1
|
Nielsen CP, Lorenzen EL, Jensen K, Eriksen JG, Johansen J, Gyldenkerne N, Zukauskaite R, Kjellgren M, Maare C, Lønkvist CK, Nowicka-Matus K, Szejniuk WM, Farhadi M, Ujmajuridze Z, Marienhagen K, Johansen TS, Friborg J, Overgaard J, Hansen CR. Interobserver variation in organs at risk contouring in head and neck cancer according to the DAHANCA guidelines. Radiother Oncol 2024; 197:110337. [PMID: 38772479 DOI: 10.1016/j.radonc.2024.110337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/24/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Affiliation(s)
- Camilla Panduro Nielsen
- Laboratory of Radiation Physics, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Ebbe L Lorenzen
- Laboratory of Radiation Physics, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kenneth Jensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| | - Jesper Grau Eriksen
- Department of Oncology, Aarhus University Hospital, Denmark; Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
| | - Jørgen Johansen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark; Department of Oncology, Odense University Hospital, Denmark
| | | | - Ruta Zukauskaite
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Oncology, Odense University Hospital, Denmark
| | - Martin Kjellgren
- Laboratory of Radiation Physics, Odense University Hospital, Odense, Denmark
| | - Christian Maare
- Department of Oncology, Copenhagen University Hospital Herlev, Denmark
| | | | - Kinga Nowicka-Matus
- Department of Oncology & Clinical Cancer Research Center, Aalborg University Hospital, Denmark
| | - Weronika Maria Szejniuk
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark; Department of Oncology & Clinical Cancer Research Center, Aalborg University Hospital, Denmark; Department of Clinical Medicine, Aalborg University, Denmark
| | - Mohammad Farhadi
- Department of Oncology, Zealand University Hospital Næstved, Denmark
| | - Zaza Ujmajuridze
- Department of Oncology, Zealand University Hospital Næstved, Denmark
| | | | - Tanja Stagaard Johansen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark; Department of Oncology, Rigshospitalet, Denmark
| | | | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
| | - Christian Rønn Hansen
- Laboratory of Radiation Physics, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Danish Centre for Particle Therapy, Aarhus University Hospital, Denmark
| |
Collapse
|
2
|
Gan Y, Langendijk JA, Oldehinkel E, Lin Z, Both S, Brouwer CL. Optimal timing of re-planning for head and neck adaptive radiotherapy. Radiother Oncol 2024; 194:110145. [PMID: 38341093 DOI: 10.1016/j.radonc.2024.110145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND AND PURPOSE Adaptive radiotherapy (ART) relies on re-planning to correct treatment variations, but the optimal timing of re-planning to account for dose changes in head and neck organs at risk (OARs) is still under investigation. We aimed to find out the optimal timing of re-planning in head and neck ART. MATERIALS AND METHODS A total of 110 head and neck cancer patients were retrospectively enrolled. A semi auto-segmentation method was applied to obtain the weekly mean dose (Dmean) to OARs. The K-nearest-neighbour method was used for missing data imputation of weekly Dmean. A dose deviation map was built using the planning Dmean and weekly Dmean values and then used to simulate different ART scenarios consisting of 1 to 6 re-plannings. The difference between accumulated Dmean and planning Dmean before re-planning (ΔDmean_acc_noART) and after re-planning (ΔDmean_acc_ART) were evaluated and compared. RESULTS Among all the OARs, supraglottic showed the largest ΔDmean_acc_noART (1.23 ± 3.13 Gy) and most cases of ΔDmean_acc_noART > 3 Gy (26 patients). The 3rd week is suggested in the optimal timing of re-planning for 10 OARs. For all the organs except arytenoid, 2 re-plannings were able to guarantee the ΔDmean_acc_ART below 3 Gy while the average |ΔDmean_acc_ART| was below 1 Gy. ART scenarios of 2_4, 3_4, 3_5 (week of re-planning separated with "_") were able to guarantee ΔDmean_acc_ART of 99 % of patients below 3 Gy simultaneously for 19 OARs. CONCLUSIONS The optimal timing of re-planning was suggested for different organs at risk in head and neck adaptive radiotherapy. Generic scenarios of timing and frequency for re-planning can be applied to guarantee the increase of accumulated mean dose within 3 Gy simultaneously for multiple organs.
Collapse
Affiliation(s)
- Yong Gan
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, Groningen, the Netherlands; Shantou University, Cancer Hospital of Shantou University Medical College, Department of Radiotherapy, China.
| | - Johannes A Langendijk
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, Groningen, the Netherlands
| | - Edwin Oldehinkel
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, Groningen, the Netherlands
| | - Zhixiong Lin
- Shantou University, Cancer Hospital of Shantou University Medical College, Department of Radiotherapy, China
| | - Stefan Both
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, Groningen, the Netherlands
| | - Charlotte L Brouwer
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, Groningen, the Netherlands
| |
Collapse
|
3
|
Nuyts S, Bollen H, Eisbruch A, Strojan P, Mendenhall WM, Ng SP, Ferlito A. Adaptive radiotherapy for head and neck cancer: Pitfalls and possibilities from the radiation oncologist's point of view. Cancer Med 2024; 13:e7192. [PMID: 38650546 PMCID: PMC11036082 DOI: 10.1002/cam4.7192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Patients with head and neck cancer (HNC) may experience substantial anatomical changes during the course of radiotherapy treatment. The implementation of adaptive radiotherapy (ART) proves effective in managing the consequent impact on the planned dose distribution. METHODS This narrative literature review comprehensively discusses the diverse strategies of ART in HNC and the documented dosimetric and clinical advantages associated with these approaches, while also addressing the current challenges for integration of ART into clinical practice. RESULTS AND CONCLUSION Although based on mainly non-randomized and retrospective trials, there is accumulating evidence that ART has the potential to reduce toxicity and improve quality of life and tumor control in HNC patients treated with RT. However, several questions remain regarding accurate patient selection, the ideal frequency and timing of replanning, and the appropriate way for image registration and dose calculation. Well-designed randomized prospective trials, with a predetermined protocol for both image registration and dose summation, are urgently needed to further investigate the dosimetric and clinical benefits of ART.
Collapse
Affiliation(s)
- Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of OncologyKU LeuvenLeuvenBelgium
- Department of Radiation OncologyLeuven Cancer Institute, University Hospitals LeuvenLeuvenBelgium
| | - Heleen Bollen
- Laboratory of Experimental Radiotherapy, Department of OncologyKU LeuvenLeuvenBelgium
- Department of Radiation OncologyLeuven Cancer Institute, University Hospitals LeuvenLeuvenBelgium
| | - Avrahram Eisbruch
- Department of Radiation OncologyUniversity of MichiganAnn ArborMichiganUSA
| | - Primoz Strojan
- Department of Radiation Oncology Institute of OncologyUniversity of LjubljanaLjubljanaSlovenia
| | - William M. Mendenhall
- Department of Radiation OncologyUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Sweet Ping Ng
- Department of Radiation OncologyOlivia Newton‐John Cancer and Wellness Centre, Austin HealthMelbourneAustralia
| | - Alfio Ferlito
- Coordinator International Head and Neck Scientific GroupUdineItaly
| |
Collapse
|
4
|
Fernandes MG, Bussink J, Wijsman R, Stam B, Monshouwer R. Estimating how contouring differences affect normal tissue complication probability modelling. Phys Imaging Radiat Oncol 2024; 29:100533. [PMID: 38292649 PMCID: PMC10825684 DOI: 10.1016/j.phro.2024.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 12/30/2023] [Indexed: 02/01/2024] Open
Abstract
Background and purpose Normal tissue complication probability (NTCP) models are developed from large retrospective datasets where automatic contouring is often used to contour the organs at risk. This study proposes a methodology to estimate how discrepancies between two sets of contours are reflected on NTCP model performance. We apply this methodology to heart contours within a dataset of non-small cell lung cancer (NSCLC) patients. Materials and methods One of the contour sets is designated the ground truth and a dosimetric parameter derived from it is used to simulate outcomes via a predefined NTCP relationship. For each simulated outcome, the selected dosimetric parameters associated with each contour set are individually used to fit a toxicity model and their performance is compared. Our dataset comprised 605 stage IIA-IIIB NSCLC patients. Manual, deep learning, and atlas-based heart contours were available. Results How contour differences were reflected in NTCP model performance depended on the slope of the predefined model, the dosimetric parameter utilized, and the size of the cohort. The impact of contour differences on NTCP model performance increased with steeper NTCP curves. In our dataset, parameters on the low range of the dose-volume histogram were more robust to contour differences. Conclusions Our methodology can be used to estimate whether a given contouring model is fit for NTCP model development. For the heart in comparable datasets, average Dice should be at least as high as between our manual and deep learning contours for shallow NTCP relationships (88.5 ± 4.5 %) and higher for steep relationships.
Collapse
Affiliation(s)
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robin Wijsman
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Barbara Stam
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - René Monshouwer
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Chen L, Platzer P, Reschl C, Schafasand M, Nachankar A, Lukas Hajdusich C, Kuess P, Stock M, Habraken S, Carlino A. Validation of a deep-learning segmentation model for adult and pediatric head and neck radiotherapy in different patient positions. Phys Imaging Radiat Oncol 2024; 29:100527. [PMID: 38222671 PMCID: PMC10787237 DOI: 10.1016/j.phro.2023.100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024] Open
Abstract
Background and purpose Autocontouring for radiotherapy has the potential to significantly save time and reduce interobserver variability. We aimed to assess the performance of a commercial autocontouring model for head and neck (H&N) patients in eight orientations relevant to particle therapy with fixed beam lines, focusing on validation and implementation for routine clinical use. Materials and methods Autocontouring was performed on sixteen organs at risk (OARs) for 98 adult and pediatric patients with 137 H&N CT scans in eight orientations. A geometric comparison of the autocontours and manual segmentations was performed using the Hausdorff Distance 95th percentile, Dice Similarity Coefficient (DSC) and surface DSC and compared to interobserver variability where available. Additional qualitative scoring and dose-volume-histogram (DVH) parameters analyses were performed for twenty patients in two positions, consisting of scoring on a 0-3 scale based on clinical usability and comparing the mean (Dmean) and near-maximum (D2%) dose, respectively. Results For the geometric analysis, the model performance in head-first-supine straight and hyperextended orientations was in the same range as the interobserver variability. HD95, DSC and surface DSC was heterogeneous in other orientations. No significant geometric differences were found between pediatric and adult autocontours. The qualitative scoring yielded a median score of ≥ 2 for 13/16 OARs while 7/32 DVH parameters were significantly different. Conclusions For head-first-supine straight and hyperextended scans, we found that 13/16 OAR autocontours were suited for use in daily clinical practice and subsequently implemented. Further development is needed for other patient orientations before implementation.
Collapse
Affiliation(s)
- Linda Chen
- MedAustron Ion Therapy Center, Department of Medical Physics, Wiener Neustadt, Austria
- Erasmus MC Cancer Institute, University Medical Center, Department of Radiotherapy, Rotterdam, the Netherlands
- Delft University of Technology, Faculty of Mechanical, Maritime and Materials Engineering, Delft, the Netherlands
- Leiden University Medical Center, Faculty of Medicine, Leiden, the Netherlands
| | - Patricia Platzer
- MedAustron Ion Therapy Center, Department of Medical Physics, Wiener Neustadt, Austria
- Fachhochschule Wiener Neustadt, Department MedTech, Wiener Neustadt, Austria
| | - Christian Reschl
- MedAustron Ion Therapy Center, Department of Medical Physics, Wiener Neustadt, Austria
| | - Mansure Schafasand
- MedAustron Ion Therapy Center, Department of Medical Physics, Wiener Neustadt, Austria
- Medical University of Vienna, Department of Radiation Oncology, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Department of Oncology, Krems an der Donau, Austria
| | - Ankita Nachankar
- MedAustron Ion Therapy Center, Department of Medical Physics, Wiener Neustadt, Austria
- ACMIT Gmbh, Department of Medicine, Wiener Neustadt, Austria
| | | | - Peter Kuess
- Medical University of Vienna, Department of Radiation Oncology, Vienna, Austria
| | - Markus Stock
- MedAustron Ion Therapy Center, Department of Medical Physics, Wiener Neustadt, Austria
- Karl Landsteiner University of Health Sciences, Department of Oncology, Krems an der Donau, Austria
| | - Steven Habraken
- Erasmus MC Cancer Institute, University Medical Center, Department of Radiotherapy, Rotterdam, the Netherlands
- Holland Proton Therapy Center, Department of Medical Physics & Informatics, Delft, the Netherlands
| | - Antonio Carlino
- MedAustron Ion Therapy Center, Department of Medical Physics, Wiener Neustadt, Austria
| |
Collapse
|
6
|
Liu P, Sun Y, Zhao X, Yan Y. Deep learning algorithm performance in contouring head and neck organs at risk: a systematic review and single-arm meta-analysis. Biomed Eng Online 2023; 22:104. [PMID: 37915046 PMCID: PMC10621161 DOI: 10.1186/s12938-023-01159-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023] Open
Abstract
PURPOSE The contouring of organs at risk (OARs) in head and neck cancer radiation treatment planning is a crucial, yet repetitive and time-consuming process. Recent studies have applied deep learning (DL) algorithms to automatically contour head and neck OARs. This study aims to conduct a systematic review and meta-analysis to summarize and analyze the performance of DL algorithms in contouring head and neck OARs. The objective is to assess the advantages and limitations of DL algorithms in contour planning of head and neck OARs. METHODS This study conducted a literature search of Pubmed, Embase and Cochrane Library databases, to include studies related to DL contouring head and neck OARs, and the dice similarity coefficient (DSC) of four categories of OARs from the results of each study are selected as effect sizes for meta-analysis. Furthermore, this study conducted a subgroup analysis of OARs characterized by image modality and image type. RESULTS 149 articles were retrieved, and 22 studies were included in the meta-analysis after excluding duplicate literature, primary screening, and re-screening. The combined effect sizes of DSC for brainstem, spinal cord, mandible, left eye, right eye, left optic nerve, right optic nerve, optic chiasm, left parotid, right parotid, left submandibular, and right submandibular are 0.87, 0.83, 0.92, 0.90, 0.90, 0.71, 0.74, 0.62, 0.85, 0.85, 0.82, and 0.82, respectively. For subgroup analysis, the combined effect sizes for segmentation of the brainstem, mandible, left optic nerve, and left parotid gland using CT and MRI images are 0.86/0.92, 0.92/0.90, 0.71/0.73, and 0.84/0.87, respectively. Pooled effect sizes using 2D and 3D images of the brainstem, mandible, left optic nerve, and left parotid gland for contouring are 0.88/0.87, 0.92/0.92, 0.75/0.71 and 0.87/0.85. CONCLUSIONS The use of automated contouring technology based on DL algorithms is an essential tool for contouring head and neck OARs, achieving high accuracy, reducing the workload of clinical radiation oncologists, and providing individualized, standardized, and refined treatment plans for implementing "precision radiotherapy". Improving DL performance requires the construction of high-quality data sets and enhancing algorithm optimization and innovation.
Collapse
Affiliation(s)
- Peiru Liu
- General Hospital of Northern Theater Command, Department of Radiation Oncology, Shenyang, China
- Beifang Hospital of China Medical University, Shenyang, China
| | - Ying Sun
- General Hospital of Northern Theater Command, Department of Radiation Oncology, Shenyang, China
| | - Xinzhuo Zhao
- Shenyang University of Technology, School of Electrical Engineering,, Shenyang, China
| | - Ying Yan
- General Hospital of Northern Theater Command, Department of Radiation Oncology, Shenyang, China.
| |
Collapse
|
7
|
Gan Y, Langendijk JA, van der Schaaf A, van den Bosch L, Oldehinkel E, Lin Z, Both S, Brouwer CL. An efficient strategy to select head and neck cancer patients for adaptive radiotherapy. Radiother Oncol 2023; 186:109763. [PMID: 37353058 DOI: 10.1016/j.radonc.2023.109763] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND AND PURPOSE Adaptive radiotherapy (ART) is workload intensive but only benefits a subgroup of patients. We aimed to develop an efficient strategy to select candidates for ART in the first two weeks of head and neck cancer (HNC) radiotherapy. MATERIALS AND METHODS This study retrospectively enrolled 110 HNC patients who underwent modern photon radiotherapy with at least 5 weekly in-treatment re-scan CTs. A semi auto-segmentation method was applied to obtain the weekly mean dose (Dmean) to OARs. A comprehensive NTCP-profile was applied to obtain NTCP's. The difference between planning and actual values of Dmean (ΔDmean) and dichotomized difference of clinical relevance (BIOΔNTCP) were used for modelling to determine the cut-off maximum ΔDmean of OARs in week 1 and 2 (maxΔDmean_1 and maxΔDmean_2). Four strategies to select candidates for ART, using cut-off maxΔDmean were compared. RESULTS The Spearman's rank correlation test showed significant positive correlation between maxΔDmean and BIOΔNTCP (p-value <0.001). For major BIOΔNTCP (>5%) of acute and late toxicity, 10.9% and 4.5% of the patients were true candidates for ART. Strategy C using both cut-off maxΔDmean_1 (3.01 and 5.14 Gy) and cut-off maxΔDmean_2 (3.41 and 5.30 Gy) showed the best sensitivity, specificity, positive and negative predictive values (0.92, 0.82, 0.38, 0.99 for acute toxicity and 1.00, 0.92, 0.38, 1.00 for late toxicity, respectively). CONCLUSIONS We propose an efficient selection strategy for ART that is able to classify the subgroup of patients with >5% BIOΔNTCP for late toxicity using imaging in the first two treatment weeks.
Collapse
Affiliation(s)
- Yong Gan
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, Groningen, The Netherlands; Shantou University, Cancer Hospital of Shantou University Medical College, Department of Radiotherapy, China.
| | - Johannes A Langendijk
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, Groningen, The Netherlands
| | - Arjen van der Schaaf
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, Groningen, The Netherlands
| | - Lisa van den Bosch
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, Groningen, The Netherlands
| | - Edwin Oldehinkel
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, Groningen, The Netherlands
| | - Zhixiong Lin
- Shantou University, Cancer Hospital of Shantou University Medical College, Department of Radiotherapy, China
| | - Stefan Both
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, Groningen, The Netherlands
| | - Charlotte L Brouwer
- University of Groningen, University Medical Center Groningen, Department of Radiation Oncology, Groningen, The Netherlands
| |
Collapse
|
8
|
Franzese C, Dei D, Lambri N, Teriaca MA, Badalamenti M, Crespi L, Tomatis S, Loiacono D, Mancosu P, Scorsetti M. Enhancing Radiotherapy Workflow for Head and Neck Cancer with Artificial Intelligence: A Systematic Review. J Pers Med 2023; 13:946. [PMID: 37373935 DOI: 10.3390/jpm13060946] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Head and neck cancer (HNC) is characterized by complex-shaped tumors and numerous organs at risk (OARs), inducing challenging radiotherapy (RT) planning, optimization, and delivery. In this review, we provided a thorough description of the applications of artificial intelligence (AI) tools in the HNC RT process. METHODS The PubMed database was queried, and a total of 168 articles (2016-2022) were screened by a group of experts in radiation oncology. The group selected 62 articles, which were subdivided into three categories, representing the whole RT workflow: (i) target and OAR contouring, (ii) planning, and (iii) delivery. RESULTS The majority of the selected studies focused on the OARs segmentation process. Overall, the performance of AI models was evaluated using standard metrics, while limited research was found on how the introduction of AI could impact clinical outcomes. Additionally, papers usually lacked information about the confidence level associated with the predictions made by the AI models. CONCLUSIONS AI represents a promising tool to automate the RT workflow for the complex field of HNC treatment. To ensure that the development of AI technologies in RT is effectively aligned with clinical needs, we suggest conducting future studies within interdisciplinary groups, including clinicians and computer scientists.
Collapse
Affiliation(s)
- Ciro Franzese
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Damiano Dei
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Nicola Lambri
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Maria Ausilia Teriaca
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Marco Badalamenti
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Leonardo Crespi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
- Centre for Health Data Science, Human Technopole, 20157 Milan, Italy
| | - Stefano Tomatis
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Daniele Loiacono
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| | - Pietro Mancosu
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Marta Scorsetti
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| |
Collapse
|
9
|
Zhong Y, Guo Y, Fang Y, Wu Z, Wang J, Hu W. Geometric and dosimetric evaluation of deep learning based auto-segmentation for clinical target volume on breast cancer. J Appl Clin Med Phys 2023:e13951. [PMID: 36920901 DOI: 10.1002/acm2.13951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Recently, target auto-segmentation techniques based on deep learning (DL) have shown promising results. However, inaccurate target delineation will directly affect the treatment planning dose distribution and the effect of subsequent radiotherapy work. Evaluation based on geometric metrics alone may not be sufficient for target delineation accuracy assessment. The purpose of this paper is to validate the performance of automatic segmentation with dosimetric metrics and try to construct new evaluation geometric metrics to comprehensively understand the dose-response relationship from the perspective of clinical application. MATERIALS AND METHODS A DL-based target segmentation model was developed by using 186 manual delineation modified radical mastectomy breast cancer cases. The resulting DL model were used to generate alternative target contours in a new set of 48 patients. The Auto-plan was reoptimized to ensure the same optimized parameters as the reference Manual-plan. To assess the dosimetric impact of target auto-segmentation, not only common geometric metrics but also new spatial parameters with distance and relative volume ( R V ${R}_V$ ) to target were used. Correlations were performed using Spearman's correlation between segmentation evaluation metrics and dosimetric changes. RESULTS Only strong (|R2 | > 0.6, p < 0.01) or moderate (|R2 | > 0.4, p < 0.01) Pearson correlation was established between the traditional geometric metric and three dosimetric evaluation indices to target (conformity index, homogeneity index, and mean dose). For organs at risk (OARs), inferior or no significant relationship was found between geometric parameters and dosimetric differences. Furthermore, we found that OARs dose distribution was affected by boundary error of target segmentation instead of distance and R V ${R}_V$ to target. CONCLUSIONS Current geometric metrics could reflect a certain degree of dose effect of target variation. To find target contour variations that do lead to OARs dosimetry changes, clinically oriented metrics that more accurately reflect how segmentation quality affects dosimetry should be constructed.
Collapse
Affiliation(s)
- Yang Zhong
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Ying Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Yingtao Fang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Zhiqiang Wu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Jiazhou Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Weigang Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| |
Collapse
|
10
|
Mackay K, Bernstein D, Glocker B, Kamnitsas K, Taylor A. A Review of the Metrics Used to Assess Auto-Contouring Systems in Radiotherapy. Clin Oncol (R Coll Radiol) 2023; 35:354-369. [PMID: 36803407 DOI: 10.1016/j.clon.2023.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/05/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
Auto-contouring could revolutionise future planning of radiotherapy treatment. The lack of consensus on how to assess and validate auto-contouring systems currently limits clinical use. This review formally quantifies the assessment metrics used in studies published during one calendar year and assesses the need for standardised practice. A PubMed literature search was undertaken for papers evaluating radiotherapy auto-contouring published during 2021. Papers were assessed for types of metric and the methodology used to generate ground-truth comparators. Our PubMed search identified 212 studies, of which 117 met the criteria for clinical review. Geometric assessment metrics were used in 116 of 117 studies (99.1%). This includes the Dice Similarity Coefficient used in 113 (96.6%) studies. Clinically relevant metrics, such as qualitative, dosimetric and time-saving metrics, were less frequently used in 22 (18.8%), 27 (23.1%) and 18 (15.4%) of 117 studies, respectively. There was heterogeneity within each category of metric. Over 90 different names for geometric measures were used. Methods for qualitative assessment were different in all but two papers. Variation existed in the methods used to generate radiotherapy plans for dosimetric assessment. Consideration of editing time was only given in 11 (9.4%) papers. A single manual contour as a ground-truth comparator was used in 65 (55.6%) studies. Only 31 (26.5%) studies compared auto-contours to usual inter- and/or intra-observer variation. In conclusion, significant variation exists in how research papers currently assess the accuracy of automatically generated contours. Geometric measures are the most popular, however their clinical utility is unknown. There is heterogeneity in the methods used to perform clinical assessment. Considering the different stages of system implementation may provide a framework to decide the most appropriate metrics. This analysis supports the need for a consensus on the clinical implementation of auto-contouring.
Collapse
Affiliation(s)
- K Mackay
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK.
| | - D Bernstein
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK
| | - B Glocker
- Department of Computing, Imperial College London, South Kensington Campus, London, UK
| | - K Kamnitsas
- Department of Computing, Imperial College London, South Kensington Campus, London, UK; Department of Engineering Science, University of Oxford, Oxford, UK
| | - A Taylor
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK
| |
Collapse
|
11
|
Claessens M, Oria CS, Brouwer CL, Ziemer BP, Scholey JE, Lin H, Witztum A, Morin O, Naqa IE, Van Elmpt W, Verellen D. Quality Assurance for AI-Based Applications in Radiation Therapy. Semin Radiat Oncol 2022; 32:421-431. [DOI: 10.1016/j.semradonc.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Scandurra D, Meijer T, Free J, van den Hoek J, Kelder L, Oldehinkel E, Steenbakkers R, Both S, Langendijk J. Evaluation of robustly optimised intensity modulated proton therapy for nasopharyngeal carcinoma. Radiother Oncol 2022; 168:221-228. [DOI: 10.1016/j.radonc.2022.01.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 02/08/2023]
|