Yao B, Zhang D, Wu X, He R, Gao H, Chen K, Xiang D, Tang Y. Exploring the impact of irradiation on the sensory quality of pork based on a metabolomics approach.
Food Chem X 2024;
22:101460. [PMID:
38803672 PMCID:
PMC11129168 DOI:
10.1016/j.fochx.2024.101460]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
The effects of irradiation on pork quality characteristics were investigated by combining sensory experiments, pork color, TBARS, volatile components, and differential metabolites. Pork irradiated at a dose of 1 kGy received the highest sensory scores, whereas pork irradiated at doses of 3 and 5 kGy obtained lower sensory scores, particularly with regard to odor. Irradiation makes pork more ruddy and promotes fat oxidation, leading to increased a* and TBARS values. The main volatile substances in irradiated pork were hydrocarbons, aldehydes, and alcohols, and hexanal, heptanal, and valeric acid were considered as important substances responsible for the generation of radiation-induced off-flavors. 65 differential metabolites were identified. l-pyroglutamic acid, l-glutamate, l-proline, fumarate acids, betaine, and l-anserine were considered as the main substances contributing to the differences in pork quality. In addition, metabolic pathways such as arginine biosynthesis, alanine, aspartate and glutamate metabolism were found to be considerably affected by irradiation.
Collapse