1
|
Serbanescu OS, Pandele AM, Oprea M, Semenescu A, Thakur VK, Voicu SI. Crown Ether-Immobilized Cellulose Acetate Membranes for the Retention of Gd (III). Polymers (Basel) 2021; 13:3978. [PMID: 34833276 PMCID: PMC8625204 DOI: 10.3390/polym13223978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
This study presents a new, revolutionary, and easy method of separating Gd (III). For this purpose, a cellulose acetate membrane surface was modified in three steps, as follows: firstly, with aminopropyl triethoxysylene; then with glutaraldehyde; and at the end, by immobilization of crown ethers. The obtained membranes were characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS), through which the synthesis of membranes with Gd (III) separation properties is demonstrated. In addition, for the Gd (III) separating process, a gadolinium nitrate solution, with applications of moderator poison in nuclear reactors, was used. The membranes retention performance has been demonstrated by inductively coupled plasma mass spectrometry (ICP-MS), showing a separation efficiency of up to 91%, compared with the initial feed solution.
Collapse
Affiliation(s)
- Oana Steluta Serbanescu
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; (O.S.S.); (A.M.P.); (M.O.)
| | - Andreea Madalina Pandele
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; (O.S.S.); (A.M.P.); (M.O.)
- Advanced Polymers Materials Group, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
| | - Madalina Oprea
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; (O.S.S.); (A.M.P.); (M.O.)
- Advanced Polymers Materials Group, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
| | - Augustin Semenescu
- Faculty of Materials Science, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania;
- Academy of Romanian Scientists, Splaiul Independentei 54, 030167 Bucharest, Romania
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh EH9 3JG, UK
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
- School of Engineering, University of Petroleum & Energy Studies (UPES), Uttarakhand, Dehradun 248007, India
| | - Stefan Ioan Voicu
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania; (O.S.S.); (A.M.P.); (M.O.)
- Advanced Polymers Materials Group, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
| |
Collapse
|
2
|
Synthesis and Characterization of Cellulose Acetate Membranes with Self-Indicating Properties by Changing the Membrane Surface Color for Separation of Gd(III). COATINGS 2020. [DOI: 10.3390/coatings10050468] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study presents a new, revolutionary, and easy method for evaluating the separation process through a membrane that is based on changing the color of the membrane surface during the separation process. For this purpose, a cellulose acetate membrane surface was modified in several steps: initially with amino propyl triethoxysilane, followed by glutaraldehyde reaction and calmagite immobilization. Calmagite was chosen for its dual role as a molecule that will complex and retain Gd(III) and also as an indicator for Gd(III). At the contact with the membrane surface, calmagite will actively complex and retain Gd(III), and it will change the color of the membrane surface during the complexation process, showing that the separation occurred. The synthesized materials were characterized by Fourier transform infrared spectroscopy (FT-IR), thermal analysis (TGA-DTA), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy, demonstrating the synthesis of membrane material with self-indicating properties. In addition, in the separation of the Gd(III) process, in which a solution of gadolinium nitrate was used as a source and as a moderator in nuclear reactors, the membrane changed its color from blue to pink. The membrane performances were tested by Induced Coupled Plasma–Mass Spectrometry (ICP-MS) analyses showing a separation process efficiency of 86% relative to the initial feed solution.
Collapse
|