect ferroptosis-associated glutathione peroxidase 4 (GPX4) and long-chain acyl-CoA synthetase 4 (ACSL-4). Changes in the mitochondrial membrane potential (MMP) were also observed using tetramethylrhodamine methyl ester staining and confocal fluorescence microscopy. The results revealed that DHI inhibited the proliferation of human glioma cells. Following treatment of the U251 and U87 cells with DHI, changes in the expression levels of ferroptosis-associated proteins were observed; the expression level of GPX4 decreased and that of ACSL-4 increased. DHI also increased the levels of LDH and MDA in the human glioma cells and reduced the GSH/GSSG ratio. The DHI-treated cells also exhibited a marked reduction in MMP. Furthermore, ferrostatin-1 blocked the DHI-induced effects in human glioma cells. From these results, it may be concluded that DHI inhibits the proliferation of human glioma cells via the induction of ferroptosis.
Collapse
Affiliation(s)
- Shougang Tan
- Department of Neurosurgery, Qingdao Municipal Hospital, Qingdao, Shandong 266000, P.R. China
| | - Xiaoqun Hou
- Department of Neurosurgery, Qingdao Municipal Hospital, Qingdao, Shandong 266000, P.R. China
| | - Lin Mei
- Department of Neurosurgery, Qingdao Municipal Hospital, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
22
|
Imaging issues specific to hadrontherapy (proton, carbon, helium therapy and other charged particles) for radiotherapy planning, setup, dose monitoring and tissue response assessment. Cancer Radiother 2020; 24:429-436. [DOI: 10.1016/j.canrad.2020.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
|
23
|
Bahn E, Bauer J, Harrabi S, Herfarth K, Debus J, Alber M. Late Contrast Enhancing Brain Lesions in Proton-Treated Patients With Low-Grade Glioma: Clinical Evidence for Increased Periventricular Sensitivity and Variable RBE. Int J Radiat Oncol Biol Phys 2020; 107:571-578. [PMID: 32234554 DOI: 10.1016/j.ijrobp.2020.03.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/12/2020] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Late radiation-induced contrast-enhancing brain lesions (CEBLs) on magnetic resonance imaging (MRI) after proton therapy of brain tumors have been observed to occur frequently in regions of high linear energy transfer (LET) and in proximity to the ventricular system. We analyzed 110 patients with low-grade glioma treated with proton therapy to determine whether the risk for CEBLs is increased in proximity to the ventricular system and if there is a relationship between relative biological effectiveness (RBE) and LET. METHODS AND MATERIALS We contoured CEBLs identified on follow-up T1-MRI scans and computed dose and dose-averaged LET (LETd) distributions for all patients using the Monte Carlo method. We then performed cross-validated voxel-level logistic regression to predict local risks for image change and to extract model parameters, such as the RBE. From the voxel-level model, we derived a model for patient-level risk prediction based on the treatment plan. RESULTS Of 110 patients, 23 exhibited 1 or several CEBLs on follow-up MRI scans. The voxel-level logistic model has an accuracy as follows: area under the curve of 0.94 and Brier score of 2.6 × 10-5. Model predictions are a 3-fold increased risk in the 4 mm region around the ventricular system and an LETd-dependent RBE of, for example, 1.20 for LETd = 2 keV/μm and 1.50 for LETd = 5 keV/μm. The patient-level risk model has an accuracy as follows: area under the curve of 0.78 and Brier score of 0.13. CONCLUSIONS Our findings present clinical evidence for an increased risk in ventricular proximity and for a proton RBE that increases significantly with increasing LET. We present a voxel-level model that accurately predicts the localization of late MRI contrast change and extrapolate a patient-level model that allows treatment plan-based risk prediction.
Collapse
Affiliation(s)
- Emanuel Bahn
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Julia Bauer
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Semi Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; German Cancer Consortium (DKTK), partner site Heidelberg, Germany
| | - Markus Alber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
24
|
Slater JM, Shih HA. Pseudoprogression in low-grade glioma. Transl Cancer Res 2019; 8:S580-S584. [PMID: 35117135 PMCID: PMC8798295 DOI: 10.21037/tcr.2019.11.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/04/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Jason M Slater
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|