1
|
Kunkyab T, Lakrad K, Jirasek A, Oldham M, Quinn B, Hyde D, Adamson J. Clinical applicability of Linac-integrated CBCT based NIPAM 3D dosimetry: a dual-institutional investigation. Phys Med Biol 2024; 69:155002. [PMID: 38959910 DOI: 10.1088/1361-6560/ad5eef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
Objective.To develop and benchmark a novel 3D dose verification technique consisting of polymer gel dosimetry (PGD) with cone-beam-CT (CBCT) readout through a two-institution study. The technique has potential for wide and robust applicability through reliance on CBCT readout.Approach. Three treatment plans (3-field, TG119-C-shape spine, 4-target SRS) were created by two independent institutions (Institutions A and B). A Varian Truebeam linear accelerator was used to deliver the plans to NIPAM polymer gel dosimeters produced at both institutions using an identical approach. For readout, a slow CBCT scan mode was used to acquire pre- and post-irradiation images of the gel (1 mm slice thickness). Independent gel analysis tools were used to process the PGD images (A: VistaAce software, B: in-house MATLAB code). Comparing planned and measured doses, the analysis involved a combination of 1D line profiles, 2D contour plots, and 3D global gamma maps (criteria ranging between 2%1 mm and 5%2 mm, with a 10% dose threshold).Main results. For all gamma criteria tested, the 3D gamma pass rates were all above 90% for 3-field and 88% for the SRS plan. For the C-shape spine plan, we benchmarked our 2% 2 mm result against previously published work using film analysis (93.4%). For 2%2 mm, 99.4% (Institution A data), and 89.7% (Institution B data) were obtained based on VistaAce software analysis, 83.7% (Institution A data), and 82.9% (Institution B data) based on MATLAB.Significance. The benchmark data demonstrate that when two institutions follow the same rigorous procedures gamma passing rates up to 99%, for 2%2 mm criteria can be achieved for substantively different treatment plans. The use of different software and calibration techniques may have contributed to the variation in the 3D gamma results. By sharing the data across institutions, we observe the gamma passing rate is more consistent within each pipeline, indicating the need for standardized analysis methods.
Collapse
Affiliation(s)
- Tenzin Kunkyab
- Department of Physics, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada
- BC Cancer Center, Kelowna, British Columbia
| | - Kawtar Lakrad
- Department of Physics, Hassan II University, Casablanca, Morocco
- Duke University Medical Center, Durham, NC
| | - Andrew Jirasek
- Department of Physics, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada
| | | | - Benjamin Quinn
- Modus Medical Devices Inc./IBA Dosimetry, London, Ontario, Canada
| | - Derek Hyde
- Department of Physics, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada
- BC Cancer Center, Kelowna, British Columbia
| | | |
Collapse
|
2
|
Jiang L, Li W, Nie J, Wang R, Chen X, Fan W, Hu L. Fluorescent Nanogel Sensors for X-ray Dosimetry. ACS Sens 2021; 6:1643-1648. [PMID: 33761245 DOI: 10.1021/acssensors.1c00204] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
X-ray dosimeters are of significance for detecting the levels of ionizing radiation exposure in cells and phantoms; thus, they can further optimize X-ray radiotherapy in the clinic. In this paper, we designed a polyacrylamide-based nanogel sensor that is capable of measuring X-ray doses. The dosimeters were prepared by anchoring an X-ray-responsive probe (aminophenyl fluorescein, APF) to poly(acrylamide-co-N-(3-aminopropyl) methyl acrylamide) nanogels. The premise behind the dose measurement is the transition of APF to fluorescence in the presence of hydroxyl radicals that are caused by the radiolysis of water molecules under X-rays. Therefore, the dose of X-rays can be readily detected by measuring the fluorescence intensity of the resultant nanogel immediately after irradiation using fluorescence spectroscopy principles. Using an RS2000 X-ray biological irradiator, our dosimeters showed good linearity responsivity at X-ray doses ranging from 0 to 15 Gy, with a limit of detection (LOD) of 0.5 Gy. Additionally, the signals showed temperature stability (25-65 °C), durability (5 weeks), and dose-rate (1.177 and 6 Gy/min) and energy independence (160 kVp and 6 MV). As a proof-of-concept, we used our sensors to fluorescently detect X-ray doses in A549 tumor cells and 3D-printed eye phantoms. The results showed that our dosimeters were able to accurately predict doses similar to those used by treatment plan systems.
Collapse
Affiliation(s)
- Li Jiang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215006, China
| | - Wenxiang Li
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215006, China
| | - Rensheng Wang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215006, China
| | - Xinjian Chen
- School of Electronics and Information Engineering, Soochow University, Suzhou 215006, China
| | - Wenhui Fan
- Radiotherapy Division, Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- National Clinical Research Center for Oral Diseases, Shanghai 200025, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200025, China
| | - Liang Hu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215006, China
| |
Collapse
|
3
|
Jaszczak M, Maras P, Kozicki M. Characterization of a new N-vinylpyrrolidone-containing polymer gel dosimeter with Pluronic F-127 gel matrix. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.109125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Dosimetric evaluation of small IMRT beamlets in the presence of bone inhomogeneity using NIPAM polymer gel and Monte Carlo simulation. RADIAT MEAS 2017. [DOI: 10.1016/j.radmeas.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Maynard E, Hilts M, Heath E, Jirasek A. Evaluation of accuracy and precision in polymer gel dosimetry. Med Phys 2017; 44:736-746. [PMID: 28035662 DOI: 10.1002/mp.12080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/22/2016] [Accepted: 12/17/2016] [Indexed: 01/01/2023] Open
Abstract
PURPOSE To assess the overall reproducibility and accuracy of an X-ray computed tomography (CT) polymer gel dosimetry (PGD) system and investigate what effects the use of generic, interbatch, and intrabatch gel calibration have on dosimetric and spatial accuracy. METHODS A N-isopropylacrylamide (NIPAM)-based gel formulation optimized for X-ray CT gel dosimetry was used, and the results over four different batches of gels were analyzed. All gels were irradiated with three 6 MV beams in a calibration pattern at both the bottom and top of the dosimeter. Postirradiation CT images of the gels were processed using background subtraction, image averaging, adaptive mean filtering, and remnant artifact removal. The gel dose distributions were calibrated using a Monte Carlo (Vancouver Island Monte Carlo system) calculated dose distribution of the calibration pattern. Using the calibration results from all gels, an average or "generic" calibration curve was calculated and this generic calibration curve was used to calibrate each of the gels within the sample. For each of the gels, the irradiation pattern at the bottom of the dosimeter was also calibrated using the irradiation pattern at the top of the dosimeter to evaluate intragel calibration. RESULTS Comparison of gel measurements with Monte Carlo dose calculations found excellent dosimetric accuracy when using an average (or generic) calibration with a mean dose discrepancy of 1.8% in the low-dose gradient region which compared to a "best-case scenario" self-calibration method with a mean dose discrepancy of 1.6%. The intragel calibration method investigated produced large dose discrepancies due to differences in dose response at the top and bottom of the dosimeter, but the use of a dose-dependent correction reduced these dose errors. Spatial accuracy was found to be excellent for the average calibration method with a mean distance-to-agreement (DTA) of 0.63 mm and 99.6% of points with a DTA < 2 mm in high-dose gradient regions. This compares favorably to the self-calibration method which produced a mean DTA of 0.61 mm and 99.8% of points with a DTA < 2 mm. Gamma analysis using a 3%/3 mm criterion also found good agreement between the gel measurement and Monte Carlo dose calculation when using either the average calibration or self-calibration methods (96.8% and 98.2%, respectively). CONCLUSIONS An X-ray CT PGD system was evaluated and found to have excellent dosimeteric and spatial accuracy when compared to Monte Carlo dose calculations and the use of generic and interbatch calibration methods were found to be effective. The establishment of the accuracy and reproducibility of this system provides important information for clinical implementation.
Collapse
Affiliation(s)
- Evan Maynard
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Michelle Hilts
- Department of Physics, University of British Columbia-Okanagan Campus, Kelowna, BC, V1V 1V7, Canada.,Medical Physics, BC Cancer Agency, Centre for the Southern Interior, Kelowna, BC, V1Y 5L3, Canada
| | - Emily Heath
- Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Andrew Jirasek
- Department of Physics, I.K. Barber School of Arts and Sciences, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
6
|
|
7
|
Al-jarrah AM, Abdul Rahman A, Shahrim I, Razak NNANA, Ababneh B, Tousi ET. Effect of inorganic salts and glucose additives on dose-response, melting point and mass density of genipin gel dosimeters. Phys Med 2015; 32:36-41. [PMID: 26494156 DOI: 10.1016/j.ejmp.2015.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/24/2015] [Accepted: 09/04/2015] [Indexed: 10/22/2022] Open
Abstract
Genipin gel dosimeters are hydrogels infused with a radiation-sensitive material which yield dosimetric information in three dimensions (3D). The effect of inorganic salts and glucose on the visible absorption dose-response, melting points and mass density of genipin gel dosimeters has been experimentally evaluated using 6-MV LINAC photons. As a result, the addition of glucose with optimum concentration of 10% (w/w) was found to improve the thermal stability of the genipin gel and increase its melting point (Tm) by 6 °C accompanied by a slight decrease of dose-response. Furthermore, glucose helps to adjust the gel mass density to obtain the desired tissue-equivalent properties. A drop of Tm was observed when salts were used as additives. As the salt concentration increased, gel Tm decreased. The mass density and melting point of the genipin gel could be adjusted using different amounts of glucose that improved the genipin gel suitability for 3D dose measurements without introducing additional toxicity to the final gel.
Collapse
Affiliation(s)
- A M Al-jarrah
- School of Physics, Universiti Sains Malaysia, 11800 USM Penang, Malaysia.
| | - Azhar Abdul Rahman
- School of Physics, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
| | - Iskandar Shahrim
- School of Physics, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
| | | | - Baker Ababneh
- School of Physics, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
| | | |
Collapse
|
8
|
Chang YJ, Chen CH, Hsieh BT. Characterization of long-term dose stability of N-isopropylacrylamide polymer gel dosimetry. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3231-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|