1
|
Chetty IJ, Cai B, Chuong MD, Dawes SL, Hall WA, Helms AR, Kirby S, Laugeman E, Mierzwa M, Pursley J, Ray X, Subashi E, Henke LE. Quality and Safety Considerations for Adaptive Radiation Therapy: An ASTRO White Paper. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)03474-6. [PMID: 39424080 DOI: 10.1016/j.ijrobp.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/06/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE Adaptive radiation therapy (ART) is the latest topic in a series of white papers published by the American Society for Radiation Oncology addressing quality processes and patient safety. ART widens the therapeutic index by improving the precision of radiation dose to targets, allowing for dose escalation and/or minimization of dose to normal tissue. ART is performed via offline or online methods; offline ART is the process of replanning a patient's treatment plan between fractions, whereas online ART involves plan adjustment with the patient on the treatment table. This is achieved with in-room imaging capable of assessing anatomic changes and the ability to reoptimize the treatment plan rapidly during the treatment session. Although ART has occurred in its simplest forms in clinical practice for decades, recent technological developments have enabled more clinical applications of ART. With increased clinical prevalence, compressed timelines, and the associated complexity of ART, quality and safety considerations are an important focus area. METHODS The American Society for Radiation Oncology convened an interdisciplinary task force to provide expert consensus on key workflows and processes for ART. Recommendations were created using a consensus-building methodology, and task force members indicated their level of agreement based on a 5-point Likert scale, from "strongly agree" to "strongly disagree." A prespecified threshold of ≥75% of raters selecting "strongly agree" or "agree" indicated consensus. Content not meeting this threshold was removed or revised. SUMMARY Establishing and maintaining an adaptive program requires a team-based approach, appropriately trained and credentialed specialists, significant resources, specialized technology, and implementation time. A comprehensive quality assurance program must be developed, using established guidance, to make sure all forms of ART are performed in a safe and effective manner. Patient safety when delivering ART is everyone's responsibility, and professional organizations, regulators, vendors, and end users must demonstrate a clear commitment to working together to deliver the highest levels of quality and safety.
Collapse
Affiliation(s)
- Indrin J Chetty
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Bin Cai
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas
| | - Michael D Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | | | - William A Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Amanda R Helms
- American Society for Radiation Oncology, Arlington, Virginia
| | - Suzanne Kirby
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Eric Laugeman
- Department of Radiation Oncology, Washington University in St Louis, St Louis, Missouri
| | - Michelle Mierzwa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Jennifer Pursley
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Xenia Ray
- Department of Radiation Medicine & Applied Sciences, University of California, San Diego, California
| | - Ergys Subashi
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lauren E Henke
- Department of Radiation Oncology, Case Western University Hospitals, Cleveland, Ohio
| |
Collapse
|
2
|
Fusella M, Alvarez Andres E, Villegas F, Milan L, Janssen TM, Dal Bello R, Garibaldi C, Placidi L, Cusumano D. Results of 2023 survey on the use of synthetic computed tomography for magnetic resonance Imaging-only radiotherapy: Current status and future steps. Phys Imaging Radiat Oncol 2024; 32:100652. [PMID: 39381612 PMCID: PMC11460247 DOI: 10.1016/j.phro.2024.100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Background and purpose The emergence of synthetic CT (sCT) in MR-guided radiotherapy (MRgRT) represents a significant advancement, supporting MR-only workflows and online treatment adaptation. However, the lack of consensus guidelines has led to varied practices. This study reports results from a 2023 ESTRO survey aimed at defining current practices in sCT development and use. Materials and methods An survey was distributed to ESTRO members, including 98 questions across four sections on sCT algorithm generation and usage. By June 2023, 100 centers participated. The survey revealed diverse clinical experiences and roles, with primary sCT use in the pelvis (60%), brain (15%), abdomen (11%), thorax (8%), and head-and-neck (6%). sCT was mostly used for conventional fractionation treatments (68%), photon SBRT (40%), and palliative cases (28%), with limited use in proton therapy (4%). Results Conditional GANs and GANs were the most used neural network architectures, operating mainly on 1.5 T and 3 T MRI images. Less than half used paired images for training, and only 20% performed image selection. Key MR image quality parameters included magnetic field homogeneity and spatial integrity. Half of the respondents lacked a dedicated sCT-QA program, and many did not apply sanitychecks before calculation. Selection strategies included age, weight, and metal artifacts. A strong consensus (95%) emerged for vendor neutral guidelines. Conclusion The survey highlights the need for expert-based, vendor-neutral guidelines to standardize sCT tools, metrics, and clinical protocols, ensuring effective sCT use in MR-guided radiotherapy.
Collapse
Affiliation(s)
- M. Fusella
- Abano Terme Hospital, Department of Radiation Oncology, Abano Terme (Padua), Italy
| | - E. Alvarez Andres
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - F. Villegas
- Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
- Radiotherapy Physics and Engineering, Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Solna, Sweden
| | - L. Milan
- Medical Physics Unit, Imaging Institute of Southern Switzerland (IIMSI), Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - TM. Janssen
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - R. Dal Bello
- University Hospital Zurich and University of Zurich, Department of Radiation Oncology, Zurich, Switzerland
| | - C. Garibaldi
- Unit of Radiation Research, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - L. Placidi
- Fondazione Policlinico Universitario Agostino Gemelli, Medical Physics Unit, Roma, Italy
| | - D. Cusumano
- Mater Olbia Hospital, Department of Medical Physics, Olbia, (SS), Italy
| |
Collapse
|
3
|
Villegas F, Dal Bello R, Alvarez-Andres E, Dhont J, Janssen T, Milan L, Robert C, Salagean GAM, Tejedor N, Trnková P, Fusella M, Placidi L, Cusumano D. Challenges and opportunities in the development and clinical implementation of artificial intelligence based synthetic computed tomography for magnetic resonance only radiotherapy. Radiother Oncol 2024; 198:110387. [PMID: 38885905 DOI: 10.1016/j.radonc.2024.110387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Synthetic computed tomography (sCT) generated from magnetic resonance imaging (MRI) can serve as a substitute for planning CT in radiation therapy (RT), thereby removing registration uncertainties associated with multi-modality imaging pairing, reducing costs and patient radiation exposure. CE/FDA-approved sCT solutions are nowadays available for pelvis, brain, and head and neck, while more complex deep learning (DL) algorithms are under investigation for other anatomic sites. The main challenge in achieving a widespread clinical implementation of sCT lies in the absence of consensus on sCT commissioning and quality assurance (QA), resulting in variation of sCT approaches across different hospitals. To address this issue, a group of experts gathered at the ESTRO Physics Workshop 2022 to discuss the integration of sCT solutions into clinics and report the process and its outcomes. This position paper focuses on aspects of sCT development and commissioning, outlining key elements crucial for the safe implementation of an MRI-only RT workflow.
Collapse
Affiliation(s)
- Fernanda Villegas
- Department of Oncology-Pathology, Karolinska Institute, Solna, Sweden; Radiotherapy Physics and Engineering, Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Solna, Sweden
| | - Riccardo Dal Bello
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Emilie Alvarez-Andres
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Jennifer Dhont
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Institut Jules Bordet, Department of Medical Physics, Brussels, Belgium; Université Libre De Bruxelles (ULB), Radiophysics and MRI Physics Laboratory, Brussels, Belgium
| | - Tomas Janssen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lisa Milan
- Medical Physics Unit, Imaging Institute of Southern Switzerland (IIMSI), Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Charlotte Robert
- UMR 1030 Molecular Radiotherapy and Therapeutic Innovations, ImmunoRadAI, Paris-Saclay University, Institut Gustave Roussy, Inserm, Villejuif, France; Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Ghizela-Ana-Maria Salagean
- Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania; Department of Radiation Oncology, TopMed Medical Centre, Targu Mures, Romania
| | - Natalia Tejedor
- Department of Medical Physics and Radiation Protection, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Petra Trnková
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Marco Fusella
- Department of Radiation Oncology, Abano Terme Hospital, Italy
| | - Lorenzo Placidi
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Rome, Italy.
| | - Davide Cusumano
- Mater Olbia Hospital, Strada Statale Orientale Sarda 125, Olbia, Sassari, Italy
| |
Collapse
|
4
|
Pouymayou B, Perez-Haas Y, Allemann F, Saguner AM, Andratschke N, Guckenberger M, Tanadini-Lang S, Wilke L. Characterization of spatial integrity with active and passive implants in a low-field magnetic resonance linear accelerator scanner. Phys Imaging Radiat Oncol 2024; 30:100576. [PMID: 38644933 PMCID: PMC11031795 DOI: 10.1016/j.phro.2024.100576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/23/2024] Open
Abstract
Background and Purpose Standard imaging protocols can guarantee the spatial integrity of magnetic resonance (MR) images utilized in radiotherapy. However, the presence of metallic implants can significantly compromise this integrity. Our proposed method aims at characterizing the geometric distortions induced by both passive and active implants commonly encountered in planning images obtained from a low-field 0.35 T MR-linear accelerator (LINAC). Materials and Methods We designed a spatial integrity phantom defining 1276 control points and covering a field of view of 20x20x20 cm3. This phantom was scanned in a water tank with and without different implants used in hip and shoulder arthroplasty procedures as well as with active cardiac stimulators. The images were acquired with the clinical planning sequence (balanced steady-state free-precession, resolution 1.5x1.5x1.5 mm3). Spatial integrity was assessed by the Euclidian distance between the control point detected on the image and their theoretical locations. A first plane free of artefact (FPFA) was defined to evaluate the spatial integrity beyond the larger banding artefact. Results In the region extending up to 20 mm from the largest banding artefacts, the tested passive and active implants could cause distortions up to 2 mm and 3 mm, respectively. Beyond this region the spatial integrity was recovered and the image could be considered as unaffected by the implants. Conclusions We characterized the impact of common implants on a low field MR-LINAC planning sequence. These measurements could support the creation of extra margin while contouring organs at risk and target volumes in the vicinity of implants.
Collapse
Affiliation(s)
- Bertrand Pouymayou
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Yoel Perez-Haas
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Florin Allemann
- Department of Traumatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Ardan M. Saguner
- Department of Cardiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Lotte Wilke
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Chea M, Croisé M, Huet C, Bassinet C, Benadjaoud MA, Jenny C. MR compatible detectors assessment for a 0.35 T MR-linac commissioning. Radiat Oncol 2024; 19:40. [PMID: 38509543 PMCID: PMC10956263 DOI: 10.1186/s13014-024-02431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/11/2024] [Indexed: 03/22/2024] Open
Abstract
PURPOSE To assess a large panel of MR compatible detectors on the full range of measurements required for a 0.35 T MR-linac commissioning by using a specific statistical method represented as a continuum of comparison with the Monte Carlo (MC) TPS calculations. This study also describes the commissioning tests and the secondary MC dose calculation validation. MATERIAL AND METHODS Plans were created on the Viewray TPS to generate MC reference data. Absolute dose points, PDD, profiles and output factors were extracted and compared to measurements performed with ten different detectors: PTW 31010, 31021, 31022, Markus 34045 and Exradin A28 MR ionization chambers, SN Edge shielded diode, PTW 60019 microdiamond, PTW 60023 unshielded diode, EBT3 radiochromic films and LiF µcubes. Three commissioning steps consisted in comparison between calculated and measured dose: the beam model validation, the output calibration verification in four different phantoms and the commissioning tests recommended by the IAEA-TECDOC-1583. MAIN RESULTS The symmetry for the high resolution detectors was higher than the TPS data of about 1%. The angular responses of the PTW 60023 and the SN Edge were - 6.6 and - 11.9% compared to the PTW 31010 at 60°. The X/Y-left and the Y-right penumbras measured by the high resolution detectors were in good agreement with the TPS values except for the PTW 60023 for large field sizes. For the 0.84 × 0.83 cm2 field size, the mean deviation to the TPS of the uncorrected OF was - 1.7 ± 1.6% against - 4.0 ± 0.6% for the corrected OF whereas we found - 4.8 ± 0.8% for passive dosimeters. The mean absolute dose deviations to the TPS in different phantoms were 0 ± 0.4%, - 1.2 ± 0.6% and 0.5 ± 1.1% for the PTW 31010, PTW 31021 and Exradin A28 MR respectively. CONCLUSIONS The magnetic field effects on the measurements are considerably reduced at low magnetic field. The PTW 31010 ionization chamber can be used with confidence in different phantoms for commissioning and QA tests requiring absolute dose verifications. For relative measurements, the PTW 60019 presented the best agreement for the full range of field size. For the profile assessment, shielded diodes had a behaviour similar to the PTW 60019 and 60023 while the ionization chambers were the most suitable detectors for the symmetry. The output correction factors published by the IAEA TRS 483 seem to be applicable at low magnetic field pending the publication of new MR specific values.
Collapse
Affiliation(s)
- Michel Chea
- Medical Physics Department, Pitié-Salpêtrière Hospital, AP-HP Sorbonne University, 47-83 Boulevard de l'Hôpital, 75651, Paris Cedex 13, France.
| | - Mathilde Croisé
- Medical Physics Department, Pitié-Salpêtrière Hospital, AP-HP Sorbonne University, 47-83 Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Christelle Huet
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LDRI, 92260, Fontenay-aux-Roses, France
| | - Céline Bassinet
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LDRI, 92260, Fontenay-aux-Roses, France
| | - Mohamed-Amine Benadjaoud
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED, 92260, Fontenay-aux-Roses, France
| | - Catherine Jenny
- Medical Physics Department, Pitié-Salpêtrière Hospital, AP-HP Sorbonne University, 47-83 Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| |
Collapse
|
6
|
Putz F, Bock M, Schmitt D, Bert C, Blanck O, Ruge MI, Hattingen E, Karger CP, Fietkau R, Grigo J, Schmidt MA, Bäuerle T, Wittig A. Quality requirements for MRI simulation in cranial stereotactic radiotherapy: a guideline from the German Taskforce "Imaging in Stereotactic Radiotherapy". Strahlenther Onkol 2024; 200:1-18. [PMID: 38163834 PMCID: PMC10784363 DOI: 10.1007/s00066-023-02183-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Accurate Magnetic Resonance Imaging (MRI) simulation is fundamental for high-precision stereotactic radiosurgery and fractionated stereotactic radiotherapy, collectively referred to as stereotactic radiotherapy (SRT), to deliver doses of high biological effectiveness to well-defined cranial targets. Multiple MRI hardware related factors as well as scanner configuration and sequence protocol parameters can affect the imaging accuracy and need to be optimized for the special purpose of radiotherapy treatment planning. MRI simulation for SRT is possible for different organizational environments including patient referral for imaging as well as dedicated MRI simulation in the radiotherapy department but require radiotherapy-optimized MRI protocols and defined quality standards to ensure geometrically accurate images that form an impeccable foundation for treatment planning. For this guideline, an interdisciplinary panel including experts from the working group for radiosurgery and stereotactic radiotherapy of the German Society for Radiation Oncology (DEGRO), the working group for physics and technology in stereotactic radiotherapy of the German Society for Medical Physics (DGMP), the German Society of Neurosurgery (DGNC), the German Society of Neuroradiology (DGNR) and the German Chapter of the International Society for Magnetic Resonance in Medicine (DS-ISMRM) have defined minimum MRI quality requirements as well as advanced MRI simulation options for cranial SRT.
Collapse
Affiliation(s)
- Florian Putz
- Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Michael Bock
- Klinik für Radiologie-Medizinphysik, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Daniela Schmitt
- Klinik für Strahlentherapie und Radioonkologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Christoph Bert
- Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Blanck
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Maximilian I Ruge
- Klinik für Stereotaxie und funktionelle Neurochirurgie, Zentrum für Neurochirurgie, Universitätsklinikum Köln, Cologne, Germany
| | - Elke Hattingen
- Institut für Neuroradiologie, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | - Christian P Karger
- Abteilung Medizinische Physik in der Strahlentherapie, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- Nationales Zentrum für Strahlenforschung in der Onkologie (NCRO), Heidelberger Institut für Radioonkologie (HIRO), Heidelberg, Germany
| | - Rainer Fietkau
- Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johanna Grigo
- Strahlenklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Manuel A Schmidt
- Neuroradiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Bäuerle
- Radiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andrea Wittig
- Klinik und Poliklinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
McDonald F, Belka C, Hurkmans C, Alicja Jereczek-Fossa B, Poortmans P, van de Kamer JB, Azizaj E, Franco P. Introducing the ESTRO Guidelines Committee, driving force for the new generation of ESTRO guidelines. Radiother Oncol 2023:109724. [PMID: 37244357 DOI: 10.1016/j.radonc.2023.109724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Affiliation(s)
- Fiona McDonald
- Lung Unit, Royal Marsden Hospital, London, United Kingdom; Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich; German Cancer Consortium (DKTK), partner site Munich; Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Coen Hurkmans
- Department of Radiation Oncology, Catharina Hospital Eindhoven, Eindhoven, Netherlands
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy; Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Philip Poortmans
- Department of Radiation Oncology, Iridium Netwerk, Antwerp, Belgium; Faculty of Medicine and Health Sciences, University of Antwerp, Belgium
| | - Jeroen B van de Kamer
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Eralda Azizaj
- European Society for Radiotherapy and Oncology, Brussels, Belgium
| | - Pierfrancesco Franco
- Department of Translational Medicine (DIMET), University of Eastern Piedmont, Novara, Italy; Department of Radiation Oncology, 'Maggiore della Carità' University Hospital, Novara, Italy.
| |
Collapse
|