1
|
Hoegen-Saßmannshausen P, Jessen I, Buchele C, Schlüter F, Rippke C, Renkamp CK, Weykamp F, Regnery S, Liermann J, Meixner E, Hoeltgen L, Eichkorn T, König L, Debus J, Klüter S, Hörner-Rieber J. Clinical Outcomes of Online Adaptive Magnetic Resonance-Guided Stereotactic Body Radiotherapy of Adrenal Metastases from a Single Institution. Cancers (Basel) 2024; 16:2273. [PMID: 38927978 PMCID: PMC11201609 DOI: 10.3390/cancers16122273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: Recent publications foster stereotactic body radiotherapy (SBRT) in patients with adrenal oligometastases or oligoprogression. However, local control (LC) after non-adaptive SBRT shows the potential for improvement. Online adaptive MR-guided SBRT (MRgSBRT) improves tumor coverage and organ-at-risk (OAR) sparing. Long-term results of adaptive MRgSBRT are still sparse. (2) Methods: Adaptive MRgSBRT was performed on a 0.35 T MR-Linac. LC, overall survival (OS), progression-free survival (PFS), overall response rate (ORR), and toxicity were assessed. (3) Results: 35 patients with 40 adrenal metastases were analyzed. The median gross tumor volume was 30.6 cc. The most common regimen was 10 fractions at 5 Gy. The median biologically effective dose (BED10) was 75.0 Gy. Plan adaptation was performed in 98% of all fractions. The median follow-up was 7.9 months. One local failure occurred after 16.6 months, resulting in estimated LC rates of 100% at one year and 90% at two years. ORR was 67.5%. The median OS was 22.4 months, and the median PFS was 5.1 months. No toxicity > CTCAE grade 2 occurred. (4) Conclusions: LC and ORR after adrenal adaptive MRgSBRT were excellent, even in a cohort with comparably large metastases. A BED10 of 75 Gy seems sufficient for improved LC in comparison to non-adaptive SBRT.
Collapse
Affiliation(s)
- Philipp Hoegen-Saßmannshausen
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Inga Jessen
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Carolin Buchele
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Fabian Schlüter
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Claudia Katharina Renkamp
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Jakob Liermann
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Eva Meixner
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Line Hoeltgen
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Ugurluer G, Schneiders FL, Corradini S, Boldrini L, Kotecha R, Kelly P, Portelance L, Camilleri P, Ben-David MA, Poiset S, Marschner SN, Panza G, Kutuk T, Palacios MA, Castelluccia A, Zoto Mustafayev T, Atalar B, Senan S, Ozyar E. Factors influencing local control after MR-guided stereotactic body radiotherapy (MRgSBRT) for adrenal metastases. Clin Transl Radiat Oncol 2024; 46:100756. [PMID: 38450219 PMCID: PMC10915494 DOI: 10.1016/j.ctro.2024.100756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
Purpose Stereotactic body radiotherapy (SBRT) is an effective treatment for adrenal gland metastases, but it is technically challenging and there are concerns about toxicity. We performed a multi-institutional pooled retrospective analysis to study clinical outcomes and toxicities after MR-guided SBRT (MRgSBRT) using for adrenal gland metastases. Methods and Materials Clinical and dosimetric data of patients treated with MRgSBRT on a 0.35 T MR-Linac at 11 institutions between 2016 and 2022 were analyzed. Local control (LC), local progression-free survival (LPFS), distant progression-free survival (DPFS) and overall survival (OS) were estimated using Kaplan-Meier method and log-rank test. Results A total of 255 patients (269 adrenal metastases) were included. Metastatic pattern was solitary in 25.9 % and oligometastatic in 58.0 % of patients. Median total dose was 45 Gy (range, 16-60 Gy) in a median of 5 fractions, and the median BED10 was 100 Gy (range, 37.5-132.0 Gy). Adaptation was done in 87.4 % of delivered fractions based on the individual clinicians' judgement. The 1- and 2- year LPFS rates were 94.0 % (95 % CI: 90.7-97.3 %) and 88.3 % (95 % CI: 82.4-94.2 %), respectively and only 2 patients (0.8 %) experienced grade 3 + toxicity. No local recurrences were observed after treatment to a total dose of BED10 > 100 Gy, with single fraction or fractional dose of > 10 Gy. Conclusions This is a large retrospective multi-institutional study to evaluate the treatment outcomes and toxicities with MRgSBRT in over 250 patients, demonstrating the need for frequent adaptation in 87.4 % of delivered fractions to achieve a 1- year LPFS rate of 94 % and less than 1 % rate of grade 3 + toxicity. Outcomes analysis in 269 adrenal lesions revealed improved outcomes with delivery of a BED10 > 100 Gy, use of single fraction SBRT and with fraction doses > 10 Gy, providing benchmarks for future clinical trials.
Collapse
Affiliation(s)
- Gamze Ugurluer
- Department of Radiation Oncology, Acibadem MAA University, School of Medicine, Istanbul, Turkey
| | - Famke L. Schneiders
- Department of Radiation Oncology, Amsterdam University Medical Centers, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University Munich, Germany
| | - Luca Boldrini
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo Agostino Gemelli 8, Rome, Italy
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Patrick Kelly
- Department of Radiation Oncology, Orlando Health Cancer Institute, Orlando, FL, USA
| | | | | | - Merav A. Ben-David
- Department of Radiation Oncology, Assuta Medical Center, Tel Aviv, Israel
- Faculty of Health Science, Ben-Gurion University, Beer Sheva, Israel
| | - Spencer Poiset
- Department of Radiation Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA, USA
| | - Sebastian N. Marschner
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University Munich, Germany
| | - Giulia Panza
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo Agostino Gemelli 8, Rome, Italy
| | - Tugce Kutuk
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Miguel A. Palacios
- Department of Radiation Oncology, Amsterdam University Medical Centers, Cancer Center Amsterdam, Amsterdam, Netherlands
| | | | | | - Banu Atalar
- Department of Radiation Oncology, Acibadem MAA University, School of Medicine, Istanbul, Turkey
| | - Suresh Senan
- Department of Radiation Oncology, Amsterdam University Medical Centers, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Enis Ozyar
- Department of Radiation Oncology, Acibadem MAA University, School of Medicine, Istanbul, Turkey
| |
Collapse
|
3
|
Thomas C, Dregely I, Oksuz I, Guerrero Urbano T, Greener T, King AP, Barrington SF. Effect of synthetic CT on dose-derived toxicity predictors for MR-only prostate radiotherapy. BJR Open 2024; 6:tzae014. [PMID: 38948455 PMCID: PMC11213647 DOI: 10.1093/bjro/tzae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 02/09/2024] [Accepted: 05/25/2024] [Indexed: 07/02/2024] Open
Abstract
Objectives Toxicity-driven adaptive radiotherapy (RT) is enhanced by the superior soft tissue contrast of magnetic resonance (MR) imaging compared with conventional computed tomography (CT). However, in an MR-only RT pathway synthetic CTs (sCT) are required for dose calculation. This study evaluates 3 sCT approaches for accurate rectal toxicity prediction in prostate RT. Methods Thirty-six patients had MR (T2-weighted acquisition optimized for anatomical delineation, and T1-Dixon) with same day standard-of-care planning CT for prostate RT. Multiple sCT were created per patient using bulk density (BD), tissue stratification (TS, from T1-Dixon) and deep-learning (DL) artificial intelligence (AI) (from T2-weighted) approaches for dose distribution calculation and creation of rectal dose volume histograms (DVH) and dose surface maps (DSM) to assess grade-2 (G2) rectal bleeding risk. Results Maximum absolute errors using sCT for DVH-based G2 rectal bleeding risk (risk range 1.6% to 6.1%) were 0.6% (BD), 0.3% (TS) and 0.1% (DL). DSM-derived risk prediction errors followed a similar pattern. DL sCT has voxel-wise density generated from T2-weighted MR and improved accuracy for both risk-prediction methods. Conclusions DL improves dosimetric and predicted risk calculation accuracy. Both TS and DL methods are clinically suitable for sCT generation in toxicity-guided RT, however, DL offers increased accuracy and offers efficiencies by removing the need for T1-Dixon MR. Advances in knowledge This study demonstrates novel insights regarding the effect of sCT on predictive toxicity metrics, demonstrating clear accuracy improvement with increased sCT resolution. Accuracy of toxicity calculation in MR-only RT should be assessed for all treatment sites where dose to critical structures will guide adaptive-RT strategies. Clinical trial registration number Patient data were taken from an ethically approved (UK Health Research Authority) clinical trial run at Guy's and St Thomas' NHS Foundation Trust. Study Name: MR-simulation in Radiotherapy for Prostate Cancer. ClinicalTrials.gov Identifier: NCT03238170.
Collapse
Affiliation(s)
- Christopher Thomas
- School of Biomedical Engineering & Imaging Sciences, King’s College London, SE17EH London, United Kingdom
- Medical Physics Department, Guy’s and St Thomas’ Hospital NHS Foundation Trust, SE17EH London, United Kingdom
| | - Isabel Dregely
- School of Biomedical Engineering & Imaging Sciences, King’s College London, SE17EH London, United Kingdom
- Computer Science, UAS Technikum Wien, 1200 Vienna, Austria
| | - Ilkay Oksuz
- School of Biomedical Engineering & Imaging Sciences, King’s College London, SE17EH London, United Kingdom
- Computer Engineering Department, Istanbul Technical University, 34485 Istanbul, Turkey
| | - Teresa Guerrero Urbano
- Clinical Oncology, Guy’s and St Thomas’ Hospital NHS Foundation Trust, SE17EH London, United Kingdom
| | - Tony Greener
- Medical Physics Department, Guy’s and St Thomas’ Hospital NHS Foundation Trust, SE17EH London, United Kingdom
| | - Andrew P King
- School of Biomedical Engineering & Imaging Sciences, King’s College London, SE17EH London, United Kingdom
| | - Sally F Barrington
- School of Biomedical Engineering & Imaging Sciences, King’s College London, SE17EH London, United Kingdom
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, King’s Health Partners, SE17EH London, United Kingdom
| |
Collapse
|
4
|
Schneiders FL, van Vliet C, Giraud N, Bruynzeel AM, Slotman BJ, Palacios MA, Senan S. Clinical outcomes of MR-guided adrenal stereotactic ablative radiotherapy with preferential sparing of organs at risk. Clin Transl Radiat Oncol 2023; 43:100680. [PMID: 37808454 PMCID: PMC10551830 DOI: 10.1016/j.ctro.2023.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Background and purpose The optimal stereotactic ablative radiotherapy (SABR) doses for adrenal tumors are unknown. Some trials have specified that organ at risk (OAR) dose constraints should take priority over target coverage. We performed a retrospective review of the outcomes of MR-guided adrenal SABR (MRgRT) delivered with OAR sparing. Materials and methods Patients who underwent adrenal MRgRT between 2016 and 2023 were identified from our Ethics-approved institutional database. Dose ranged between 8 and 24 Gy per fraction, delivered in 1-5 fractions. A 3 mm margin was added to the breath-hold gross tumor volume (GTV) to derive a PTV. Plan were delivered to an 'optimized' PTV that was generated by excluding any overlap with OARs. Results Adrenal SABR was performed in 107 patients (114 metastases). The commonest scheme used 5 fractions of 10 Gy (53.5 %); 82 % of plans delivered a BED10 ≧ 80 Gy. Systemic therapy was administered within 3 months preceding or following SABR in 53.5 % of patients. Grade 3 acute toxicity (CTCAE v5.0) occurred in 0.9 % of patients, and 4.4 % reported late toxicity, consisting of adrenal insufficiency and a vertebral collapse. Median follow-up was 13.8 months (range, 0.0-73.4 months). Local progression occurred in 7.4 % of evaluable patients. PTV underdosage was frequent, with a coverage compromise index (D99/prescription dose) of < 0.90 in 52 % of all plans. Recurrences were independent of the prescription doses. Conclusion MRgRT for adrenal metastases is well tolerated with high local control rates despite prioritizing OAR sparing over PTV coverage. Studies using deformable dose accumulation may lead to a better understanding of dose-response relationship with adaptive SABR.
Collapse
Affiliation(s)
- Famke L. Schneiders
- Department of Radiation Oncology, Amsterdam-UMC, Location VUmc, The Netherlands
- Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Claire van Vliet
- Department of Radiation Oncology, Amsterdam-UMC, Location VUmc, The Netherlands
| | - Nicolas Giraud
- Department of Radiation Oncology, Amsterdam-UMC, Location VUmc, The Netherlands
| | - Anna M.E. Bruynzeel
- Department of Radiation Oncology, Amsterdam-UMC, Location VUmc, The Netherlands
- Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Ben J. Slotman
- Department of Radiation Oncology, Amsterdam-UMC, Location VUmc, The Netherlands
- Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Miguel A. Palacios
- Department of Radiation Oncology, Amsterdam-UMC, Location VUmc, The Netherlands
| | - Suresh Senan
- Department of Radiation Oncology, Amsterdam-UMC, Location VUmc, The Netherlands
- Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
5
|
Giraud N, Schneiders FL, van Sornsen de Koste JR, Palacios MA, Senan S. Tumor volume changes during stereotactic ablative radiotherapy for adrenal gland metastases under MRI guidance. Radiother Oncol 2023; 186:109749. [PMID: 37330058 DOI: 10.1016/j.radonc.2023.109749] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
PURPOSE Gross tumor volume (GTV) changes during stereotactic ablative radiotherapy (SABR) for adrenal tumors are not well characterized. We studied treatment-induced GTV changes during, and after, 5-fraction MR-guided SABR on a 0.35 T unit. METHODS AND MATERIALS Details of patients treated for adrenal metastases using 5-fraction adaptive MR-SABR were accessed. GTV changes between simulation and first fraction (ΔSF1) and all fractions were recorded. Wilcoxon paired tests were used for intrapatient comparisons. Logistic and linear regression models were used for features associated with dichotomous and continuous variables, respectively. RESULTS Once-daily fractions of 8 Gy or 10 Gy were delivered to 70 adrenal metastases. Median simulation-F1 interval was 13 days; F1-F5 interval was 13 days. Median baseline GTVs at simulation and F1 were 26.6 and 27.2 cc, respectively (p < 0.001). Mean ΔSF1 was + 9.1% (2.9 cc) relative to simulation; 47% of GTVs decreased in volume at F5 versus F1. GTV variations of ≥ 20% occurred in 59% treatments at some point between simulation to end SABR, and these did not correlate with baseline tumor characteristics. At a median follow-up of 20.3 months, a radiological complete response (CR) was seen in 23% of 64 evaluable patients. CR was associated with baseline GTV (p = 0.03) and ΔF1F5 (p = 0.03). Local relapses were seen in 6%. CONCLUSION Frequent changes in adrenal GTVs during 5-fraction SABR delivery support the use of on-couch adaptive replanning. The likelihood of a radiological CR correlates with the baseline GTV and intra-treatment GTV decline.
Collapse
Affiliation(s)
- Nicolas Giraud
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiation Oncology, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands.
| | - Famke L Schneiders
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiation Oncology, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - John R van Sornsen de Koste
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiation Oncology, Boelelaan 1117, Amsterdam, the Netherlands
| | - Miguel A Palacios
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiation Oncology, Boelelaan 1117, Amsterdam, the Netherlands
| | - Suresh Senan
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiation Oncology, Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Lavrova E, Garrett MD, Wang YF, Chin C, Elliston C, Savacool M, Price M, Kachnic LA, Horowitz DP. Adaptive Radiation Therapy: A Review of CT-based Techniques. Radiol Imaging Cancer 2023; 5:e230011. [PMID: 37449917 PMCID: PMC10413297 DOI: 10.1148/rycan.230011] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/18/2023] [Accepted: 05/10/2023] [Indexed: 07/18/2023]
Abstract
Adaptive radiation therapy is a feedback process by which imaging information acquired over the course of treatment, such as changes in patient anatomy, can be used to reoptimize the treatment plan, with the end goal of improving target coverage and reducing treatment toxicity. This review describes different types of adaptive radiation therapy and their clinical implementation with a focus on CT-guided online adaptive radiation therapy. Depending on local anatomic changes and clinical context, different anatomic sites and/or disease stages and presentations benefit from different adaptation strategies. Online adaptive radiation therapy, where images acquired in-room before each fraction are used to adjust the treatment plan while the patient remains on the treatment table, has emerged to address unpredictable anatomic changes between treatment fractions. Online treatment adaptation places unique pressures on the radiation therapy workflow, requiring high-quality daily imaging and rapid recontouring, replanning, plan review, and quality assurance. Generating a new plan with every fraction is resource intensive and time sensitive, emphasizing the need for workflow efficiency and clinical resource allocation. Cone-beam CT is widely used for image-guided radiation therapy, so implementing cone-beam CT-guided online adaptive radiation therapy can be easily integrated into the radiation therapy workflow and potentially allow for rapid imaging and replanning. The major challenge of this approach is the reduced image quality due to poor resolution, scatter, and artifacts. Keywords: Adaptive Radiation Therapy, Cone-Beam CT, Organs at Risk, Oncology © RSNA, 2023.
Collapse
Affiliation(s)
- Elizaveta Lavrova
- From the Department of Radiation Oncology, Columbia University Irving
Medical Center, 622 W 168th St, New York, NY 10032 (E.L., M.D.G., Y.F.W., C.C.,
C.E., M.S., M.P., L.A.K., D.P.H.); and Herbert Irving Comprehensive Cancer
Center, New York, NY (C.C., L.A.K., D.P.H.)
| | - Matthew D. Garrett
- From the Department of Radiation Oncology, Columbia University Irving
Medical Center, 622 W 168th St, New York, NY 10032 (E.L., M.D.G., Y.F.W., C.C.,
C.E., M.S., M.P., L.A.K., D.P.H.); and Herbert Irving Comprehensive Cancer
Center, New York, NY (C.C., L.A.K., D.P.H.)
| | - Yi-Fang Wang
- From the Department of Radiation Oncology, Columbia University Irving
Medical Center, 622 W 168th St, New York, NY 10032 (E.L., M.D.G., Y.F.W., C.C.,
C.E., M.S., M.P., L.A.K., D.P.H.); and Herbert Irving Comprehensive Cancer
Center, New York, NY (C.C., L.A.K., D.P.H.)
| | - Christine Chin
- From the Department of Radiation Oncology, Columbia University Irving
Medical Center, 622 W 168th St, New York, NY 10032 (E.L., M.D.G., Y.F.W., C.C.,
C.E., M.S., M.P., L.A.K., D.P.H.); and Herbert Irving Comprehensive Cancer
Center, New York, NY (C.C., L.A.K., D.P.H.)
| | - Carl Elliston
- From the Department of Radiation Oncology, Columbia University Irving
Medical Center, 622 W 168th St, New York, NY 10032 (E.L., M.D.G., Y.F.W., C.C.,
C.E., M.S., M.P., L.A.K., D.P.H.); and Herbert Irving Comprehensive Cancer
Center, New York, NY (C.C., L.A.K., D.P.H.)
| | - Michelle Savacool
- From the Department of Radiation Oncology, Columbia University Irving
Medical Center, 622 W 168th St, New York, NY 10032 (E.L., M.D.G., Y.F.W., C.C.,
C.E., M.S., M.P., L.A.K., D.P.H.); and Herbert Irving Comprehensive Cancer
Center, New York, NY (C.C., L.A.K., D.P.H.)
| | - Michael Price
- From the Department of Radiation Oncology, Columbia University Irving
Medical Center, 622 W 168th St, New York, NY 10032 (E.L., M.D.G., Y.F.W., C.C.,
C.E., M.S., M.P., L.A.K., D.P.H.); and Herbert Irving Comprehensive Cancer
Center, New York, NY (C.C., L.A.K., D.P.H.)
| | - Lisa A. Kachnic
- From the Department of Radiation Oncology, Columbia University Irving
Medical Center, 622 W 168th St, New York, NY 10032 (E.L., M.D.G., Y.F.W., C.C.,
C.E., M.S., M.P., L.A.K., D.P.H.); and Herbert Irving Comprehensive Cancer
Center, New York, NY (C.C., L.A.K., D.P.H.)
| | - David P. Horowitz
- From the Department of Radiation Oncology, Columbia University Irving
Medical Center, 622 W 168th St, New York, NY 10032 (E.L., M.D.G., Y.F.W., C.C.,
C.E., M.S., M.P., L.A.K., D.P.H.); and Herbert Irving Comprehensive Cancer
Center, New York, NY (C.C., L.A.K., D.P.H.)
| |
Collapse
|
7
|
Hoegen P, Katsigiannopulos E, Buchele C, Regnery S, Weykamp F, Sandrini E, Ristau J, Liermann J, Meixner E, Forster T, Renkamp CK, Schlüter F, Rippke C, Debus J, Klüter S, Hörner-Rieber J. Stereotactic magnetic resonance-guided online adaptive radiotherapy of adrenal metastases combines high ablative doses with optimized sparing of organs at risk. Clin Transl Radiat Oncol 2023; 39:100567. [PMID: 36935853 PMCID: PMC10014324 DOI: 10.1016/j.ctro.2022.100567] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Purpose/Objective To evaluate the potential of stereotactic magnetic resonance-guided online adaptive radiotherapy (SMART) to fulfill dose recommendations for stereotactic body radiotherapy (SBRT) of adrenal metastases and spare organs at risk (OAR). Materials and methods In this subgroup analysis of a prospective registry trial, 22 patients with adrenal metastases were treated on a 0.35 T MR-Linac in 5-12 fractions with fraction doses of 4-10 Gy. Baseline plans were re-calculated to the anatomy of the day. These predicted plans were reoptimized to generate adapted plans. Baseline, predicted and adapted plans were compared with regard to PTV objectives, OAR constraints and published dose recommendations. Results The cohort comprised patients with large GTV (median 36.0 cc) and PTV (median 66.6 cc) and predominantly left-sided metastases. 179 of 181 fractions (98.9 %) were adapted because of PTV and/or OAR violations. Predicted plans frequently violated PTV coverage (99.4 %) and adjacent OAR constraints (bowel: 32.9 %, stomach: 32.8 %, duodenum: 10.4 %, kidneys: 10.8 %). In the predicted plans, the volume exposed to the maximum dose was exceeded up to 16-fold in the duodenum and up to 96-fold in the spinal cord. Adapted plans significantly reduced OAR violations by 96.4 % for the bowel, 98.5 % for the stomach, 85.6 % for the duodenum and 83.3 % for the kidneys. Plan adaptation improved PTV coverage from 82.7 ± 8.1 % to 90.6 ± 4.9 % (p < 0.001). Furthermore, recently established target volume thresholds could easily be fulfilled with SMART. No toxicities > grade II occurred. Conclusion SMART fulfills established GTV and PTV dose recommendations while simultaneously sparing organs at risk even in a challenging cohort.
Collapse
Affiliation(s)
- Philipp Hoegen
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Efthimios Katsigiannopulos
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Carolin Buchele
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elisabetta Sandrini
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jonas Ristau
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jakob Liermann
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Eva Meixner
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Tobias Forster
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - C Katharina Renkamp
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Fabian Schlüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Heidelberg, Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
8
|
Michalet M, Bettaïeb O, Khalfi S, Ghorbel A, Valdenaire S, Debuire P, Aillères N, Draghici R, De Méric De Bellefon M, Charissoux M, Boisselier P, Demontoy S, Marguerit A, Cabaillé M, Cantaloube M, Keskes A, Bouhafa T, Farcy-Jacquet MP, Fenoglietto P, Azria D, Riou O. Stereotactic MR-Guided Radiotherapy for Adrenal Gland Metastases: First Clinical Results. J Clin Med 2022; 12:jcm12010291. [PMID: 36615093 PMCID: PMC9821305 DOI: 10.3390/jcm12010291] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Stereotactic MR-guided Radiotherapy (MRgRT) is an interesting treatment option for adrenal gland metastases (AGM). We reviewed data from 12 consecutive patients treated with MRgRT for an AGM in our center between 14 November 2019 and 17 August 2021. Endpoints were tolerance assessment, the impact of adaptive treatment on target volume coverage and organs at risk (OAR) sparing, local control (LC), and overall survival (OS). The majority of patients were oligometastatic (58.3%), with 6 right AGM, 5 left AGM and 1 left and right AGM. The prescribed dose was 35 to 50 Gy in 3 to 5 fractions. The median PTV V95% on the initial plan was 95.74%. The median V95% of the PTVoptimized (PTVopt) on the initial plan was 95.26%. Thirty-eight (69%) fractions were adapted. The PTV coverage was significantly improved for adapted plans compared to predicted plans (median PTV V95% increased from 89.85% to 91.17%, p = 0.0478). The plan adaptation also significantly reduced Dmax for the stomach and small intestine. The treatment was well tolerated with no grade > 2 toxicities. With a median follow-up of 15.5 months, the 1−year LC and OS rate were 100% and 91.7%. Six patients (50%) presented a metastatic progression, and one patient (8.3%) died of metastatic evolution during the follow-up. Adaptation of the treatment plan improved the overall dosimetric quality of MRI-guided radiotherapy. A longer follow-up is required to assess late toxicities and clinical results.
Collapse
Affiliation(s)
- Morgan Michalet
- Montpellier Cancer Institute, Federation of Radiation Oncology of Mediterranean Occitanie, University Montpellier, INSERM U1194 IRCM, 34298 Montpellier, France
- Correspondence:
| | - Ons Bettaïeb
- Montpellier Cancer Institute, Federation of Radiation Oncology of Mediterranean Occitanie, University Montpellier, INSERM U1194 IRCM, 34298 Montpellier, France
| | - Samia Khalfi
- Montpellier Cancer Institute, Federation of Radiation Oncology of Mediterranean Occitanie, University Montpellier, INSERM U1194 IRCM, 34298 Montpellier, France
| | - Asma Ghorbel
- Montpellier Cancer Institute, Federation of Radiation Oncology of Mediterranean Occitanie, University Montpellier, INSERM U1194 IRCM, 34298 Montpellier, France
| | - Simon Valdenaire
- Montpellier Cancer Institute, Federation of Radiation Oncology of Mediterranean Occitanie, University Montpellier, INSERM U1194 IRCM, 34298 Montpellier, France
| | - Pierre Debuire
- Montpellier Cancer Institute, Federation of Radiation Oncology of Mediterranean Occitanie, University Montpellier, INSERM U1194 IRCM, 34298 Montpellier, France
| | - Norbert Aillères
- Montpellier Cancer Institute, Federation of Radiation Oncology of Mediterranean Occitanie, University Montpellier, INSERM U1194 IRCM, 34298 Montpellier, France
| | - Roxana Draghici
- Montpellier Cancer Institute, Federation of Radiation Oncology of Mediterranean Occitanie, University Montpellier, INSERM U1194 IRCM, 34298 Montpellier, France
| | - Mailys De Méric De Bellefon
- Montpellier Cancer Institute, Federation of Radiation Oncology of Mediterranean Occitanie, University Montpellier, INSERM U1194 IRCM, 34298 Montpellier, France
| | - Marie Charissoux
- Montpellier Cancer Institute, Federation of Radiation Oncology of Mediterranean Occitanie, University Montpellier, INSERM U1194 IRCM, 34298 Montpellier, France
| | - Pierre Boisselier
- Montpellier Cancer Institute, Federation of Radiation Oncology of Mediterranean Occitanie, University Montpellier, INSERM U1194 IRCM, 34298 Montpellier, France
| | - Sylvain Demontoy
- Montpellier Cancer Institute, Federation of Radiation Oncology of Mediterranean Occitanie, University Montpellier, INSERM U1194 IRCM, 34298 Montpellier, France
| | - Alexis Marguerit
- Montpellier Cancer Institute, Federation of Radiation Oncology of Mediterranean Occitanie, University Montpellier, INSERM U1194 IRCM, 34298 Montpellier, France
| | - Morgane Cabaillé
- Montpellier Cancer Institute, Federation of Radiation Oncology of Mediterranean Occitanie, University Montpellier, INSERM U1194 IRCM, 34298 Montpellier, France
| | - Marie Cantaloube
- Montpellier Cancer Institute, Federation of Radiation Oncology of Mediterranean Occitanie, University Montpellier, INSERM U1194 IRCM, 34298 Montpellier, France
| | - Aïcha Keskes
- Montpellier Cancer Institute, Federation of Radiation Oncology of Mediterranean Occitanie, University Montpellier, INSERM U1194 IRCM, 34298 Montpellier, France
| | - Touria Bouhafa
- CHU Hassan II, Radiotherapy and Brachyterapy, 30050 Fez, Morocco
| | - Marie-Pierre Farcy-Jacquet
- Institut de Cancérologie du Gard, University Federation of Radiation Oncology of Mediterranean Occitanie, CHU Carémeau, 30900 Nîmes, France
| | - Pascal Fenoglietto
- Montpellier Cancer Institute, Federation of Radiation Oncology of Mediterranean Occitanie, University Montpellier, INSERM U1194 IRCM, 34298 Montpellier, France
| | - David Azria
- Montpellier Cancer Institute, Federation of Radiation Oncology of Mediterranean Occitanie, University Montpellier, INSERM U1194 IRCM, 34298 Montpellier, France
| | - Olivier Riou
- Montpellier Cancer Institute, Federation of Radiation Oncology of Mediterranean Occitanie, University Montpellier, INSERM U1194 IRCM, 34298 Montpellier, France
| |
Collapse
|
9
|
Singer L, Scholey J. Finding Resonance: Using MRI to Improve the Care of Oligometastatic Disease. Int J Radiat Oncol Biol Phys 2022; 114:936-940. [DOI: 10.1016/j.ijrobp.2022.06.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/04/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
|
10
|
Gurney-Champion OJ, Landry G, Redalen KR, Thorwarth D. Potential of Deep Learning in Quantitative Magnetic Resonance Imaging for Personalized Radiotherapy. Semin Radiat Oncol 2022; 32:377-388. [DOI: 10.1016/j.semradonc.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|