1
|
Podobnik G, Ibragimov B, Tappeiner E, Lee C, Kim JS, Mesbah Z, Modzelewski R, Ma Y, Yang F, Rudecki M, Wodziński M, Peterlin P, Strojan P, Vrtovec T. HaN-Seg: The head and neck organ-at-risk CT and MR segmentation challenge. Radiother Oncol 2024; 198:110410. [PMID: 38917883 DOI: 10.1016/j.radonc.2024.110410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND AND PURPOSE To promote the development of auto-segmentation methods for head and neck (HaN) radiation treatment (RT) planning that exploit the information of computed tomography (CT) and magnetic resonance (MR) imaging modalities, we organized HaN-Seg: The Head and Neck Organ-at-Risk CT and MR Segmentation Challenge. MATERIALS AND METHODS The challenge task was to automatically segment 30 organs-at-risk (OARs) of the HaN region in 14 withheld test cases given the availability of 42 publicly available training cases. Each case consisted of one contrast-enhanced CT and one T1-weighted MR image of the HaN region of the same patient, with up to 30 corresponding reference OAR delineation masks. The performance was evaluated in terms of the Dice similarity coefficient (DSC) and 95-percentile Hausdorff distance (HD95), and statistical ranking was applied for each metric by pairwise comparison of the submitted methods using the Wilcoxon signed-rank test. RESULTS While 23 teams registered for the challenge, only seven submitted their methods for the final phase. The top-performing team achieved a DSC of 76.9 % and a HD95 of 3.5 mm. All participating teams utilized architectures based on U-Net, with the winning team leveraging rigid MR to CT registration combined with network entry-level concatenation of both modalities. CONCLUSION This challenge simulated a real-world clinical scenario by providing non-registered MR and CT images with varying fields-of-view and voxel sizes. Remarkably, the top-performing teams achieved segmentation performance surpassing the inter-observer agreement on the same dataset. These results set a benchmark for future research on this publicly available dataset and on paired multi-modal image segmentation in general.
Collapse
Affiliation(s)
- Gašper Podobnik
- University of Ljubljana, Faculty Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia.
| | - Bulat Ibragimov
- University of Ljubljana, Faculty Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia; University of Copenhagen, Department of Computer Science, Universitetsparken 1, Copenhagen 2100, Denmark
| | - Elias Tappeiner
- UMIT Tirol - Private University for Health Sciences and Health Technology, Eduard-Wallnöfer-Zentrum 1, Hall in Tirol 6060, Austria
| | - Chanwoong Lee
- Yonsei University, College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea; Yonsei Cancer Center, Department of RadiationOncology, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Jin Sung Kim
- Yonsei University, College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea; Yonsei Cancer Center, Department of RadiationOncology, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul 03722, South Korea; Oncosoft Inc, 37 Myeongmul-gil, Seodaemun-gu, Seoul 03722, South Korea
| | - Zacharia Mesbah
- Henri Becquerel Cancer Center, 1 Rue d'Amiens, Rouen 76000, France; Siemens Healthineers, 6 Rue du Général Audran, CS20146, Courbevoie 92412, France
| | - Romain Modzelewski
- Henri Becquerel Cancer Center, 1 Rue d'Amiens, Rouen 76000, France; Litis UR 4108, 684 Av. de l'Université, Saint- Étienne-du-Rouvray 76800, France
| | - Yihao Ma
- Guizhou Medical University, School of Biology & Engineering, 9FW8+2P3, Ankang Avenue, Gui'an New Area, Guiyang, Guizhou Province 561113, China
| | - Fan Yang
- Guizhou Medical University, School of Biology & Engineering, 9FW8+2P3, Ankang Avenue, Gui'an New Area, Guiyang, Guizhou Province 561113, China
| | - Mikołaj Rudecki
- AGH University of Kraków, Department of Measurement and Electronicsal, Mickiewicza 30, Kraków 30-059, Poland
| | - Marek Wodziński
- AGH University of Kraków, Department of Measurement and Electronicsal, Mickiewicza 30, Kraków 30-059, Poland; University of Applied Sciences Western Switzerland, Information Systems Institute, Rue de la Plaine 2, Sierre 3960, Switzerland
| | - Primož Peterlin
- Institute of Oncology, Ljubljana, Zaloška cesta 2, Ljubljana 1000, Slovenia
| | - Primož Strojan
- Institute of Oncology, Ljubljana, Zaloška cesta 2, Ljubljana 1000, Slovenia
| | - Tomaž Vrtovec
- University of Ljubljana, Faculty Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia
| |
Collapse
|
2
|
Bicci E, Calamandrei L, Di Finizio A, Pietragalla M, Paolucci S, Busoni S, Mungai F, Nardi C, Bonasera L, Miele V. Predicting Response to Exclusive Combined Radio-Chemotherapy in Naso-Oropharyngeal Cancer: The Role of Texture Analysis. Diagnostics (Basel) 2024; 14:1036. [PMID: 38786334 PMCID: PMC11120575 DOI: 10.3390/diagnostics14101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
The aim of this work is to identify MRI texture features able to predict the response to radio-chemotherapy (RT-CHT) in patients with naso-oropharyngeal carcinoma (NPC-OPC) before treatment in order to help clinical decision making. Textural features were derived from ADC maps and post-gadolinium T1-images on a single MRI machine for 37 patients with NPC-OPC. Patients were divided into two groups (responders/non-responders) according to results from MRI scans and 18F-FDG-PET/CT performed at follow-up 3-4 and 12 months after therapy and biopsy. Pre-RT-CHT lesions were segmented, and radiomic features were extracted. A non-parametric Mann-Whitney test was performed. A p-value < 0.05 was considered significant. Receiver operating characteristic curves and area-under-the-curve values were generated; a 95% confidence interval (CI) was reported. A radiomic model was constructed using the LASSO algorithm. After feature selection on MRI T1 post-contrast sequences, six features were statistically significant: gldm_DependenceEntropy and DependenceNonUniformity, glrlm_RunEntropy and RunLengthNonUniformity, and glszm_SizeZoneNonUniformity and ZoneEntropy, with significant cut-off values between responder and non-responder group. With the LASSO algorithm, the radiomic model showed an AUC of 0.89 and 95% CI: 0.78-0.99. In ADC, five features were selected with an AUC of 0.84 and 95% CI: 0.68-1. Texture analysis on post-gadolinium T1-images and ADC maps could potentially predict response to therapy in patients with NPC-OPC who will undergo exclusive treatment with RT-CHT, being, therefore, a useful tool in therapeutical-clinical decision making.
Collapse
Affiliation(s)
- Eleonora Bicci
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (F.M.); (L.B.); (V.M.)
| | - Leonardo Calamandrei
- Department of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2, University of Florence, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy; (L.C.); (A.D.F.) (C.N.)
| | - Antonio Di Finizio
- Department of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2, University of Florence, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy; (L.C.); (A.D.F.) (C.N.)
| | - Michele Pietragalla
- Department of Radiology, Ospedale San Jacopo, Via Ciliegiole 97, 51100 Pistoia, Italy;
| | - Sebastiano Paolucci
- Department of Health Physics, L.Go Brambilla, Careggi University Hospital, 50134 Florence, Italy; (S.P.); (S.B.)
| | - Simone Busoni
- Department of Health Physics, L.Go Brambilla, Careggi University Hospital, 50134 Florence, Italy; (S.P.); (S.B.)
| | - Francesco Mungai
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (F.M.); (L.B.); (V.M.)
| | - Cosimo Nardi
- Department of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2, University of Florence, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy; (L.C.); (A.D.F.) (C.N.)
| | - Luigi Bonasera
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (F.M.); (L.B.); (V.M.)
| | - Vittorio Miele
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (F.M.); (L.B.); (V.M.)
| |
Collapse
|
3
|
Corti A, Cavalieri S, Calareso G, Mattavelli D, Ravanelli M, Poli T, Licitra L, Corino VDA, Mainardi L. MRI radiomics in head and neck cancer from reproducibility to combined approaches. Sci Rep 2024; 14:9451. [PMID: 38658630 PMCID: PMC11043398 DOI: 10.1038/s41598-024-60009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
The clinical applicability of radiomics in oncology depends on its transferability to real-world settings. However, the absence of standardized radiomics pipelines combined with methodological variability and insufficient reporting may hamper the reproducibility of radiomic analyses, impeding its translation to clinics. This study aimed to identify and replicate published, reproducible radiomic signatures based on magnetic resonance imaging (MRI), for prognosis of overall survival in head and neck squamous cell carcinoma (HNSCC) patients. Seven signatures were identified and reproduced on 58 HNSCC patients from the DB2Decide Project. The analysis focused on: assessing the signatures' reproducibility and replicating them by addressing the insufficient reporting; evaluating their relationship and performances; and proposing a cluster-based approach to combine radiomic signatures, enhancing the prognostic performance. The analysis revealed key insights: (1) despite the signatures were based on different features, high correlations among signatures and features suggested consistency in the description of lesion properties; (2) although the uncertainties in reproducing the signatures, they exhibited a moderate prognostic capability on an external dataset; (3) clustering approaches improved prognostic performance compared to individual signatures. Thus, transparent methodology not only facilitates replication on external datasets but also advances the field, refining prognostic models for potential personalized medicine applications.
Collapse
Affiliation(s)
- Anna Corti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133, Milan, Italy.
| | - Stefano Cavalieri
- Head and Neck Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli studi di Milano, Milan, Italy
| | - Giuseppina Calareso
- Radiology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Davide Mattavelli
- Unit of Otorhinolaryngology-Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, ASST Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Marco Ravanelli
- Unit of Radiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, ASST Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Tito Poli
- Maxillo-Facial Surgery Division, Head and Neck Department, University Hospital of Parma, Parma, Italy
| | - Lisa Licitra
- Head and Neck Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli studi di Milano, Milan, Italy
| | - Valentina D A Corino
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133, Milan, Italy
- Cardiotech Lab, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Luca Mainardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133, Milan, Italy
| |
Collapse
|
4
|
Ren J, Yang G, Song Y, Zhang C, Yuan Y. Machine learning-based MRI radiomics for assessing the level of tumor infiltrating lymphocytes in oral tongue squamous cell carcinoma: a pilot study. BMC Med Imaging 2024; 24:33. [PMID: 38317076 PMCID: PMC10845803 DOI: 10.1186/s12880-024-01210-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND To investigate the value of machine learning (ML)-based magnetic resonance imaging (MRI) radiomics in assessing tumor-infiltrating lymphocyte (TIL) levels in patients with oral tongue squamous cell carcinoma (OTSCC). METHODS The study included 68 patients with pathologically diagnosed OTSCC (30 with high TILs and 38 with low TILs) who underwent pretreatment MRI. Based on the regions of interest encompassing the entire tumor, a total of 750 radiomics features were extracted from T2-weighted (T2WI) and contrast-enhanced T1-weighted (ceT1WI) imaging. To reduce dimensionality, reproducibility analysis by two radiologists and collinearity analysis were performed. The top six features were selected from each sequence alone, as well as their combination, using the minimum-redundancy maximum-relevance algorithm. Random forest, logistic regression, and support vector machine models were used to predict TIL levels in OTSCC, and 10-fold cross-validation was employed to assess the performance of the classifiers. RESULTS Based on the features selected from each sequence alone, the ceT1WI models outperformed the T2WI models, with a maximum area under the curve (AUC) of 0.820 versus 0.754. When combining the two sequences, the optimal features consisted of one T2WI and five ceT1WI features, all of which exhibited significant differences between patients with low and high TILs (all P < 0.05). The logistic regression model constructed using these features demonstrated the best predictive performance, with an AUC of 0.846 and an accuracy of 80.9%. CONCLUSIONS ML-based T2WI and ceT1WI radiomics can serve as valuable tools for determining the level of TILs in patients with OTSCC.
Collapse
Affiliation(s)
- Jiliang Ren
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, 200010, Shanghai, China
| | - Gongxin Yang
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, 200010, Shanghai, China
| | - Yang Song
- MR Scientific Marketing, Siemens Healthineers Ltd, 200126, Shanghai, China
| | - Chunye Zhang
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, 200010, Shanghai, China.
| | - Ying Yuan
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, 200010, Shanghai, China.
| |
Collapse
|
5
|
McDonald BA, Dal Bello R, Fuller CD, Balermpas P. The Use of MR-Guided Radiation Therapy for Head and Neck Cancer and Recommended Reporting Guidance. Semin Radiat Oncol 2024; 34:69-83. [PMID: 38105096 PMCID: PMC11372437 DOI: 10.1016/j.semradonc.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Although magnetic resonance imaging (MRI) has become standard diagnostic workup for head and neck malignancies and is currently recommended by most radiological societies for pharyngeal and oral carcinomas, its utilization in radiotherapy has been heterogeneous during the last decades. However, few would argue that implementing MRI for annotation of target volumes and organs at risk provides several advantages, so that implementation of the modality for this purpose is widely accepted. Today, the term MR-guidance has received a much broader meaning, including MRI for adaptive treatments, MR-gating and tracking during radiotherapy application, MR-features as biomarkers and finally MR-only workflows. First studies on treatment of head and neck cancer on commercially available dedicated hybrid-platforms (MR-linacs), with distinct common features but also differences amongst them, have also been recently reported, as well as "biological adaptation" based on evaluation of early treatment response via functional MRI-sequences such as diffusion weighted ones. Yet, all of these approaches towards head and neck treatment remain at their infancy, especially when compared to other radiotherapy indications. Moreover, the lack of standardization for reporting MR-guided radiotherapy is a major obstacle both to further progress in the field and to conduct and compare clinical trials. Goals of this article is to present and explain all different aspects of MR-guidance for radiotherapy of head and neck cancer, summarize evidence, as well as possible advantages and challenges of the method and finally provide a comprehensive reporting guidance for use in clinical routine and trials.
Collapse
Affiliation(s)
- Brigid A McDonald
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Riccardo Dal Bello
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Clifton D Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Panagiotis Balermpas
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Corti A, De Cecco L, Cavalieri S, Lenoci D, Pistore F, Calareso G, Mattavelli D, de Graaf P, Leemans CR, Brakenhoff RH, Ravanelli M, Poli T, Licitra L, Corino V, Mainardi L. MRI-based radiomic prognostic signature for locally advanced oral cavity squamous cell carcinoma: development, testing and comparison with genomic prognostic signatures. Biomark Res 2023; 11:69. [PMID: 37455307 DOI: 10.1186/s40364-023-00494-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/03/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND . At present, the prognostic prediction in advanced oral cavity squamous cell carcinoma (OCSCC) is based on the tumor-node-metastasis (TNM) staging system, and the most used imaging modality in these patients is magnetic resonance image (MRI). With the aim to improve the prediction, we developed an MRI-based radiomic signature as a prognostic marker for overall survival (OS) in OCSCC patients and compared it with published gene expression signatures for prognosis of OS in head and neck cancer patients, replicated herein on our OCSCC dataset. METHODS For each patient, 1072 radiomic features were extracted from T1 and T2-weighted MRI (T1w and T2w). Features selection was performed, and an optimal set of five of them was used to fit a Cox proportional hazard regression model for OS. The radiomic signature was developed on a multi-centric locally advanced OCSCC retrospective dataset (n = 123) and validated on a prospective cohort (n = 108). RESULTS The performance of the signature was evaluated in terms of C-index (0.68 (IQR 0.66-0.70)), hazard ratio (HR 2.64 (95% CI 1.62-4.31)), and high/low risk group stratification (log-rank p < 0.001, Kaplan-Meier curves). When tested on a multi-centric prospective cohort (n = 108), the signature had a C-index of 0.62 (IQR 0.58-0.64) and outperformed the clinical and pathologic TNM stage and six out of seven gene expression prognostic signatures. In addition, the significant difference of the radiomic signature between stages III and IVa/b in patients receiving surgery suggests a potential association of MRI features with the pathologic stage. CONCLUSIONS Overall, the present study suggests that MRI signatures, containing non-invasive and cost-effective remarkable information, could be exploited as prognostic tools.
Collapse
Affiliation(s)
- Anna Corti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.
| | - Loris De Cecco
- Integrated Biology of Rare Tumors, Department of Research, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefano Cavalieri
- Head and Neck Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli studi di Milano, Milan, Italy
| | - Deborah Lenoci
- Integrated Biology of Rare Tumors, Department of Research, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Federico Pistore
- Head and Neck Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppina Calareso
- Radiology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Davide Mattavelli
- Unit of Otorhinolaryngology-Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, ASST Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Pim de Graaf
- Amsterdam UMC location Vrije Universiteit, Radiology and Nuclear Medicine, de Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - C René Leemans
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit, Otolaryngology-Head and Neck Surgery, de Boelelaan 1117, Amsterdam, The Netherlands
| | - Ruud H Brakenhoff
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit, Otolaryngology-Head and Neck Surgery, de Boelelaan 1117, Amsterdam, The Netherlands
| | - Marco Ravanelli
- Unit of Radiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, ASST Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Tito Poli
- Maxillo-Facial Surgery Division, Head and Neck Department, University Hospital of Parma, Parma, Italy
| | - Lisa Licitra
- Head and Neck Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli studi di Milano, Milan, Italy
| | - Valentina Corino
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- Cardiotech Lab, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Luca Mainardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|