1
|
Bookbinder A, Selvaraj B, Zhao X, Yang Y, Bell BI, Pennock M, Tsai P, Tomé WA, Isabelle Choi J, Lin H, Simone CB, Guha C, Kang M. Validation and reproducibility of in vivo dosimetry for pencil beam scanned FLASH proton treatment in mice. Radiother Oncol 2024; 198:110404. [PMID: 38942121 DOI: 10.1016/j.radonc.2024.110404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024]
Abstract
PURPOSE To investigate quality assurance (QA) techniques for in vivo dosimetry and establish its routine uses for proton FLASH small animal experiments with a saturated monitor chamber. METHODS AND MATERIALS 227 mice were irradiated at FLASH or conventional (CONV) dose rates with a 250 MeV FLASH-capable proton beamline using pencil beam scanning to characterize the proton FLASH effect on abdominal irradiation and examining various endpoints. A 2D strip ionization chamber array (SICA) detector was positioned upstream of collimation and used for in vivo dose monitoring during irradiation. Before each irradiation series, SICA signal was correlated with the isocenter dose at each delivered dose rate. Dose, dose rate, and 2D dose distribution for each mouse were monitored with the SICA detector. RESULTS Calibration curves between the upstream SICA detector signal and the delivered dose at isocenter had good linearity with minimal R2 values of 0.991 (FLASH) and 0.985 (CONV), and slopes were consistent for each modality. After reassigning mice, standard deviations were less than 1.85 % (FLASH) and 0.83 % (CONV) for all dose levels, with no individual subject dose falling outside a ± 3.6 % range of the designated dose. FLASH fields had a field-averaged dose rate of 79.0 ± 0.8 Gy/s and mean local average dose rate of 160.6 ± 3.0 Gy/s. In vivo dosimetry allowed for the accurate detection of variation between the delivered and the planned dose. CONCLUSION In vivo dosimetry benefits FLASH experiments through enabling real-time dose and dose rate monitoring allowing mouse cohort regrouping when beam fluctuation causes delivered dose to vary from planned dose.
Collapse
Affiliation(s)
| | | | | | - Yunjie Yang
- New York Proton Center, New York, NY, USA; Departments of Radiation Oncology and Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brett I Bell
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael Pennock
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Pingfang Tsai
- New York Proton Center, New York, NY, USA; Departments of Radiation Oncology and Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wolfgang A Tomé
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Onco-Physics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - J Isabelle Choi
- New York Proton Center, New York, NY, USA; Departments of Radiation Oncology and Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Haibo Lin
- New York Proton Center, New York, NY, USA; Departments of Radiation Oncology and Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Charles B Simone
- New York Proton Center, New York, NY, USA; Departments of Radiation Oncology and Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Onco-Physics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Minglei Kang
- New York Proton Center, New York, NY, USA; Departments of Radiation Oncology and Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Huang Y, Qin T, Yang M, Liu Z. Impact of ovary-sparing treatment planning on plan quality, treatment time and gamma passing rates in intensity-modulated radiotherapy for stage I/II cervical cancer. Medicine (Baltimore) 2023; 102:e36373. [PMID: 38115303 PMCID: PMC10727547 DOI: 10.1097/md.0000000000036373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND This study aimed to investigate the impact of ovary-sparing intensity-modulated radiotherapy (IMRT) on plan quality, treatment time, and gamma passing rates for stage I/II cervical cancer patients. METHODS Fifteen stage I/II cervical cancer patients were retrospectively enrolled, and a pair of clinically suitable IMRT plans were designed for each patient, with (Group A) and without (Group B) ovary-sparing. Plan factors affecting plan quality, treatment time, and gamma passing rates, including the number of segments, monitor units, percentage of small-area segments (field area < 20 cm2), and percentage of small-MU segments (MU < 10), were compared and statistically analyzed. Key plan quality indicators, including ovarian dose, target dose coverage (D98%, D95%, D50%, D2%), conformity index, and homogeneity index, were evaluated and statistically assessed. Treatment time and gamma passing rates collected by IBA MatriXX were also compared. RESULTS The median ovarian dose in Group A and Group B was 7.61 Gy (range 6.71-8.51 Gy) and 38.52 Gy (range 29.84-43.82 Gy), respectively. Except for monitor units, all other plan factors were significantly lower in Group A than in Group B (all P < .05). Correlation coefficients between plan factors, treatment time, and gamma passing rates that were statistically different were all negative. Both Groups of plans met the prescription requirement (D95% ≥ 45.00 Gy) for clinical treatment. D98% was smaller for Group A than for Group B (P < .05); D50% and D2% were larger for Group A than for Group B (P < .05, P < .05). Group A plans had worse conformity index and homogeneity index than Group B plans (P < .05, P < .05). Treatment time did not differ significantly (P > .05). Gamma passing rates in Group A were higher than in Group B with the criteria of 2%/3 mm (P < .05) and 3%/2 mm (P < .05). CONCLUSION Despite the slightly decreased quality of the treatment plans, the ovary-sparing IMRT plans exhibited several advantages including lower ovarian dose and plan complexity, improved gamma passing rates, and a negligible impact on treatment time.
Collapse
Affiliation(s)
- Yangyang Huang
- Department of Radiotherapy, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Tingting Qin
- Department of Radiotherapy, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Menglin Yang
- Department of Radiotherapy, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zongwen Liu
- Department of Radiotherapy, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
3
|
Malatesta T, Scaggion A, Giglioli FR, Belmonte G, Casale M, Colleoni P, Falco MD, Giuliano A, Linsalata S, Marino C, Moretti E, Richetto V, Sardo A, Russo S, Mancosu P. Patient specific quality assurance in SBRT: a systematic review of measurement-based methods. Phys Med Biol 2023; 68:21TR01. [PMID: 37625437 DOI: 10.1088/1361-6560/acf43a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/25/2023] [Indexed: 08/27/2023]
Abstract
This topical review focuses on Patient-Specific Quality Assurance (PSQA) approaches to stereotactic body radiation therapy (SBRT). SBRT requires stricter accuracy than standard radiation therapy due to the high dose per fraction and the limited number of fractions. The review considered various PSQA methods reported in 36 articles between 01/2010 and 07/2022 for SBRT treatment. In particular comparison among devices and devices designed for SBRT, sensitivity and resolution, verification methodology, gamma analysis were specifically considered. The review identified a list of essential data needed to reproduce the results in other clinics, highlighted the partial miss of data reported in scientific papers, and formulated recommendations for successful implementation of a PSQA protocol.
Collapse
Affiliation(s)
- Tiziana Malatesta
- Medical Physics Unit, Department of Radiotherapy and Medical Oncology and Radiology, Fatebenefratelli Isola Tiberina-Gemelli Isola Hospital, Rome, Italy
| | - Alessandro Scaggion
- Medical Physics Department, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | | | - Gina Belmonte
- Medical Physics Department, San Luca Hospital, Lucca, Italy
| | - Michelina Casale
- Medical Physics Unit, Azienda Ospedaliera 'Santa Maria', Terni, Italy
| | - Paolo Colleoni
- UOC Medical Physics Unit-ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Maria Daniela Falco
- Department of Radiation Oncology, 'SS. Annunziata' Hospital, 'G. D'Annunzio' University, Chieti, Italy
| | - Alessia Giuliano
- Medical Physics Unit, Pisa University Hospital 'Azienda Ospedaliero-Universitaria Pisana', Pisa, Italy
| | - Stefania Linsalata
- Medical Physics Unit, Pisa University Hospital 'Azienda Ospedaliero-Universitaria Pisana', Pisa, Italy
| | - Carmelo Marino
- Medical Physics and Radioprotection Unit, Humanitas Istituto Clinico Catanese, Misterbianco (CT), Italy
| | - Eugenia Moretti
- Division of Medical Physics, Department of Oncology, ASUFC Udine, Italy
| | - Veronica Richetto
- Medical Physics Unit, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Anna Sardo
- UOSD Medical Physics, ASLCN2, Verduno, Italy
| | - Serenella Russo
- Medical Physics Unit, Azienda USL Toscana Centro, Florence, Italy
| | - Pietro Mancosu
- Medical Physics Unit of Radiotherapy Department, IRCCS Humanitas Research Hospital, Rozzano - Milano, Italy
| |
Collapse
|
4
|
Archambault L. A swallowable X-ray dosimeter. Nat Biomed Eng 2023; 7:1212-1214. [PMID: 37848557 DOI: 10.1038/s41551-023-01100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Affiliation(s)
- Louis Archambault
- Department of Physics, Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
5
|
Huang Y, Liu Z. Dosimetric performance evaluation of the Halcyon treatment platform for stereotactic radiotherapy: A pooled study. Medicine (Baltimore) 2023; 102:e34933. [PMID: 37682167 PMCID: PMC10489306 DOI: 10.1097/md.0000000000034933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023] Open
Abstract
With the advancement of radiotherapy equipment, stereotactic radiotherapy (SRT) has been increasingly used. Among the many radiotherapy devices, Halcyon shows promising applications. This article reviews the dosimetric performance such as plan quality, plan complexity, and gamma passing rates of SRT plans with Halcyon to determine the effectiveness and safety of Halcyon SRT plans. This article retrieved the last 5 years of PubMed studies on the effectiveness and safety of the Halcyon SRT plans. Two authors independently reviewed the titles and abstracts to decide whether to include the studies. A search was conducted to identify publications relevant to evaluating the dosimetric performance of SRT plans on Halcyon using the key strings Halcyon, stereotactic radiosurgery, SRT, stereotactic body radiotherapy, and stereotactic ablative radiotherapy. A total of 18 eligible publications were retrieved. Compared to SRT plans on the TrueBeam, the Halcyon has advantages in terms of plan quality, plan complexity, and gamma passing rates. The high treatment speed of SRT plans on the Halcyon is impressive, while the results of its plan evaluation are also encouraging. As a result, Halcyon offers a new option for busy radiotherapy units while significantly improving patient comfort in treatment. For more accurate results, additional relevant publications will need to be followed up in subsequent studies.
Collapse
Affiliation(s)
- Yangyang Huang
- Department of Radiotherapy, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongwen Liu
- Department of Radiotherapy, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Secchi V, Cova F, Villa I, Babin V, Nikl M, Campione M, Monguzzi A. Energy Partitioning in Multicomponent Nanoscintillators for Enhanced Localized Radiotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24693-24700. [PMID: 37172016 DOI: 10.1021/acsami.3c00853] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Multicomponent nanomaterials consisting of dense scintillating particles functionalized by or embedding optically active conjugated photosensitizers (PSs) for cytotoxic reactive oxygen species (ROS) have been proposed in the last decade as coadjuvant agents for radiotherapy of cancer. They have been designed to make scintillation-activated sensitizers for ROS production in an aqueous environment under exposure to ionizing radiations. However, a detailed understanding of the global energy partitioning process occurring during the scintillation is still missing, in particular regarding the role of the non-radiative energy transfer between the nanoscintillator and the conjugated moieties which is usually considered crucial for the activation of PSs and therefore pivotal to enhance the therapeutic effect. We investigate this mechanism in a series of PS-functionalized scintillating nanotubes where the non-radiative energy transfer yield has been tuned by control of the intermolecular distance between the nanotube and the conjugated system. The obtained results indicate that non-radiative energy transfer has a negligible effect on the ROS sensitization efficiency, thus opening the way to the development of different architectures for breakthrough radiotherapy coadjutants to be tested in clinics.
Collapse
Affiliation(s)
- Valeria Secchi
- Dipartimento di Scienza Dei Materiali, Università Degli Studi Milano-Bicocca, 20125 Milano, Italy
- NANOMIB, Center for Biomedical Nanomedicine, University of Milano-Bicocca, P.zza Ateneo Nuovo 1, 20126 Milan, Italy
| | - Francesca Cova
- Dipartimento di Scienza Dei Materiali, Università Degli Studi Milano-Bicocca, 20125 Milano, Italy
| | - Irene Villa
- Dipartimento di Scienza Dei Materiali, Università Degli Studi Milano-Bicocca, 20125 Milano, Italy
- FZU─Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 16 200 Prague, Czech Republic
| | - Vladimir Babin
- FZU─Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 16 200 Prague, Czech Republic
| | - Martin Nikl
- FZU─Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 16 200 Prague, Czech Republic
| | - Marcello Campione
- NANOMIB, Center for Biomedical Nanomedicine, University of Milano-Bicocca, P.zza Ateneo Nuovo 1, 20126 Milan, Italy
- Department of Earth and Environmental Sciences, Università Degli Studi Milano-Bicocca, Piazza Della Scienza 4, 20126 Milano, Italy
| | - Angelo Monguzzi
- Dipartimento di Scienza Dei Materiali, Università Degli Studi Milano-Bicocca, 20125 Milano, Italy
- NANOMIB, Center for Biomedical Nanomedicine, University of Milano-Bicocca, P.zza Ateneo Nuovo 1, 20126 Milan, Italy
| |
Collapse
|
7
|
Zhang Y, Balter J, Dow J, Cao Y, Lawrence TS, Kashani R. Development of an abdominal dose accumulation tool and assessments of accumulated dose in gastrointestinal organs. Phys Med Biol 2023; 68:10.1088/1361-6560/acbc61. [PMID: 36791470 PMCID: PMC10131348 DOI: 10.1088/1361-6560/acbc61] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/15/2023] [Indexed: 02/17/2023]
Abstract
Objective.Online adaptive radiotherapy has demonstrated improved dose conformality in response to inter-fraction geometric variations in the abdomen. The dosimetric impact of intra-fractional variations in anatomic configuration resulting from breathing, gastric contraction and slow configuration motion, however, have been largely ignored, leading to differences between delivered and planned. To investigate the impact of intra-fractional abdominal motions on delivered dose, anatomical deformations due to these three motion modes were extracted from dynamic MRI data using a previously developed hierarchical motion modeling methodology.Approach. Motion magnitudes were extracted from deformation fields between a reference state and all other motion states of the patient. Delivered dose estimates to various gastrointestinal organs (stomach, duodenum, small bowel and colon) were calculated on each motion state of the patient and accumulated to estimate the delivered dose to each organ for the entire treatment fraction.Main results. Across a sample of 10 patients, maximal motions of 33.6, 33.4, 47.6 and 49.2 mm were observed over 20 min for the stomach, duodenum, small bowel and colon respectively. Dose accumulation results showed that motions could lead to average increases of 2.0, 2.1, 1.1, 0.7 Gy to the maximum dose to 0.5cc (D0.5cc) and 3.0, 2.5, 1.3, 0.9 Gy to the maximum dose to 0.1cc (D0.1cc) for these organs at risk. From the 40 dose accumulations performed (10 for each organ at risk), 27 showed increases of modeled delivered dose compared to planned doses, 4 of which exceeded planned dose constraints.Significance. The use of intra-fraction motion measurements to accumulate delivered doses is feasible, and supports retrospective estimation of dose delivery to improve estimates of delivered doses, and further guide strategies for both plan adaptation as well as advances in intra-fraction motion management.
Collapse
Affiliation(s)
- Yuhang Zhang
- Department of Radiation Oncology, University of Michigan, United States of America
- Department of Biomedical Engineering, University of Michigan, United States of America
| | - James Balter
- Department of Radiation Oncology, University of Michigan, United States of America
- Department of Biomedical Engineering, University of Michigan, United States of America
| | - Janell Dow
- Department of Radiation Oncology, University of Michigan, United States of America
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, United States of America
- Department of Biomedical Engineering, University of Michigan, United States of America
- Department of Radiology, University of Michigan, United States of America
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, United States of America
| | - Rojano Kashani
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, United States of America
| |
Collapse
|
8
|
Sheen H, Park YI, Cho MS, Son J, Shin HB, Han MC, Kim H, Lee H, Kim DW, Kim JS, Hong CS. Novel framework for determining TPS-calculated doses corresponding to detector locations using 3D camera in in vivosurface dosimetry. Phys Med Biol 2023; 68. [PMID: 36753768 DOI: 10.1088/1361-6560/acba78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
Purpose. To address the shortcomings of current procedures for evaluating the measured-to-planned dose agreement inin vivodosimetry (IVD), this study aimed to develop an accurate and efficient novel framework to identify the detector location placed on a patient's skin surface using a 3D camera and determine the planned dose at the same anatomical position corresponding to the detector location.Methods. Breast cancer treatment was simulated using an anthropomorphic adult female phantom (ATOM 702D; CIRS, Norfolk, VA, USA). An optically stimulated luminescent dosimeter was used for surface dose measurements (MyOSLchip, RadPro International GmbH, Germany) at six IVD points. Three-dimensional surface imaging (3DSI) of the phantom with the detector was performed in the treatment position using a 3D camera. The developed framework, iSMART, was designed to import 3DSI and treatment planning data for determining the position of the IVD detectors in the 3D treatment planning DICOM image. The clinical usefulness of iSMART was evaluated in terms of accuracy and efficiency, for comparison with the results obtained using cone-beam computed tomography (CBCT) image guidance.Results. The relative dose difference between the planned doses determined using iSMART and CBCT images displayed similar accuracies (within approximately ±2.0%) at all detector locations. The relative dose differences between the planned and measured doses at the six detector locations ranged from -4.8% to 3.1% for the CBCT images and -3.5% to 2.1% for iSMART. The total time required to read the planned doses at six detector locations averaged at 8.1 and 0.8 min for the CBCT images and iSMART, respectively.Conclusions. The proposed framework can improve the robustness of IVD analyses and aid in accurate and efficient evaluations of the measured-to-planned dose agreement.
Collapse
Affiliation(s)
- Heesoon Sheen
- Department of Health Sciences and Technology, SamSung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Republic of Korea
| | - Ye-In Park
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min-Seok Cho
- Department of Radiation Oncology, Yongin Severance Hospital, Yongin, Republic of Korea
| | - Junyoung Son
- Department of Radiation Oncology, Yongin Severance Hospital, Yongin, Republic of Korea
| | - Han-Back Shin
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Cheol Han
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hojin Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ho Lee
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong Wook Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chae-Seon Hong
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
Huang J, Hu J, Lu H, Liu S, Gong F, Wu X, Liu Y, Shi J. Error detection using EPID-based 3D in vivo dose verification for lung stereotactic body radiotherapy. Appl Radiat Isot 2023; 192:110567. [PMID: 36459899 DOI: 10.1016/j.apradiso.2022.110567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/21/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE To investigate the error detectability limitations of an EPID-based 3D in vivo dosimetry verification system for lung stereotactic body radiation therapy (SBRT). METHODS Thirty errors were intentionally introduced, consisting of dynamic and constant machine errors, to simulate the possible errors that may occur during delivery. The dynamic errors included errors in the output, gantry angle and MLC positions related to gantry inertial and gravitational effects, while the constant errors included errors in the collimator angle, jaw positions, central leaf positions, setup shift and thickness to simulate patient weight loss. These error plans were delivered to a CIRS phantom using the SBRT technique for lung cancer. Following irradiation of these error plans, the dose distribution was reconstructed using iViewDose™ and compared with the no error plan. RESULTS All errors caused by the central leaf positions, dynamic MLC errors, Jaw inwards movements, setup shifts and patient anatomical changes were successfully detected. However, dynamic gantry angle and collimator angle errors were not detected in the lung case due to the rotation-symmetric target shape. The results showed that the γmean and γpassrate indicators can detect 13 (81.3%) and 14 (87.5%) of the 16 errors respectively without including the gantry angle error, collimator angle error and output error. CONCLUSIONS In summary, iViewDose™ is an appropriate approach for detecting most types of clinical errors for lung SBRT. However, the phantom results also showed some detectability limitations of the system in terms of dynamic gantry angle and constant collimator angle errors.
Collapse
Affiliation(s)
- Jianghua Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jinyan Hu
- Department of Oncology, Longhua District People's Hospital, Shenzhen, Guangdong Province, 518109, China
| | - Huanping Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shijie Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Fengying Gong
- Department of Traditonal Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Xiuxiu Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yimin Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Juntian Shi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
10
|
Avelino SR, Dias JR, Peron TM, Vidal GS. Evaluation of an EPID in vivo monitoring system using local and external independent audit measurements. J Appl Clin Med Phys 2022; 23:e13822. [PMID: 36356260 PMCID: PMC9797176 DOI: 10.1002/acm2.13822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2003] [Revised: 08/26/2022] [Accepted: 09/18/2022] [Indexed: 11/12/2022] Open
Abstract
PURPOSE The aim of this work was to evaluate the SunCHECK PerFRACTION, the software for in vivo monitoring using EPID images. MATERIALS/METHODS First, the PerFRACTION ability to detect errors was investigated simulating two situations: (1) variation of LINAC output and (2) variation of the phantom thickness. An ionization chamber was used as reference to measure the introduced dose variations. Both tests used EPID in integrated mode (absolute dose). Second, EPID measurements in integrated mode were carried out during an independent Brazilian governmental audit that provided four phantoms and TLDs. PerFRACTION calculated the absolute dose on EPID plane, and it compared with predicted calculated dose for every delivered plan. The dose deviations reported using PerFRACTION were compared with dose deviations reported by the independent audit. Third, an end-to-end test using a heterogeneous phantom was performed. A VMAT plan with EPID in cine mode was delivered. PerFRACTION calculated the mean dose on CBCT using EPID information and log files. The calculated doses at four different points were compared with ionization chambers measurements. RESULTS About the first test, the largest difference found was 1.2%. Considering the audit results, the variations detected by TLD measurements and by PerFRACTION dose calculation on EPID plane were close: 12 points had variations less than 2%, 2 points with variation between 2% and 3%, and 2 points with deviations greater than 3% (max 3.7%). The end-to-end tests using a heterogeneous phantom achieved dose deviation less than 1.0% in the water-equivalent region. In the mimicking lung region, the deviations were higher (max 7.3%), but in accordance with what is expected for complex situations. CONCLUSION The tests results indicate that PerFRACTION dose calculations in different situations have good agreement with standard measurements. Action levels were suggested for absolute dose on EPID plane as well as 3D dose calculation on CBCT using PerFRACTION.
Collapse
Affiliation(s)
| | | | | | - Gabriel Souza Vidal
- VITTA Radiotherapy CenterBrasília‐DFBrazil,Department of Radiation OncologyStephenson Cancer CenterUniversity of OklahomaOklahoma CityUnited States
| |
Collapse
|
11
|
Ketabi A, Karbasi S, Faghihi R, Mosleh-Shirazi MA. A phantom-based experimental and Monte Carlo study of the suitability of in-vivo diodes and TLD for entrance in-vivo dosimetry in small-to-medium sized 6 MV photon fields. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Bedford JL, Hanson IM. A recurrent neural network for rapid detection of delivery errors during real-time portal dosimetry. Phys Imaging Radiat Oncol 2022; 22:36-43. [PMID: 35493850 PMCID: PMC9048084 DOI: 10.1016/j.phro.2022.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/04/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
Background and purpose Real-time portal dosimetry compares measured images with predicted images to detect delivery errors as the radiotherapy treatment proceeds. This work aimed to investigate the performance of a recurrent neural network for processing image metrics so as to detect delivery errors as early as possible in the treatment. Materials and methods Volumetric modulated arc therapy (VMAT) plans of six prostate patients were used to generate sequences of predicted portal images. Errors were introduced into the treatment plans and the modified plans were delivered to a water-equivalent phantom. Four different metrics were used to detect errors. These metrics were applied to a threshold-based method to detect the errors as soon as possible during the delivery, and also to a recurrent neural network consisting of four layers. A leave-two-out approach was used to set thresholds and train the neural network then test the resulting systems. Results When using a combination of metrics in conjunction with optimal thresholds, the median segment index at which the errors were detected was 107 out of 180. When using the neural network, the median segment index for error detection was 66 out of 180, with no false positives. The neural network reduced the rate of false negative results from 0.36 to 0.24. Conclusions The recurrent neural network allowed the detection of errors around 30% earlier than when using conventional threshold techniques. By appropriate training of the network, false positive alerts could be prevented, thereby avoiding unnecessary disruption to the patient workflow.
Collapse
Affiliation(s)
- James L. Bedford
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5PT, UK
| | | |
Collapse
|
13
|
A Large Area Pixelated Silicon Array Detector for Independent Transit In Vivo Dosimetry. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A large area pixelated silicon array detector named “MP987” has been developed for in vivo dosimetry. The detector was developed to overcome the non-water equivalent response of EPID (Electronic Portal Imaging Device) dosimetry systems, due to the shortfalls of the extensive corrections required. The detector, readout system and software have all been custom designed to be operated independently from the linac with the array secured directly above the EPID, to be used in combination with the 6 MV imaging system. Dosimetry characterisation measurements of percentage depth dose (PDD), dose rate dependence, radiation damage, output factors (OF), profile measurements, linearity and uniformity were performed. Additionally, the first pre-clinical tests with this novel detector of a transit dosimetry characterization and a collapsed IMRT (intensity-modulated radiation therapy) study are presented. Both PDD and OF measurements had a percentage difference of less than 2.5% to the reference detector. A maximum change in sensitivity of 4.3 ± 0.3% was observed after 30 kGy of gamma accumulated dose. Transit dosimetry measurements through a homogeneous Solid Water phantom had a measured dose within error of the TPS calculations, for field sizes between 3 × 3 cm2 and 10 × 10 cm2. A four-fraction collapsed IMRT plan on a lung phantom had absolute dose pass fractions between the MP987 and TPS (treatment planning system) from 94.2% to 97.4%, with a 5%/5 mm criteria. The ability to accurately measure dose at a transit level, without the need for correction factors derived from extensive commissioning data collection procedures, makes the MP987 a viable alternative to the EPID for in vivo dosimetry. This MP987 is this first of its kind to be successfully developed specifically for a dual detector application.
Collapse
|
14
|
Varon E, Blumrosen G, Shefi O. A predictive model for personalization of nanotechnology-based phototherapy in cancer treatment. Front Oncol 2022; 12:1037419. [PMID: 36911792 PMCID: PMC9999042 DOI: 10.3389/fonc.2022.1037419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/21/2022] [Indexed: 01/06/2023] Open
Abstract
A major challenge in radiation oncology is the prediction and optimization of clinical responses in a personalized manner. Recently, nanotechnology-based cancer treatments are being combined with photodynamic therapy (PDT) and photothermal therapy (PTT). Predictive models based on machine learning techniques can be used to optimize the clinical setup configuration, including such parameters as laser radiation intensity, treatment duration, and nanoparticle features. In this article we demonstrate a methodology that can be used to identify the optimal treatment parameters for PDT and PTT by collecting data from in vitro cytotoxicity assay of PDT/PTT-induced cell death using a single nanocomplex. We construct three machine learning prediction models, employing regression, interpolation, and low- degree analytical function fitting, to predict the laser radiation intensity and duration settings that maximize the treatment efficiency. To examine the accuracy of these prediction models, we construct a dedicated dataset for PDT, PTT, and a combined treatment; this dataset is based on cell death measurements after light radiation treatment and is divided into training and test sets. The preliminary results show that the performance of all three models is sufficient, with death rate errors of 0.09, 0.15, and 0.12 for the regression, interpolation, and analytical function fitting approaches, respectively. Nevertheless, due to its simple form, the analytical function method has an advantage in clinical application and can be used for further analysis of the sensitivity of performance to the treatment parameters. Overall, the results of this study form a baseline for a future personalized prediction model based on machine learning in the domain of combined nanotechnology- and phototherapy-based cancer treatment.
Collapse
Affiliation(s)
- Eli Varon
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel.,Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Gaddi Blumrosen
- Department of Digital Medical Technologies, Holon Institute of Technology, Holon, Israel.,Department of Computer Science, Holon Institute of Technology, Holon, Israel
| | - Orit Shefi
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel.,Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel.,Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
15
|
Verification of an optimizer algorithm by the beam delivery evaluation of intensity-modulated arc therapy plans. Radiol Oncol 2021; 55:508-515. [PMID: 34821138 PMCID: PMC8647790 DOI: 10.2478/raon-2021-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/17/2021] [Indexed: 11/20/2022] Open
Abstract
Background In the case of dynamic radiotherapy plans, the fractionation schemes can have dosimetric effects. Our goal was to define the effect of the fraction dose on the plan quality and the beam delivery. Materials and methods Treatment plans were created for 5 early-stage lung cancer patients with different dose schedules. The planned total dose was 60 Gy, fraction dose was 2 Gy, 3 Gy, 5 Gy, 12 Gy and 20 Gy. Additionally renormalized plans were created by changing the prescribed fraction dose after optimization. The dosimetric parameters and the beam delivery parameters were collected to define the plan quality and the complexity of the treatment plans. The accuracy of dose delivery was verified with dose measurements using electronic portal imaging device (EPID). Results The plan quality was independent from the used fractionation scheme. The fraction dose could be changed safely after the optimization, the delivery accuracy of the treatment plans with changed prescribed dose was not lower. According to EPID based measurements, the high fraction dose and dose rate caused the saturation of the detector, which lowered the gamma passing rate. The aperture complexity score, the gantry speed and the dose rate changes were not predicting factors for the gamma passing rate values. Conclusions The plan quality and the delivery accuracy are independent from the fraction dose, moreover the fraction dose can be changed safely after the dose optimization. The saturation effect of the EPID has to be considered when the action limits of the quality assurance system are defined.
Collapse
|
16
|
Implementation of in-vivo diode dosimetry for intensity modulated radiotherapy as routine patients' quality assurance. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Farjam R, Nagar H, Kathy Zhou X, Ouellette D, Chiara Formenti S, DeWyngaert JK. Deep learning-based synthetic CT generation for MR-only radiotherapy of prostate cancer patients with 0.35T MRI linear accelerator. J Appl Clin Med Phys 2021; 22:93-104. [PMID: 34184390 PMCID: PMC8364266 DOI: 10.1002/acm2.13327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To develop a deep learning model to generate synthetic CT for MR-only radiotherapy of prostate cancer patients treated with 0.35 T MRI linear accelerator. MATERIALS AND METHODS A U-NET convolutional neural network was developed to translate 0.35 T TRUFI MRI into electron density map using a novel cost function equalizing the contribution of various tissue types including fat, muscle, bone, and background air in training. The impact of training time, dataset size, image standardization, and data augmentation approaches was also quantified. Mean absolute error (MAE) between synthetic and planning CTs was calculated to measure the goodness of the model. RESULTS With 20 patients in training, our U-NET model has the potential to generate synthetic CT with a MAE of about 29.68 ± 4.41, 16.34 ± 2.67, 23.36 ± 2.85, and 105.90 ± 22.80 HU over the entire body, fat, muscle, and bone tissues, respectively. As expected, we found that the number of patients used for training and MAE are nonlinearly correlated. Data augmentation and our proposed loss function were effective to improve MAE by ~9% and ~18% in bony voxels, respectively. Increasing the training time and image standardization did not improve the accuracy of the model. CONCLUSION A U-NET model has been developed and tested numerically to generate synthetic CT from 0.35T TRUFI MRI for MR-only radiotherapy of prostate cancer patients. Dosimetric evaluation using a large and independent dataset warrants the validity of the proposed model and the actual number of patients needed for the safe usage of the model in routine clinical workflow.
Collapse
Affiliation(s)
- Reza Farjam
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Himanshu Nagar
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Xi Kathy Zhou
- Public Health ScienceWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - David Ouellette
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | | | - J. Keith DeWyngaert
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNew YorkUSA
| |
Collapse
|
18
|
Huang Z, Qiao J, Yang C, Liu M, Wang J, Han X, Hu W. Quality Assurance for Small-Field VMAT SRS and Conventional-Field IMRT Using the Exradin W1 Scintillator. Technol Cancer Res Treat 2021; 20:15330338211036542. [PMID: 34328800 PMCID: PMC8327019 DOI: 10.1177/15330338211036542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Plastic scintillator detector (PSD) Exradin W1 has shown promising performance in small field dosimetry due to its water equivalence and small sensitive volume. However, few studies reported its capability in measuring fields of conventional sizes. Therefore, the purpose of this study is to assess the performance of W1 in measuring point dose of both conventional IMRT plans and VMAT SRS plans. METHODS Forty-seven clinical plans (including 29 IMRT plans and 18 VMAT SRS plans with PTV volume less than 8 cm3) from our hospital were included in this study. W1 and Farmer-Type ionization chamber Exradin A19 were used in measuring IMRT plans, and W1 and microchamber Exradin A16 were used in measuring SRS plans. The agreement between the results of different types of detectors and TPS was evaluated. RESULTS For IMRT plans, the average differences between measurements and TPS in high-dose regions were 0.27% ± 1.66% and 0.90% ± 1.78% (P = 0.056), and were -0.76% ± 1.47% and 0.37% ± 1.34% in low-dose regions (P = 0.000), for W1 and A19, respectively. For VMAT SRS plans, the average differences between measurements and TPS were -0.19% ± 0.96% and -0.59% ± 1.49% for W1 and A16 with no statistical difference (P = 0.231). CONCLUSION W1 showed comparable performance with application-dedicated detectors in point dose measurements for both conventional IMRT and VMAT SRS techniques. It is a potential one-stop solution for general radiotherapy platforms that deliver both IMRT and SRS plans.
Collapse
Affiliation(s)
- Zike Huang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Qiao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cui Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ming Liu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiazhou Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xu Han
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weigang Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Petrucci E, Radici L, Borca VC, Ferrario S, Paolini M, Pasquino M. Delta 4 Discover transmission detector: A comprehensive characterization for in-vivo VMAT monitoring. Phys Med 2021; 85:15-23. [PMID: 33945949 DOI: 10.1016/j.ejmp.2021.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To investigate the dosimetric behaviour, influence on photon beam fluence and error detection capability of Delta4 Discover transmission detector. METHODS The transmission detector (TRD) was characterized on a TrueBeam linear accelerator with 6 MV beams. Linearity, reproducibility and dose rate dependence were investigated. The effect on photon beam fluence was evaluated in terms of beam profiles, percentage depth dose, transmission factor and surface dose for different open field sizes. The transmission factor of the 10x10 cm2 field was entered in the TPS's configuration and its correct use in the dose calculation was verified recalculating 17 clinical IMRT/VMAT plans. Surface dose was measured for 20 IMRT fields. The capability to detect different delivery errors was investigated evaluating dose gamma index, MLC gamma index and leaf position of 15 manually modified VMAT plans. RESULTS TRD showed a linear dependence on MU. No dose rate dependence was observed. Short-term and long-term reproducibility were within 0.1% and 0.5%. The presence of the TRD did not significantly affect PDDs and profiles. The transmission factor of the 10x10 cm2 field size was 0.985 and 0.983, for FF and FFF beams respectively. The 17 recalculated plans met our clinical gamma-index passing rate, confirming the correct use of the transmission factor by the TPS. The surface dose differences for the open fields increase for shorter SSDs and greater field size. Differences in surface dose for the IMRT beams were less than 2%. Output variation ≥2%, collimator angle variations within 0.3°, gantry angle errors of 1°, jaw tracking and leaf position errors were detected. CONCLUSIONS Delta4 Discover shows good linearity and reproducibility, is not dependent on dose rate and does not affect beam quality and dose profiles. It is also capable to detect dosimetric and geometric errors and therefore it is suitable for monitoring VMAT delivery.
Collapse
Affiliation(s)
| | - Lorenzo Radici
- Medical Physics Department, A.S.L. TO4, 10015 Ivrea, TO, Italy
| | | | | | - Marina Paolini
- Radiotherapy Department, A.S.L. TO4, 10015 Ivrea, TO, Italy
| | | |
Collapse
|
20
|
Chamberlain M, Krayenbuehl J, van Timmeren JE, Wilke L, Andratschke N, Garcia Schüler H, Tanadini-Lang S, Guckenberger M, Balermpas P. Head and neck radiotherapy on the MR linac: a multicenter planning challenge amongst MRIdian platform users. Strahlenther Onkol 2021; 197:1093-1103. [PMID: 33891126 PMCID: PMC8604891 DOI: 10.1007/s00066-021-01771-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/22/2021] [Indexed: 11/30/2022]
Abstract
Purpose Purpose of this study is to evaluate plan quality on the MRIdian (Viewray Inc., Oakwood Village, OH, USA) system for head and neck cancer (HNC) through comparison of planning approaches of several centers. Methods A total of 14 planners using the MRIdian planning system participated in this treatment challenge, centrally organized by ViewRay, for one contoured case of oropharyngeal carcinoma with standard constraints for organs at risk (OAR). Homogeneity, conformity, sparing of OARs, and other parameters were evaluated according to The International Commission on Radiation Units and Measurements (ICRU) recommendations anonymously, and then compared between centers. Differences amongst centers were assessed by means of Wilcoxon test. Each plan had to fulfil hard constraints based on dose–volume histogram (DVH) parameters and delivery time. A plan quality metric (PQM) was evaluated. The PQM was defined as the sum of 16 submetrics characterizing different DVH goals. Results For most dose parameters the median score of all centers was higher than the threshold that results in an ideal score. Six participants achieved the maximum number of points for the OAR dose parameters, and none had an unacceptable performance on any of the metrics. Each planner was able to achieve all the requirements except for one which exceeded delivery time. The number of segments correlated to improved PQM and inversely correlated to brainstem D0.1cc and to Planning Target Volume1 (PTV) D0.1cc. Total planning experience inversely correlated to spinal canal dose. Conclusion Magnetic Resonance Image (MRI) linac-based planning for HNC is already feasible with good quality. Generally, an increased number of segments and increasing planning experience are able to provide better results regarding planning quality without significantly prolonging overall treatment time. Supplementary Information The online version of this article (10.1007/s00066-021-01771-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Madalyne Chamberlain
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland.
| | - Jerome Krayenbuehl
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | | | - Lotte Wilke
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | - Panagiotis Balermpas
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Bedford JL, Hanson IM. Optimisation of a composite difference metric for prompt error detection in real-time portal dosimetry of simulated volumetric modulated arc therapy. Br J Radiol 2021; 94:20201014. [PMID: 33733813 PMCID: PMC8010558 DOI: 10.1259/bjr.20201014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES In real-time portal dosimetry, thresholds are set for several measures of difference between predicted and measured images, and signals larger than those thresholds signify an error. The aim of this work is to investigate the use of an additional composite difference metric (CDM) for earlier detection of errors. METHODS Portal images were predicted for the volumetric modulated arc therapy plans of six prostate patients. Errors in monitor units, aperture opening, aperture position and path length were deliberately introduced into all 180 segments of the treatment plans, and these plans were delivered to a water-equivalent phantom. Four different metrics, consisting of central axis signal, mean image value and two image difference measures, were used to identify errors, and a CDM was added, consisting of a weighted power sum of the individual metrics. To optimise the weights of the CDM and to evaluate the resulting timeliness of error detection, a leave-pair-out strategy was used. For each combination of four patients, the weights of the CDM were determined by an exhaustive search, and the result was evaluated on the remaining two patients. RESULTS The median segment index at which the errors were identified was 87 (range 40-130) when using all of the individual metrics separately. Using a CDM as well as multiple separate metrics reduced this to 73 (35-95). The median weighting factors of the four metrics constituting the composite were (0.15, 0.10, 0.15, 0.00). Due to selection of suitable threshold levels, there was only one false positive result in the six patients. CONCLUSION This study shows that, in conjunction with appropriate error thresholds, use of a CDM is able to identify increased image differences around 20% earlier than the separate measures. ADVANCES IN KNOWLEDGE This study shows the value of combining difference metrics to allow earlier detection of errors during real-time portal dosimetry for volumetric modulated arc therapy treatment.
Collapse
Affiliation(s)
- James L Bedford
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Ian M Hanson
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
22
|
Mancosu P, Russo S, Antonucci AR, Stasi M. Lean Thinking to manage a national working group on physics aspects of Stereotactic Body Radiation Therapy. Med Phys 2021; 48:2050-2056. [PMID: 33598932 DOI: 10.1002/mp.14783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/21/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To report how the adoption of a Lean Thinking mindset in the management of a national working group (WG) on the physics of stereotactic body radiation therapy (SBRT) contributed to achieve SBRT standardization objectives. METHODS Vision for the WG has been established as fragmentation reduction and process harmonization enhancement in SBRT for Italian centers. Two main research themes of the technical aspects of SBRT emerged as areas with major standardization improvement needs, small field dosimetry and SBRT planning comparisons, to be investigated through multi-institutional studies. The management of the WG leveraged on the Lean concept of fostering self-organization in a non-hierarchical environment. Four progressive involvement levels were defined for each study. No specific "scientific" pre-experience was required to propose and coordinate a project, just requiring a voluntary commitment. People engagement was measured in terms of number of published articles. The standardization goals have been conducted through a simplified "5S" (Sort, Set in Order, Shine, Standardize, and Sustain) methodology, first considering a phase of awareness (the first three "S"), then identifying and implementing standardization actions (the last two "S"). RESULTS Since the beginning, 157 medical physicists joined the AIFM/SBRT-WG. Twenty-four papers/reviews/letters have been published in the period 2014-2019 on major radiation oncology journals, authored by >100 physicists (>50% working in small hospitals). Six over 12 first authors worked in peripheral/small hospitals, with no prior publication as first author. These studies contributed to the awareness and standardization phases for both small-field dosimetry and planning. In particular, errors in small-field measurements in 8% of centers were detected thanks to a generalized output factor curve in function of the effective field size created by averaging data available from different Linacs. Furthermore, planner's experience in SBRT was correlated with dosimetric parameters in the awareness phase; while sharing median dose volume histograms (DVHs) reduced variability among centers while keeping the same level of plan complexity. Finally, all the dosimetric parameters statistically significant to the planner experience during the awareness phase, were no longer significantly different in the standardization phase. CONCLUSIONS The experience of our SBRT-WG has shown how a Lean Thinking mindset could foster the SBRT procedure standardization and spread the physics of SBRT knowledge, enhancing personal growth. Our expectation is to inspire other scientific societies that have to deal with fragmented contexts or pursue processes harmonization through Lean principles.
Collapse
Affiliation(s)
- Pietro Mancosu
- Medical Physics Unit, Radiotherapy Department, IRCCS Humanitas Research Hospital, Milano, Italy
| | - Serenella Russo
- Medical Physics Unit, Azienda USL Toscana Centro, Firenze, Italy
| | | | - Michele Stasi
- Medical Physics Department, A.O. Ordine Mauriziano di Torino, Turin, Italy
| |
Collapse
|
23
|
Esposito M, Piermattei A, Bresciani S, Orlandini LC, Falco MD, Giancaterino S, Cilla S, Ianiro A, Nigro R, Botez L, Riccardi S, Fidanzio A, Greco F, Villaggi E, Russo S, Stasi M. Improving dose delivery accuracy with EPID in vivo dosimetry: results from a multicenter study. Strahlenther Onkol 2021; 197:633-643. [PMID: 33594471 DOI: 10.1007/s00066-021-01749-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/22/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE To investigate critical aspects and effectiveness of in vivo dosimetry (IVD) tests obtained by an electronic portal imaging device (EPID) in a multicenter and multisystem context. MATERIALS AND METHODS Eight centers with three commercial systems-SoftDiso (SD, Best Medical Italy, Chianciano, Italy), Dosimetry Check (DC, Math Resolution, LCC), and PerFRACTION (PF, Sun Nuclear Corporation, SNC, Melbourne, FL)-collected IVD results for a total of 2002 patients and 32,276 tests. Data are summarized for IVD software, radiotherapy technique, and anatomical site. Every center reported the number of patients and tests analyzed, and the percentage of tests outside of the tolerance level (OTL%). OTL% was categorized as being due to incorrect patient setup, incorrect use of immobilization devices, incorrect dose computation, anatomical variations, and unknown causes. RESULTS The three systems use different approaches and customized alert indices, based on local protocols. For Volumetric Modulated Arc Therapy (VMAT) treatments OTL% mean values were up to 8.9% for SD, 18.0% for DC, and 16.0% for PF. Errors due to "anatomical variations" for head and neck were up to 9.0% for SD and DC and 8.0% for PF systems, while for abdomen and pelvis/prostate treatments were up to 9%, 17.0%, and 9.0% for SD, DC, and PF, respectively. The comparison among techniques gave 3% for Stereotactic Body Radiation Therapy, 7.0% (range 4.7-8.9%) for VMAT, 10.4% (range 7.0-12.2%) for Intensity Modulated Radiation Therapy, and 13.2% (range 8.8-21.0%) for 3D Conformal Radiation Therapy. CONCLUSION The results obtained with different IVD software and among centers were consistent and showed an acceptable homogeneity. EPID IVD was effective in intercepting important errors.
Collapse
Affiliation(s)
- M Esposito
- S. C. Fisica Sanitaria Firenze-Empoli, Medical Physics Unit of Radiation Oncology Dept., Azienda Sanitaria USL Toscana Centro Florence, Via dell'Antella 58, 50012, Bagno a Ripoli, Firenze, Italy.
| | - A Piermattei
- UOC di Fisica Sanitaria, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - S Bresciani
- Medical Physics, Candiolo Cancer Institute-FPO IRCCS, Turin, Italy
| | - L C Orlandini
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, China
| | - M D Falco
- Dipartimento di Radioterapia, Università di Chieti, Chieti, Italy
| | - S Giancaterino
- Dipartimento di Radioterapia, Università di Chieti, Chieti, Italy
| | - S Cilla
- Medical Physics Unit, Fondazione di ricerca e cura "Giovanni Paolo II", Campobasso, Italy
| | - A Ianiro
- Medical Physics Unit, Fondazione di ricerca e cura "Giovanni Paolo II", Campobasso, Italy
| | - R Nigro
- OGP S. Camillo de Lellis, Rieti, Italy
| | - L Botez
- Medical Physics, Candiolo Cancer Institute-FPO IRCCS, Turin, Italy
| | | | - A Fidanzio
- UOC di Fisica Sanitaria, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - F Greco
- UOC di Fisica Sanitaria, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | | | - S Russo
- S. C. Fisica Sanitaria Firenze-Empoli, Azienda Sanitaria USL Toscana Centro Florence, Florence, Italy
| | - M Stasi
- S.C. Fisica Sanitaria, A.O. Ordine Mauriziano di Torino, Torino, Italy
| | | |
Collapse
|
24
|
Chendi A, Botti A, Orlandi M, Sghedoni R, Iori M, Cagni E. EPID-based 3D dosimetry for pre-treatment FFF VMAT stereotactic body radiotherapy plan verification using dosimetry Check TM. Phys Med 2021; 81:227-236. [PMID: 33485140 DOI: 10.1016/j.ejmp.2020.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022] Open
Abstract
PURPOSE The software Dosimetry Check (DC) reconstructs the 3D dose distribution on CT images data set by using EPID measured signal. This study aimed to evaluate DC for stereotactic body radiotherapy (SBRT) with unflattened photon beams (FFF) for dosimetric independent plan verification in pre-treatment modality. METHODS DC v.4.1 was configured for Varian TrueBeam STx FFF beams equipped with EPID aS-1200. The DC FFF models were tested using arc open fields (from 1×1 cm2 to 15×15 cm2) and VMAT (Volumetric Modulated Arc Therapy) SBRT plans on phantom and patient CTs. DC dose distributions (DDC) were compared with that calculated by Eclipse with Acuros XB algorithm (DAXB) and one measured by Octavius 1000 SRS detector (DOCT). All differences were quantified in terms of the local 3D gamma passing rate (%GP), DVH and point dose differences. RESULTS DC was configured for FFF VMAT using an appropriate correction procedure. %GP2%2mm (mean±standard deviation) of DOCT-DDC was 96.3±2.7% for open fields whereas it was 90.1±5.9% for plans on homogeneous phantom CT. However, average %GP3%3mm of DAXB-DDC was 95.0±4.1 for treatments on patient CT. The fraction of plans passing the %GP3%3mm DQA tolerance level [10% (50%) of maximum dose threshold] were 20/20 (14/20) and 18/20 (16/20) for OCT on phantom CT and DC on patient CT, respectively. CONCLUSIONS DC characterization for FFF beams was performed. For stereotactic VMAT plan verifications DC showed good agreement with TPS whereas underlined discrepancies with Octavius in the high dose regions. A customized tolerance level is required for EPID-based VMAT FFF pre-treatment verification when DC system is applied.
Collapse
Affiliation(s)
- Agnese Chendi
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy; Postgraduate School in Medical Physics, University of Bologna, Bologna, Italy.
| | - Andrea Botti
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Matteo Orlandi
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Roberto Sghedoni
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Mauro Iori
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Elisabetta Cagni
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy; School of Engineering, Cardiff University, Cardiff, UK
| |
Collapse
|
25
|
Nguyen THT, Yokoyama H, Kojima H, Isomura N, Takemura A, Ueda S, Noto K. Effect of an integral quality monitor on 4-, 6-, 10-MV, and 6-MV flattening filter-free photon beams. J Appl Clin Med Phys 2020; 22:76-91. [PMID: 33270985 PMCID: PMC7856493 DOI: 10.1002/acm2.13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/04/2022] Open
Abstract
Purpose To investigate the effect of an integral quality monitor (IQM; iRT Systems GmbH, Koblenz, Germany) on 4, 6, 10, and 6‐MV flattening filter‐free (FFF) photon beams. Methods We assessed surface dose, PDD20,10, TPR20,10, PDD curves, inline and crossline profiles, transmission factor, and output factor with and without the IQM. PDD, transmission factor, and output factor were measured for square fields of 3, 5, 10, 15, 20, 25, and 30 cm and profiles were performed for square fields of 3, 5, 10, 20, and 30 cm at 5‐, 10‐, and 30‐cm depth. Results The differences in surface dose of all energies for square fields of 3, 5, 10, 15, 20, and 25 cm were within 3.7% whereas for a square field of 30 cm, they were 4.6%, 6.8%, 6.7%, and 8.7% for 4‐MV, 6‐MV, 6‐MV‐FFF, and 10‐MV, respectively. Differences in PDD20,10, TPR20,10, PDD, profiles, and output factors were within ±1%. Local and global gamma values (2%/2 mm) were below 1 for PDD beyond dmax and inline/crossline profiles in the central beam region, respectively. The gamma passing rates (10% threshold) for PDD curves and profiles were above 95% at 2%/2 mm. The transmission factors for 4‐MV, 6‐MV, 6‐MV‐FFF, and 10‐MV for field sizes from 3 × 3 to 30 × 30 cm2 were 0.926–0.933, 0.937–0.941, 0.937–0.939, and 0.949–0.953, respectively. Conclusions The influence of the IQM on the beam quality (in particular 4‐MV X‐ray has not verified before) was tested and introduced a slight beam perturbation at the surface and build‐up region and the edge of the crossline/inline profiles. To use IQM in pre‐ and intra‐treatment quality assurance, a tray factor should be put into treatment planning systems for the dose calculation for the 4‐, 6‐, 10‐, and 6‐MV flattening filter‐free photon beams to compensate the beam attenuation of the IQM detector.
Collapse
Affiliation(s)
- Trang Hong Thi Nguyen
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Haruna Yokoyama
- Department of Radiological Technology, Kanazawa University Hospital, Kanazawa, Japan
| | - Hironori Kojima
- Department of Radiological Technology, Kanazawa University Hospital, Kanazawa, Japan
| | - Naoki Isomura
- Department of Radiological Technology, Kanazawa University Hospital, Kanazawa, Japan
| | - Akihiro Takemura
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Shinichi Ueda
- Department of Radiological Technology, Kanazawa University Hospital, Kanazawa, Japan
| | - Kimiya Noto
- Department of Radiological Technology, Kanazawa University Hospital, Kanazawa, Japan
| |
Collapse
|
26
|
Paxton AB, Sarkar V, Kunz JN, Szegedi M, Zhao H, Huang YJ, Nelson G, Rassiah P, Su FCF, Salter BJ. Evaluation of the effects of implementing a diode transmission device into the clinical workflow. Phys Med 2020; 80:335-341. [DOI: 10.1016/j.ejmp.2020.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022] Open
|
27
|
Esposito M, Ghirelli A, Pini S, Alpi P, Barca R, Fondelli S, Grilli Leonulli B, Paoletti L, Rossi F, Bastiani P, Russo S. Clinical implementation of 3D in vivo dosimetry for abdominal and pelvic stereotactic treatments. Radiother Oncol 2020; 154:14-20. [PMID: 32926910 DOI: 10.1016/j.radonc.2020.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE To analyze results from three years of in vivo transit EPID dosimetry of abdominal and pelvic stereotactic radiotherapy and to establish tolerance levels for routine clinical use. MATERIAL 80 stereotactic VMAT treatments (152 fractions) targeting the abdomen or pelvis were analyzed. In vivo 3D doses were reconstructed with an EPID commercial algorithm. Gamma Agreement Index (GAI) and DVH differences in Planning Target Volume (PTV) and Clinical Target Volume (CTV) were evaluated. Initial tolerance level was set to GAI > 85% in PTV. Fractions Over Tolerance Level (OTL) were deemed to be due to set-up errors, incorrect use of immobilization devices, 4D errors, transit EPID algorithm errors and unknown/unidentified errors. Statistical Process Control (SPC) was applied to determine local tolerance levels. RESULTS Average GAI were (82.7 ± 20.9) % in PTV and (72.9 ± 29.7) % in CTV. 37.8% of fractions resulted OTL and were classified as: set-up errors (3.3%), incorrect use of immobilization devices (2.1%), 4D errors (2.1%), EPID transit algorithm errors (17.1%). OTL causes for the remaining 13.2% of fractions were not identified. The differences between PTV and CTV measured in vivo and calculated mean dose (average difference ± standard deviation) were (-3.3% ± 3.2%) and (-2.3% ± 3.0%). When tolerance levels based on SPC to PTV mean dose differences were applied, the percentage of OTL decreased to 7% and no EPID algorithm error occurred. One error was not identified. CONCLUSIONS The application of local tolerance levels to EPID in vivo dosimetry proved to be useful for detecting extra-lung SBRT treatment errors.
Collapse
Affiliation(s)
- Marco Esposito
- S. C. Fisica Sanitaria, Firenze - Azienda USL Toscana Centro, Italy.
| | | | - Silvia Pini
- S. C. Fisica Sanitaria, Firenze - Azienda USL Toscana Centro, Italy
| | - Paolo Alpi
- S. C. Radioterapia, Firenze - Azienda USL Toscana Centro, Italy
| | - Raffaella Barca
- S. C. Radioterapia, Firenze - Azienda USL Toscana Centro, Italy
| | - Simona Fondelli
- S. C. Radioterapia, Firenze - Azienda USL Toscana Centro, Italy
| | | | - Lisa Paoletti
- S. C. Radioterapia, Firenze - Azienda USL Toscana Centro, Italy
| | - Francesca Rossi
- S. C. Radioterapia, Firenze - Azienda USL Toscana Centro, Italy
| | - Paolo Bastiani
- S. C. Radioterapia, Firenze - Azienda USL Toscana Centro, Italy
| | - Serenella Russo
- S. C. Fisica Sanitaria, Firenze - Azienda USL Toscana Centro, Italy
| |
Collapse
|
28
|
Esposito M, Villaggi E, Bresciani S, Cilla S, Falco MD, Garibaldi C, Russo S, Talamonti C, Stasi M, Mancosu P. Clarifications on our review on estimating dose delivery accuracy in stereotactic body radiation therapy: A review of in-vivo measurement methods: In response to the letter of Kos. Radiother Oncol 2020; 153:320-321. [PMID: 32663534 DOI: 10.1016/j.radonc.2020.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 11/17/2022]
Affiliation(s)
- Marco Esposito
- S.C. Fisica Sanitaria Firenze-Empoli, Azienda Sanitaria USL Toscana Centro, Italy
| | | | - Sara Bresciani
- Medical Physics, Candiolo Cancer Institute - FPO IRCCS, Turin, Italy
| | - Savino Cilla
- Medical Physics Unit, Gemelli Molise Hospital, Campobasso, Italy
| | - Maria Daniela Falco
- Department of Radiation Oncology "G. D'Annunzio", University of Chieti, SS. Annunziata Hospital, Chieti, Italy
| | - Cristina Garibaldi
- Radiation Research Unit, European Institute of Oncology IRCCS, Milan, Italy
| | - Serenella Russo
- S.C. Fisica Sanitaria Firenze-Empoli, Azienda Sanitaria USL Toscana Centro, Italy
| | - Cinzia Talamonti
- University of Florence, Dept Biomedical Experimental and Clinical Science, "Mario Serio", Medical Physics Unit, AOU Careggi, Florence, Italy
| | - Michele Stasi
- Medical Physics, Candiolo Cancer Institute - FPO IRCCS, Turin, Italy.
| | - Pietro Mancosu
- Medical Physics Unit of Radiotherapy Dept., Humanitas Clinical and Research Hospital - IRCCS, Rozzano, Italy
| |
Collapse
|
29
|
Kos S. Letter to the editor of radiotherapy and oncology regarding the article esposito et al: Estimating dose delivery accuracy in stereotactic body radiation therapy: A review of in-vivo measurement methods. Radiother Oncol 2020; 153:319. [PMID: 32653600 DOI: 10.1016/j.radonc.2020.06.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Sandra Kos
- IBA Dosimetry, Bahnhofstr. 5, 90592 Schwarzenbruck, Germany.
| |
Collapse
|
30
|
Olaciregui-Ruiz I, Beddar S, Greer P, Jornet N, McCurdy B, Paiva-Fonseca G, Mijnheer B, Verhaegen F. In vivo dosimetry in external beam photon radiotherapy: Requirements and future directions for research, development, and clinical practice. Phys Imaging Radiat Oncol 2020; 15:108-116. [PMID: 33458335 PMCID: PMC7807612 DOI: 10.1016/j.phro.2020.08.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/18/2022] Open
Abstract
External beam radiotherapy with photon beams is a highly accurate treatment modality, but requires extensive quality assurance programs to confirm that radiation therapy will be or was administered appropriately. In vivo dosimetry (IVD) is an essential element of modern radiation therapy because it provides the ability to catch treatment delivery errors, assist in treatment adaptation, and record the actual dose delivered to the patient. However, for various reasons, its clinical implementation has been slow and limited. The purpose of this report is to stimulate the wider use of IVD for external beam radiotherapy, and in particular of systems using electronic portal imaging devices (EPIDs). After documenting the current IVD methods, this report provides detailed software, hardware and system requirements for in vivo EPID dosimetry systems in order to help in bridging the current vendor-user gap. The report also outlines directions for further development and research. In vivo EPID dosimetry vendors, in collaboration with users across multiple institutions, are requested to improve the understanding and reduce the uncertainties of the system and to help in the determination of optimal action limits for error detection. Finally, the report recommends that automation of all aspects of IVD is needed to help facilitate clinical adoption, including automation of image acquisition, analysis, result interpretation, and reporting/documentation. With the guidance of this report, it is hoped that widespread clinical use of IVD will be significantly accelerated.
Collapse
Affiliation(s)
- Igor Olaciregui-Ruiz
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sam Beddar
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Greer
- Calvary Mater Newcastle Hospital and University of Newcastle, Newcastle, New South Wales, Australia
| | - Nuria Jornet
- Servei de Radiofísica i Radioprotecció, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Boyd McCurdy
- Medical Physics Department, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Gabriel Paiva-Fonseca
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Ben Mijnheer
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| |
Collapse
|