1
|
Bongiovanni Abel S, Busatto CA, Karp F, Estenoz D, Calderón M. Weaving the next generation of (bio)materials: Semi-interpenetrated and interpenetrated polymeric networks for biomedical applications. Adv Colloid Interface Sci 2023; 321:103026. [PMID: 39491440 DOI: 10.1016/j.cis.2023.103026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 11/05/2024]
Abstract
Advances in polymer science have led to the development of semi-interpenetrated and interpenetrated networks (SIPN/IPN). The interpenetration procedure allows enhancing several important properties of a polymeric material, including mechanical properties, swelling capability, stimulus-sensitive response, and biological performance, among others. More interestingly, the interpenetration (or semi-interpenetration) can be achieved independent of the material size, that is at the macroscopic, microscopic, or nanometric scale. SIPN/IPN have been used for a wide range of applications, especially in the biomedical field, including tissue engineering, delivery of chemical compounds or biological macromolecules, and multifunctional systems as theragnostic platforms. In the last years, this fascinating field has gained a great interest in the area of polymers for therapeutics; therefore, a comprehensive revision of the topic is timely. In this review, we describe in detail the most relevant synthetic approaches to fabricate polymeric IPN and SIPN, ranging from nanoscale to macroscale. The advantages of typical synthetic methods are analyzed, as well as novel and promising trends in the field of advanced material fabrication. Furthermore, the characterization techniques employed for these materials are summarized from physicochemical, thermal, mechanical, and biological perspectives. The applications of novel (semi-)interpenetrated structures are discussed with a focus on drug delivery, tissue engineering, and regenerative medicine, as well as combinations thereof.
Collapse
Affiliation(s)
- Silvestre Bongiovanni Abel
- Biomedical Polymers Division, INTEMA (National University of Mar del Plata-CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina; POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Carlos A Busatto
- Group of Polymers and Polymerization Reactors, INTEC (National University of Litoral-CONICET), Güemes 3450, Santa Fe 3000, Argentina
| | - Federico Karp
- Group of Polymeric Nanomaterials, INIFTA (National University of La Plata-CONICET), Diagonal 113, La Plata 1900, Argentina
| | - Diana Estenoz
- Group of Polymers and Polymerization Reactors, INTEC (National University of Litoral-CONICET), Güemes 3450, Santa Fe 3000, Argentina
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
2
|
Özmen F, Korpayev S, Kavaklı PA, Kavaklı C. Activation of inert polyethylene/polypropylene nonwoven fiber (NWF) by plasma-initiated grafting and amine functionalization of the grafts for Cu (II), Co (II), Cr (III), Cd (II) and Pb (II) removal. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Meléndez-Ortiz HI, Betancourt-Galindo R, Puente-Urbina B, Sánchez-Orozco JL, Ledezma A. Antimicrobial cotton gauzes modified with poly(acrylic acid-co-maltodextrin) hydrogel using chitosan as crosslinker. Int J Biol Macromol 2022; 198:119-127. [PMID: 34963627 DOI: 10.1016/j.ijbiomac.2021.12.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/05/2022]
Abstract
Cotton gauzes were grafted with a hydrogel of maltodextrin (MD) and poly(acrylic acid) (PAAc) using N-maleyl chitosan as crosslinker to obtain materials with antimicrobial properties. Reaction parameters including monomer, crosslinker, and initiator concentrations were studied. The modification with the copolymer poly(acrylic acid)-co-maltodextrin (PAAc-co-MD) was corroborated by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The grafted gauzes (gauze-g-(PAAc-co-MD)) were able to load vancomycin and inhibit the growth of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria. In addition, the incorporation of chitosan as crosslinker showed a synergistic effect against these bacteria. The prepared gauze-g-(PAAc-co-MD) materials could be used in the biomedical area particularly as antimicrobial wound dressings.
Collapse
Affiliation(s)
- H Iván Meléndez-Ortiz
- CONACyT-Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo # 140, 25294 Saltillo, Mexico.
| | - Rebeca Betancourt-Galindo
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo # 140, 25294 Saltillo, Mexico
| | - Bertha Puente-Urbina
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo # 140, 25294 Saltillo, Mexico
| | - Jorge L Sánchez-Orozco
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo # 140, 25294 Saltillo, Mexico
| | - Antonio Ledezma
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo # 140, 25294 Saltillo, Mexico
| |
Collapse
|
4
|
Bustamante-Torres M, Romero-Fierro D, Arcentales-Vera B, Palomino K, Magaña H, Bucio E. Hydrogels Classification According to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials. Gels 2021; 7:182. [PMID: 34842654 PMCID: PMC8628675 DOI: 10.3390/gels7040182] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Hydrogels are attractive biomaterials with favorable characteristics due to their water uptake capacity. However, hydrogel properties are determined by the cross-linking degree and nature, the tacticity, and the crystallinity of the polymer. These biomaterials can be sorted out according to the internal structure and by their response to external factors. In this case, the internal interaction can be reversible when the internal chains are led by physicochemical interactions. These physical hydrogels can be synthesized through several techniques such as crystallization, amphiphilic copolymers, charge interactions, hydrogen bonds, stereo-complexing, and protein interactions. In contrast, the internal interaction can be irreversible through covalent cross-linking. Synthesized hydrogels by chemical interactions present a high cross-linking density and are employed using graft copolymerization, reactive functional groups, and enzymatic methods. Moreover, specific smart hydrogels have also been denoted by their external response, pH, temperature, electric, light, and enzyme. This review deeply details the type of hydrogel, either the internal structure or the external response. Furthermore, we detail some of the main applications of these hydrogels in the biomedicine field, such as drug delivery systems, scaffolds for tissue engineering, actuators, biosensors, and many other applications.
Collapse
Affiliation(s)
- Moises Bustamante-Torres
- Departamento de Biología, Escuela de Ciencias Biológicas e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí 100650, Ecuador
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - David Romero-Fierro
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
- Departamento de Química, Escuela de Ciencias Química e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí 100650, Ecuador;
| | - Belén Arcentales-Vera
- Departamento de Química, Escuela de Ciencias Química e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí 100650, Ecuador;
| | - Kenia Palomino
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, Tijuana 22390, Mexico;
| | - Héctor Magaña
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, Tijuana 22390, Mexico;
| | - Emilio Bucio
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| |
Collapse
|
5
|
Binary Graft of Poly( N-vinylcaprolactam) and Poly(acrylic acid) onto Chitosan Hydrogels Using Ionizing Radiation for the Retention and Controlled Release of Therapeutic Compounds. Polymers (Basel) 2021; 13:polym13162641. [PMID: 34451181 PMCID: PMC8397969 DOI: 10.3390/polym13162641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022] Open
Abstract
In this study, we carried out the synthesis of a thermo- and pH-sensitive binary graft, based on N-vinylcaprolactam (NVCL) and pH sensitive acrylic acid (AAc) monomers, onto chitosan gels (net-CS) by ionizing radiation. Pre-oxidative irradiation and direct methods were examined, and materials obtained were characterized by FTIR-ATR, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and swelling tests (equilibrium swelling time, critical pH, and temperature). The best synthesis radiation method was the direct method, which resulted in the maximum grafting percentages (~40%) at low doses (10–12 kGy). The main goal of this study was the comparison of the swelling behavior and physicochemical properties of net-CS with those of the binary system (net-CS)-g-NVCL/AAc with the optimum grafting percentage (~30%). This produced a material that showed an upper critical solution temperature (UCST) of 33.5 °C and a critical pH value of 3.8, indicating the system is more hydrophilic at higher temperatures and low pH values. Load and release studies were carried out using diclofenac. The grafted system (32%) was able to load 19.3 mg g−1 of diclofenac and release about 95% within 200 min, in comparison to net-CS, which only released 80% during the same period. When the grafted system was protonated before diclofenac loading, it loaded 27.6 mg g−1. However, the drug was strongly retained in the material by electrostatic interactions and only released about 20%.
Collapse
|
6
|
Controlled surface modification of silicone rubber by gamma-irradiation followed by RAFT grafting polymerization. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Alvarez-Lorenzo C, Concheiro A. Smart Drug Release from Medical Devices. J Pharmacol Exp Ther 2019; 370:544-554. [DOI: 10.1124/jpet.119.257220] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/01/2019] [Indexed: 12/23/2022] Open
|
8
|
Zuñiga-Zamorano I, Meléndez-Ortiz HI, Costoya A, Alvarez-Lorenzo C, Concheiro A, Bucio E. Poly(vinyl chloride) catheters modified with pH-responsive poly(methacrylic acid) with affinity for antimicrobial agents. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2017.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Wang X, Zhang Y, Xue W, Wang H, Qiu X, Liu Z. Thermo-sensitive hydrogel PLGA-PEG-PLGA as a vaccine delivery system for intramuscular immunization. J Biomater Appl 2016; 31:923-932. [PMID: 27888253 DOI: 10.1177/0885328216680343] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this work, we explored the potential of thermo-sensitive PLGA-PEG-PLGA with sol-gel transition temperature around 32℃ as an intramuscular vaccine delivery system by using ovalbumin as a model antigen. First, in vitro release test showed that the PLGA-PEG-PLGA-deriving hydrogels could release ovalbumin in vitro in a more sustainable way. From fluorescence living imaging, 50-200 mg/mL of PLGA-PEG-PLGA formulations could release antigen in a sustainable manner in vivo, suggesting that the PLGA-PEG-PLGA hydrogel worked as an antigen-depot. Further, the sustainable antigen release from the PLGA-PEG-PLGA hydrogels increased antigen availability in the spleens of the immunized mice. The intramuscular immunization results showed that 50-200 mg/mL of PLGA-PEG-PLGA formulations promoted significantly more potent antigen-specific IgG immune response. In addition, 200 mg/mL of PLGA-PEG-PLGA formulation significantly enhanced the secretion of both Th1 and Th2 cytokines. From in vitro splenocyte proliferation assay, 50-200 mg/mL of PLGA-PEG-PLGA formulations all initiated significantly higher splenocyte activation. These results indicate that the thermo-sensitive and injectable PLGA-PEG-PLGA hydrogels (particularly, 200 mg/mL of PLGA-PEG-PLGA-based hydrogel) own promising potential as an intramuscular vaccine delivery system.
Collapse
Affiliation(s)
- Xiaoyan Wang
- 1 Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Yu Zhang
- 1 Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Wei Xue
- 1 Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Hong Wang
- 2 College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaozhong Qiu
- 3 Key Laboratory of Construction and Detection of Guangdong Province, Southern Medical University, Guangzhou, China
| | - Zonghua Liu
- 1 Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Flores-Rojas G, Bucio E. Radiation-grafting of ethylene glycol dimethacrylate (EGDMA) and glycidyl methacrylate (GMA) onto silicone rubber. Radiat Phys Chem Oxf Engl 1993 2016. [DOI: 10.1016/j.radphyschem.2016.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Kurşun F, Işıklan N. Development of thermo-responsive poly(vinyl alcohol)-g-poly(N-isopropylacrylamide) copolymeric membranes for separation of isopropyl alcohol/water mixtures via pervaporation. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Zavala-Lagunes E, Ruiz JC, Varca GHC, Bucio E. Synthesis and characterization of stimuli-responsive polypropylene containing N-vinylcaprolactam and N-vinylimidazole obtained by ionizing radiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:353-361. [PMID: 27287131 DOI: 10.1016/j.msec.2016.05.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/08/2016] [Accepted: 05/12/2016] [Indexed: 01/26/2023]
Abstract
Polypropylene films were grafted with thermo-responsive N-vinylcaprolactam and pH-responsive N-vinylimidazole polymers by means of gamma radiation using pre-irradiation and direct methods, in order to functionalize the films with thermo- and/or pH-responsiveness. The dependence of grafting yield on parameters such as co-monomer concentration, pre-irradiation dose, temperature, and reaction time was evaluated. The samples were characterized by Fourier transform infrared and X-ray photoelectron spectroscopies, differential scanning calorimetry, thermogravimetric analysis, swelling studies in different solvents, and water contact angle. The grafted copolymers presented thermo- and pH-sensitiveness, highlighting their potential as advanced biomaterials, capable of providing adequate environment for hosting and sustained release of antimicrobial drugs bearing cationic moieties, such as groups of diclofenac, while still exhibiting good cytocompatibility.
Collapse
Affiliation(s)
- Edgar Zavala-Lagunes
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México, D.F. 04510, Mexico
| | - Juan-Carlos Ruiz
- División de Ciencias Básicas e Ingeniería, Depto. de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, México, D.F. 09340, Mexico
| | - Gustavo H C Varca
- Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), Av. Prof. Lineu Prestes, 2242, Cidade Universitária, 05508-000 São Paulo, SP, Brazil
| | - Emilio Bucio
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México, D.F. 04510, Mexico.
| |
Collapse
|
13
|
Sosnik A, Imperiale JC, Vázquez-González B, Raskin MM, Muñoz-Muñoz F, Burillo G, Cedillo G, Bucio E. Mucoadhesive thermo-responsive chitosan- g -poly( N -isopropylacrylamide) polymeric micelles via a one-pot gamma-radiation-assisted pathway. Colloids Surf B Biointerfaces 2015; 136:900-7. [DOI: 10.1016/j.colsurfb.2015.10.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 02/08/2023]
|
14
|
Magaña H, Palomino K, Cornejo-Bravo JM, Alvarez- Lorenzo C, Concheiro A, Bucio E. Radiation-grafting of acrylamide onto silicone rubber films for diclofenac delivery. Radiat Phys Chem Oxf Engl 1993 2015. [DOI: 10.1016/j.radphyschem.2014.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Melendez-Ortiz HI, Alvarez-Lorenzo C, Concheiro A, Bucio E. Grafting of N
-vinyl caprolactam and methacrylic acid onto silicone rubber films for drug-eluting products. J Appl Polym Sci 2015. [DOI: 10.1002/app.41855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hector Ivan Melendez-Ortiz
- Departamento de Química de Radiaciones y Radioquímica; Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México; DF 04510 México
- Departamento de Farmacia y Tecnología Farmacéutica; Universidad de Santiago de Compostela; Santiago de Compostela 15782 Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica; Universidad de Santiago de Compostela; Santiago de Compostela 15782 Spain
| | - Angel Concheiro
- Departamento de Farmacia y Tecnología Farmacéutica; Universidad de Santiago de Compostela; Santiago de Compostela 15782 Spain
| | - Emilio Bucio
- Departamento de Química de Radiaciones y Radioquímica; Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México; DF 04510 México
| |
Collapse
|
16
|
Meléndez-Ortiz HI, Varca GHC, Lugão AB, Bucio E. Smart Polymers and Coatings Obtained by Ionizing Radiation: Synthesis and Biomedical Applications. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ojpchem.2015.53003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Aminabhavi TM, Nadagouda MN, More UA, Joshi SD, Kulkarni VH, Noolvi MN, Kulkarni PV. Controlled release of therapeutics using interpenetrating polymeric networks. Expert Opin Drug Deliv 2014; 12:669-88. [DOI: 10.1517/17425247.2014.974871] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Ferraz CC, Varca GH, Ruiz JC, Lopes PS, Mathor MB, Lugão AB, Bucio E. Radiation-grafting of thermo- and pH-responsive poly(N-vinylcaprolactam-co-acrylic acid) onto silicone rubber and polypropylene films for biomedical purposes. Radiat Phys Chem Oxf Engl 1993 2014. [DOI: 10.1016/j.radphyschem.2013.12.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Alvarez-Lorenzo C, Concheiro A. Smart drug delivery systems: from fundamentals to the clinic. Chem Commun (Camb) 2014; 50:7743-65. [DOI: 10.1039/c4cc01429d] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Smart materials can endow implantable depots, targetable nanocarriers and insertable medical devices with activation-modulated and feedback-regulated control of drug release.
Collapse
Affiliation(s)
- Carmen Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica
- Universidad de Santiago de Compostela
- 15782-Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacia y Tecnología Farmacéutica
- Universidad de Santiago de Compostela
- 15782-Santiago de Compostela, Spain
| |
Collapse
|
20
|
Muñoz-Muñoz F, Bucio E, Magariños B, Concheiro A, Alvarez-Lorenzo C. Temperature- and pH-sensitive IPNs grafted onto polyurethane by gamma radiation for antimicrobial drug-eluting insertable devices. J Appl Polym Sci 2013. [DOI: 10.1002/app.39992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Franklin Muñoz-Muñoz
- Departamento de Fisicoquímica de Nanomateriales, Centro de Nanociencias y Nanotecnología; Universidad Nacional Autónoma de México; Km. 107 Carretera Tijuana-Ensenada Mexico
| | - Emilio Bucio
- Departamento de Química de Radiaciones y Radioquímica; Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria; 04510 Mexico DF Mexico
| | - Beatriz Magariños
- Departamento de Microbiología y Parasitología, Facultad de Biología CIBUS; Universidad de Santiago de Compostela; 15782-Santiago de Compostela Spain
| | - Angel Concheiro
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia; Universidad de Santiago de Compostela; 15782-Santiago de Compostela Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia; Universidad de Santiago de Compostela; 15782-Santiago de Compostela Spain
| |
Collapse
|
21
|
Alvarez-Lorenzo C, Concheiro A. Drug/Medical Device Combination Products with Stimuli-responsive Eluting Surface. SMART MATERIALS FOR DRUG DELIVERY 2013. [DOI: 10.1039/9781849734318-00313] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Drug-eluting medical devices are designed to improve the primary function of the device and at the same time offer local release of drugs which otherwise might find it difficult to reach the insertion/implantation site. The incorporation of the drug enables the tuning of the host/microbial responses to the device and the management of device-related complications. On the other hand, the medical device acts as platform for the delivery of the drug for a prolonged period of time just at the site where it is needed and, consequently, the efficacy and the safety of the treatment, as well as its cost-effectiveness are improved. This chapter begins with an introduction to the combination products and then focuses on the techniques available (compounding, impregnation, coating, grafting of the drug or of polymers that interact with it) to endow medical devices with the ability to host drugs/biological products and to regulate their release. Furthermore, the methods for surface modification with stimuli-responsive polymers or networks are analyzed in detail and the performance of the modified materials as drug-delivery systems is discussed. A wide range of chemical-, irradiation- and plasma-based techniques for grafting of brushes and networks that are sensitive to changes in temperature, pH, light, ionic strength or concentration of certain biomarkers, from a variety of substrate materials, is currently available. Although in vivo tests are still limited, such a surface functionalization of medical devices has already been shown useful for the release on-demand of drugs and biological products, being switchable on/off as a function of the progression of certain physiological or pathological events (e.g. healing, body integration, biofouling or biofilm formation). Improved knowledge of the interactions among the medical device, the functionalized surface, the drug and the body are expected to pave the way to the design of drug-eluting medical devices with optimized and novel performances.
Collapse
Affiliation(s)
- C. Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica Facultad de Farmacia, Universidad de Santiago de Compostela, 15782-Santiago de Compostela Spain
| | - A. Concheiro
- Departamento de Farmacia y Tecnología Farmacéutica Facultad de Farmacia, Universidad de Santiago de Compostela, 15782-Santiago de Compostela Spain
| |
Collapse
|