1
|
Pepper NB, Steike DR, Yppärilä-Wolters H, Müther M, Wiewrodt D, Berssenbrügge H, Grauer O, Lenz P, Stummer W, Eich HT. Multidisciplinary treatment is necessary in glioblastoma with extracerebral metastases. Strahlenther Onkol 2025:10.1007/s00066-024-02359-8. [PMID: 39843784 DOI: 10.1007/s00066-024-02359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/15/2024] [Indexed: 01/24/2025]
Abstract
PURPOSE While glioblastoma is the most common malignant brain tumor in adults, extracerebral manifestations are very rare in this highly aggressive disease with poor prognosis. METHODS We conducted a systematic literature review in the PubMed database and complemented the data by inclusion of a case treated in our clinic. In this context, we report on a 60-year-old woman with a right frontal glioblastoma, IDH wildtype, MGMT methylated. RESULTS Six months after initial diagnosis and primary treatment, there was extensive local intracranial progression with additional extension into the subcutaneous and frontotemporal cranial bones. Despite continuation of multimodal treatment, further extracerebral manifestations occurred 11 months after the initial diagnosis, both in the cranial bone as well as metastases in the right parotid gland, cervical lymph nodes, and lungs. While local radiotherapy enabled the cerebral lesions to be controlled, the patient's clinical condition deteriorated rapidly despite simultaneous systemic therapy. The treatment had to be discontinued, and the patient died 5 weeks after confirmation of the multilocal extracerebral manifestations and a total of 12 months after initial diagnosis. CONCLUSION Extracerebral manifestations of glioblastoma require close collaboration and joint decision-making with the patient, with an emphasis on palliative strategies.
Collapse
Affiliation(s)
- Niklas B Pepper
- Department of Radiation Oncology, University Hospital of Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany.
| | - David R Steike
- Department of Radiation Oncology, University Hospital of Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany
| | - Heidi Yppärilä-Wolters
- Department of Radiation Oncology, University Hospital of Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany
| | - Michael Müther
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| | - Dorothee Wiewrodt
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| | - Hendrik Berssenbrügge
- Department of ear, nose and throat medicine, University Hospital Muenster, Muenster, Germany
| | - Oliver Grauer
- Department of Neurology with Institute of Translation Neurology, University Hospital Muenster, Muenster, Germany
| | - Philipp Lenz
- Department of Palliative Care, University Hospital Muenster, Muenster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| | - Hans T Eich
- Department of Radiation Oncology, University Hospital of Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149, Muenster, Germany
| |
Collapse
|
2
|
Pepper NB, Prange NG, Troschel FM, Kröger K, Oertel M, Kuhlmann T, Müther M, Grauer O, Stummer W, Eich HT. Efficacy and Low Toxicity of Normo-Fractionated Re-Irradiation with Combined Chemotherapy for Recurrent Glioblastoma-An Analysis of Treatment Response and Failure. Cancers (Basel) 2024; 16:3652. [PMID: 39518091 PMCID: PMC11545019 DOI: 10.3390/cancers16213652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Glioblastoma is the most common malignant brain tumor in adults. Even after maximal safe resection and adjuvant chemoradiotherapy, patients normally relapse after a few years or even months. Standard treatment for recurrent glioblastoma is not yet defined, with re-resection, re-irradiation, and systemic therapy playing key roles. Usually, re-irradiation is combined with concurrent chemotherapy, harnessing the radiosensitizing effects of alkylating agents. METHODS A retrospective analysis of 101 patients with recurrent glioblastoma treated with re-irradiation was conducted, evaluating the survival impact of concurrent chemotherapy regimens, as well as prior resection. Patients were subcategorized according to concurrent chemotherapy (temozolomide vs. CCNU vs. combination of both vs. none) and details are given regarding treatment toxicity and patterns of relapse after first- and second-line treatment. RESULTS Patients were treated with normo-fractionated re-irradiation (with prescription dose of ~40 Gy to the PTV), resulting in a moderate cumulative EQD2 (~100 Gy). The mean overall survival was 11.3 months (33.5 months from initial diagnosis) and mean progression free survival was 9.5 months. Prior resection resulted in increased survival (p < 0.001), especially when gross total resection was achieved. Patients who received concurrent chemotherapy had significantly longer survival vs. no chemotherapy (p < 0.01), with the combination of CCNU and TMZ achieving the best results. Overall survival was significantly better in patients who received the CCNU + TMZ combination at any time during treatment (first or second line) vs. monotherapy only. The treatment of larger volumes (mean PTV size = 112.7 cm3) was safe and did not result in worse prognosis or increased demand for corticosteroids. Overall, the incidence of high-grade toxicity or sequential radionecrosis (5%) was reasonably low and treatment was tolerated well. While second-line chemotherapy did not seem to influence patterns of relapse, patients who received TMZ + CCNU as first-line treatment had a tendency towards better local control with more out-field recurrence. CONCLUSIONS Normo-fractionated re-irradiation appears to be safe and is accompanied by good survival outcomes, even when applied to larger treatment volumes. Patients amenable to undergo re-resection and achieving concurrent systemic therapy with alkylating agents had better OS, especially when gross total resection was possible. Based on existing data and experiences reflected in this analysis, we advocate for a multimodal approach to recurrent glioblastoma with maximal safe re-resection and adjuvant second chemoradiation. The combination of TMZ and CCNU for patients with methylated MGMT promoter yielded the best results in the primary and recurrent situation (together with re-RT). Normo-fractionated RT enables the use of more generous margins and is tolerated well.
Collapse
Affiliation(s)
| | | | | | - Kai Kröger
- Department of Radiation Oncology, University Hospital Muenster, 48149 Muenster, Germany
| | - Michael Oertel
- Department of Radiation Oncology, University Hospital Muenster, 48149 Muenster, Germany
| | - Tanja Kuhlmann
- Department of Neuropathology, University Hospital Muenster, 48149 Muenster, Germany
| | - Michael Müther
- Department of Neurosurgery, University Hospital Muenster, 48149 Muenster, Germany
| | - Oliver Grauer
- Department of Neurology with Institute of Translation Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Muenster, 48149 Muenster, Germany
| | - Hans Theodor Eich
- Department of Radiation Oncology, University Hospital Muenster, 48149 Muenster, Germany
| |
Collapse
|
3
|
Senyurek S, Aygun MS, Kilic Durankus N, Akdemir EY, Sezen D, Topkan E, Bolukbasi Y, Selek U. The Systemic Inflammation Response Index Efficiently Discriminates between the Failure Patterns of Patients with Isocitrate Dehydrogenase Wild-Type Glioblastoma Following Radiochemotherapy with FLAIR-Based Gross Tumor Volume Delineation. Brain Sci 2024; 14:922. [PMID: 39335417 PMCID: PMC11430255 DOI: 10.3390/brainsci14090922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES The objective of this study was to assess the connection between the systemic inflammation response index (SIRI) values and failure patterns of patients with IDH wild-type glioblastoma (GB) who underwent radiotherapy (RT) with FLAIR-based gross tumor volume (GTV) delineation. METHODS Seventy-one patients who received RT at a dose of 60 Gy to the GTV and 50 Gy to the clinical target volume (CTV) and had documented recurrence were retrospectively analyzed. Each patient's maximum distance of recurrence (MDR) from the GTV was documented in whichever plane it extended the farthest. The failure patterns were described as intra-GTV, in-CTV/out-GTV, distant, and intra-GTV and distant. For analytical purposes, the failure pattern was categorized into two groups, namely Group 1, intra-GTV or in-CTV/out-GTV, and Group 2, distant or intra-GTV and distant. The SIRI was calculated before surgery and corticosteroid administration. A receiver operating characteristic (ROC) curve analysis was used to determine the optimal SIRI cut-off that distinguishes between the different failure patterns. RESULTS Failure occurred as follows: intra-GTV in 40 (56.3%), in-CTV/out-GTV in 4 (5.6%), distant in 18 (25.4%), and intra-GTV + distant in 9 (12.7%) patients. The mean MDR was 13.5 mm, and recurrent lesions extended beyond 15 mm in only seven patients. Patients with an SIRI score ≥ 3 demonstrated a significantly higher incidence of Group 1 failure patterns than their counterparts with an SIRI score < 3 (74.3% vs. 50.0%; p = 0.035). CONCLUSIONS The present results show that using the SIRI with a cut-off value of ≥3 significantly predicts failure patterns. Additionally, the margin for the GTV can be safely reduced to 15 mm when using FLAIR-based target delineation in patients with GB.
Collapse
Affiliation(s)
- Sukran Senyurek
- Department of Radiation Oncology, School of Medicine, Koc University, 03457 Istanbul, Turkey; (S.S.); (N.K.D.); (E.Y.A.); (D.S.); (Y.B.)
| | - Murat Serhat Aygun
- Department of Radiology, Altunizade Acibadem Hospital, 03457 Istanbul, Turkey;
| | - Nulifer Kilic Durankus
- Department of Radiation Oncology, School of Medicine, Koc University, 03457 Istanbul, Turkey; (S.S.); (N.K.D.); (E.Y.A.); (D.S.); (Y.B.)
| | - Eyub Yasar Akdemir
- Department of Radiation Oncology, School of Medicine, Koc University, 03457 Istanbul, Turkey; (S.S.); (N.K.D.); (E.Y.A.); (D.S.); (Y.B.)
| | - Duygu Sezen
- Department of Radiation Oncology, School of Medicine, Koc University, 03457 Istanbul, Turkey; (S.S.); (N.K.D.); (E.Y.A.); (D.S.); (Y.B.)
| | - Erkan Topkan
- Department of Radiation Oncology, Faculty of Medicine, Baskent University, 01120 Adana, Turkey;
| | - Yasemin Bolukbasi
- Department of Radiation Oncology, School of Medicine, Koc University, 03457 Istanbul, Turkey; (S.S.); (N.K.D.); (E.Y.A.); (D.S.); (Y.B.)
| | - Ugur Selek
- Department of Radiation Oncology, School of Medicine, Koc University, 03457 Istanbul, Turkey; (S.S.); (N.K.D.); (E.Y.A.); (D.S.); (Y.B.)
| |
Collapse
|
4
|
Mun SH, Jang HS, Choi BO, Kim SW, Song JH. Recurrence pattern of glioblastoma treated with intensity-modulated radiation therapy versus three-dimensional conformal radiation therapy. Radiat Oncol J 2024; 42:218-227. [PMID: 39354825 PMCID: PMC11467484 DOI: 10.3857/roj.2024.00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 10/03/2024] Open
Abstract
PURPOSE To evaluate recurrence patterns of and survival outcomes in glioblastoma treated with intensity-modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3D-CRT). MATERIALS AND METHODS We retrospectively examined 91 patients with glioblastoma treated with either IMRT (n = 60) or 3D-CRT (n = 31) between January 2013 and December 2019. Magnetic resonance imaging showing tumor recurrence and planning computed tomography scans were fused for analyzing recurrence patterns categorized as in-field, marginal, and out-of-field based on their relation to the initial radiation field. RESULTS The median overall survival (OS) was 18.9 months, with no significant difference between the groups. The median progression-free survival (PFS) was 9.4 months, with no significant difference between the groups. Patients who underwent gross total resection (GTR) had higher OS and PFS than those who underwent less extensive surgery. Among 78 relapse cases, 67 were of in-field; 5, marginal; and 19, out-of-field recurrence. Among 3D-CRT-treated cases, 24 were of in-field; 1, marginal; and 9, out-of-field recurrence. Among IMRT-treated cases, 43 were of in-field; 4, marginal; and 10, out-of-field recurrence. In partial tumor removal or biopsy cases, out-of-field recurrence was less frequent in the IMRT (16.2%) than in the 3D-CRT (36.3%) group, with marginal significance (p = 0.079). CONCLUSION IMRT and 3D-CRT effectively managed glioblastoma with no significant differences in OS and PFS. The survival benefit with GTR underscored the importance of maximal surgical resection. The reduced rate of out-of-field recurrence in IMRT-treated patients with partial resection highlights its potential utility in cases with unfeasible complete tumor removal.
Collapse
Affiliation(s)
- So Hwa Mun
- Department of Radiation Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hong Seok Jang
- Department of Radiation Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung Ok Choi
- Department of Radiation Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Shin Woo Kim
- Department of Radiation Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin-Ho Song
- Department of Radiation Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
5
|
Yilmaz MT, Kahvecioglu A, Yedekci FY, Yigit E, Ciftci GC, Kertmen N, Zorlu F, Yazici G. Comparison of different target volume delineation strategies based on recurrence patterns in adjuvant radiotherapy for glioblastoma. Neurooncol Pract 2024; 11:275-283. [PMID: 38737611 PMCID: PMC11085836 DOI: 10.1093/nop/npae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Background Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC) recommendations are commonly used guidelines for adjuvant radiotherapy in glioblastoma. In our institutional protocol, we delineate T2-FLAIR alterations as gross target volume (GTV) with reduced clinical target volume (CTV) margins. We aimed to present our oncologic outcomes and compare the recurrence patterns and planning parameters with EORTC and RTOG delineation strategies. Methods Eighty-one patients who received CRT between 2014 and 2021 were evaluated retrospectively. EORTC and RTOG delineations performed on the simulation computed tomography and recurrence patterns and planning parameters were compared between delineation strategies. Statistical Package for the Social Sciences (SPSS) version 23.0 (IBM, Armonk, NY, USA) was utilized for statistical analyses. Results Median overall survival and progression-free survival were 21 months and 11 months, respectively. At a median 18 month follow-up, of the 48 patients for whom recurrence pattern analysis was performed, recurrence was encompassed by only our institutional protocol's CTV in 13 (27%) of them. For the remaining 35 (73%) patients, recurrence was encompassed by all separate CTVs. In addition to the 100% rate of in-field recurrence, the smallest CTV and lower OAR doses were obtained by our protocol. Conclusions The current study provides promising results for including the T2-FLAIR alterations to the GTV with smaller CTV margins with impressive survival outcomes without any marginal recurrence. The fact that our protocol did not result in larger irradiated brain volume is further encouraging in terms of toxicity.
Collapse
Affiliation(s)
- Melek Tugce Yilmaz
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Alper Kahvecioglu
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Fazli Yagiz Yedekci
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ecem Yigit
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gokcen Coban Ciftci
- Radiology Department, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Neyran Kertmen
- Department of Medical Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Faruk Zorlu
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gozde Yazici
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
6
|
Stewart J, Sahgal A, Hudson J, Lau A, Keller B, Chen H, Detsky J, Soliman H, Tseng CL, Myrehaug S, Ruschin M. Technical note: The migration distance - a unidirectional distance metric for region-of-interest comparisons. Med Phys 2024; 51:3597-3603. [PMID: 38088935 DOI: 10.1002/mp.16872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/25/2023] [Accepted: 11/18/2023] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND The radiotherapy process relies on several metrics in determining a notion of "distance" from one three-dimensional region-of-interest (ROI) to another. The majority are symmetric (or commutative) and do not contain information pertaining to directionality. Growth versus regression, for example, is not inherently distinguished by these metrics. PURPOSE The purpose of this work was to formalize a unidirectional distance metric, motivated by radiotherapy margin concepts, which we term the migration distance. Informally, the migration distance from ROI X $X$ to Y $Y$ is the minimum isotropic expansion of X $X$ such that Y $Y$ is completely encompassed by the expansion. If Y $Y$ is contained within X $X$ , the migration distance is negative with magnitude equal to the maximum isotropic contraction of X $X$ such that Y $Y$ remains contained within contraction. The metric is demonstrated by quantifying glioblastoma interfraction target changes. METHODS An explicit mathematical formulation of the migration distance is presented and contrasted with the related Hausdorff distance. The results are demonstrated for the gross tumor volume (GTV) dynamics of a glioblastoma cohort consisting of 111 patients that underwent standard chemoradiotherapy with offline MR imaging at planning, fraction 10, fraction 20, and 1-month post radiotherapy. RESULTS The mean ± SD of the GTV migration distance relative to planning was 5.9 ± 3.9 mm at fraction 10, 6.2 ± 4.4 mm at fraction 20, and 7.9 ± 7.1 mm at 1-month post radiotherapy. The maximum GTV migration distance across all patients at the same timepoints was 20.4, 20.7, and 45.5 mm, respectively. CONCLUSIONS We have proposed and demonstrated a unidirectional distance metric. The migration distance may have applications in the quantification of anatomical changes, planning target volume designs, and dosimetric radiotherapy plan assessment.
Collapse
Affiliation(s)
- James Stewart
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - John Hudson
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada
| | - Angus Lau
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Brian Keller
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- Department of Medical Physics, Sunnybrook Odette Cancer Centre, Toronto, Canada
| | - Hanbo Chen
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Mark Ruschin
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Physics, Sunnybrook Odette Cancer Centre, Toronto, Canada
| |
Collapse
|
7
|
Bodensohn R, Fleischmann DF, Maier SH, Anagnostatou V, Garny S, Nitschmann A, Büttner M, Mücke J, Schönecker S, Unger K, Hoffmann E, Paulsen F, Thorwarth D, Holzgreve A, Albert NL, Corradini S, Tabatabai G, Belka C, Niyazi M. Dosimetric feasibility analysis and presentation of an isotoxic dose-escalated radiation therapy concept for glioblastoma used in the PRIDE trial (NOA-28; ARO-2022-12). Clin Transl Radiat Oncol 2024; 45:100706. [PMID: 38116137 PMCID: PMC10726217 DOI: 10.1016/j.ctro.2023.100706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
Background and purpose The PRIDE trial (NOA-28; ARO-2022-12; NCT05871021) is scheduled to start recruitment in October 2023. Its primary objective is to enhance median overall survival (OS), compared to historical median OS rates, in patients with methylguanine methlyltransferase (MGMT) promotor unmethylated glioblastoma by incorporating isotoxic dose escalation to 75 Gy in 30 fractions. To achieve isotoxicity and counteract the elevated risk of radiation necrosis (RN) associated with dose-escalated regimens, the addition of protective concurrent bevacizumab (BEV) serves as an innovative approach. The current study aims to assess the dosimetric feasibility of the proposed concept. Materials and methods A total of ten patients diagnosed with glioblastoma were included in this dosimetric analysis. Delineation of target volumes for the reference plans adhered to the ESTRO-EANO 2023 guideline. The experimental plans included an additional volume for the integrated boost. Additionally, the 60 Gy-volume was reduced by using a margin of 1.0 cm instead of 1.5 cm. To assess the risk of symptomatic RN, the Normal Tissue Complication Probability (NTCP) was calculated and compared between the reference and experimental plans. Results Median NTCP of the reference plan (NTCPref) and of the experimental plan (NTCPex) were 0.24 (range 0.11-0.29) and 0.42 (range 0.18-0.54), respectively. NTCPex was a median of 1.77 (range 1.60-1.99) times as high as the NTXPref. In a logarithmic comparison, the risk of RN is enhanced by a factor of median 2.00 (range 1.66-2.35). The defined constraints for the organs at risk were feasible. Conclusion When considering the potential protective effect of BEV, which we hypothesized might reduce the risk of RN by approximately two-fold, achieving isotoxicity with the proposed dose-escalated experimental plan for the PRIDE trial seems feasible.
Collapse
Affiliation(s)
- Raphael Bodensohn
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Daniel F. Fleischmann
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU University Hospital, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian H. Maier
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Vasiliki Anagnostatou
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sylvia Garny
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Alexander Nitschmann
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Marcel Büttner
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Johannes Mücke
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stephan Schönecker
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Kristian Unger
- Helmholtz Zentrum Munich, Neuherberg, Germany
- Faculty of Medicine, LMU Munich, Munich Germany
| | - Elgin Hoffmann
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Frank Paulsen
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, a partnership between DKFZ and University Hospital, Tübingen, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Nathalie L. Albert
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Ghazaleh Tabatabai
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, a partnership between DKFZ and University Hospital, Tübingen, Germany
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, a partnership between DKFZ and University Hospital, Tübingen, Germany
| |
Collapse
|
8
|
Buti G, Ajdari A, Hochreuter K, Shih H, Bridge CP, Sharp GC, Bortfeld T. The influence of anisotropy on the clinical target volume of brain tumor patients. Phys Med Biol 2024; 69:10.1088/1361-6560/ad1997. [PMID: 38157552 PMCID: PMC10863979 DOI: 10.1088/1361-6560/ad1997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Objective.Current radiotherapy guidelines for glioma target volume definition recommend a uniform margin expansion from the gross tumor volume (GTV) to the clinical target volume (CTV), assuming uniform infiltration in the invaded brain tissue. However, glioma cells migrate preferentially along white matter tracts, suggesting that white matter directionality should be considered in an anisotropic CTV expansion. We investigate two models of anisotropic CTV expansion and evaluate their clinical feasibility.Approach.To incorporate white matter directionality into the CTV, a diffusion tensor imaging (DTI) atlas is used. The DTI atlas consists of water diffusion tensors that are first spatially transformed into local tumor resistance tensors, also known as metric tensors, and secondly fed to a CTV expansion algorithm to generate anisotropic CTVs. Two models of spatial transformation are considered in the first step. The first model assumes that tumor cells experience reduced resistance parallel to the white matter fibers. The second model assumes that the anisotropy of tumor cell resistance is proportional to the anisotropy observed in DTI, with an 'anisotropy weighting parameter' controlling the proportionality. The models are evaluated in a cohort of ten brain tumor patients.Main results.To evaluate the sensitivity of the model, a library of model-generated CTVs was computed by varying the resistance and anisotropy parameters. Our results indicate that the resistance coefficient had the most significant effect on the global shape of the CTV expansion by redistributing the target volume from potentially less involved gray matter to white matter tissue. In addition, the anisotropy weighting parameter proved useful in locally increasing CTV expansion in regions characterized by strong tissue directionality, such as near the corpus callosum.Significance.By incorporating anisotropy into the CTV expansion, this study is a step toward an interactive CTV definition that can assist physicians in incorporating neuroanatomy into a clinically optimized CTV.
Collapse
Affiliation(s)
- Gregory Buti
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation Biophysics, 100 Blossom St, Boston, MA 02114, United States of America
| | - Ali Ajdari
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation Biophysics, 100 Blossom St, Boston, MA 02114, United States of America
| | - Kim Hochreuter
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation Biophysics, 100 Blossom St, Boston, MA 02114, United States of America
- Aarhus University Hospital, Danish Centre for Particle Therapy, Palle Juul-Jensens Blvd. 99, DK-8200 Aarhus, Denmark
- Aarhus University, Department of Clinical Medicine, Palle Juul-Jensens Blvd. 82, DK-8200 Aarhus, Denmark
| | - Helen Shih
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, 100 Blossom St, Boston, MA 02114, United States of America
| | - Christopher P Bridge
- Massachusetts General Hospital and Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth St, Charlestown, MA 02129, United States of America
| | - Gregory C Sharp
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation Biophysics, 100 Blossom St, Boston, MA 02114, United States of America
| | - Thomas Bortfeld
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Division of Radiation Biophysics, 100 Blossom St, Boston, MA 02114, United States of America
| |
Collapse
|