1
|
Sokolov P, Samokhvalov P, Sukhanova A, Nabiev I. Biosensors Based on Inorganic Composite Fluorescent Hydrogels. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111748. [PMID: 37299650 DOI: 10.3390/nano13111748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Fluorescent hydrogels are promising candidate materials for portable biosensors to be used in point-of-care diagnosis because (1) they have a greater capacity for binding organic molecules than immunochromatographic test systems, determined by the immobilization of affinity labels within the three-dimensional hydrogel structure; (2) fluorescent detection is more sensitive than the colorimetric detection of gold nanoparticles or stained latex microparticles; (3) the properties of the gel matrix can be finely tuned for better compatibility and detection of different analytes; and (4) hydrogel biosensors can be made to be reusable and suitable for studying dynamic processes in real time. Water-soluble fluorescent nanocrystals are widely used for in vitro and in vivo biological imaging due to their unique optical properties, and hydrogels based on these allow the preservation of these properties in bulk composite macrostructures. Here we review the techniques for obtaining analyte-sensitive fluorescent hydrogels based on nanocrystals, the main methods used for detecting the fluorescent signal changes, and the approaches to the formation of inorganic fluorescent hydrogels via sol-gel phase transition using surface ligands of the nanocrystals.
Collapse
Affiliation(s)
- Pavel Sokolov
- Life Improvement by Future Technologies (LIFT) Center, Skolkovo, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115522 Moscow, Russia
| | - Pavel Samokhvalov
- Life Improvement by Future Technologies (LIFT) Center, Skolkovo, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115522 Moscow, Russia
| | - Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Igor Nabiev
- Life Improvement by Future Technologies (LIFT) Center, Skolkovo, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115522 Moscow, Russia
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France
| |
Collapse
|
2
|
Wang T, Yang F, Zhang L, Tang Z, Liu W, Zhong L, He Z, Chai S. Fluorescence Quenching and Highly Selective Adsorption of Ag + Using N-Doped Graphene Quantum Dots/Poly(vinyl alcohol) Composite Membrane. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Ting Wang
- School of Chemistry and Chemical Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi710055, China
| | - Fan Yang
- School of Chemistry and Chemical Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi710055, China
| | - Liang Zhang
- School of Chemistry and Chemical Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi710055, China
- Shaanxi Provincial Key Laboratory of Gold and Resource, Xi’an University of Architecture and Technology, Xi’an, Shaanxi710055, China
| | - Zuobin Tang
- School of Chemistry and Chemical Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi710055, China
| | - Wenwen Liu
- School of Chemistry and Chemical Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi710055, China
| | - Lvling Zhong
- School of Chemistry and Chemical Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi710055, China
| | - Zhixian He
- Instrumental Analysis Center, Xi’an University of Architecture and Technology, Xi’an, Shaanxi710055, China
| | - Shouning Chai
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi710049, China
| |
Collapse
|
3
|
Zhou W, Hu Z, Wei J, Dai H, Chen Y, Liu S, Duan Z, Xie F, Zhang W, Guo R. Quantum dots-hydrogel composites for biomedical applications. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Du H, Shi S, Liu W, Teng H, Piao M. Processing and modification of hydrogel and its application in emerging contaminant adsorption and in catalyst immobilization: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:12967-12994. [PMID: 32124301 DOI: 10.1007/s11356-020-08096-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Due to the wonderful property of hydrogels, they can provide a platform for a wide range of applications. Recently, there is a growing research interest in the development of potential hydrogel adsorbents in wastewater treatment due to their adsorption ability toward aqueous pollutants. It is important to prepare such a hydrogel that possesses appropriate robustness, adsorption capacity, and adsorption efficiency to meet the need of water treatment. In order to improve the property of hydrogels, much effort has been made by researchers to modify hydrogels, among which incorporating inorganic components into the polymeric networks is the most common method, which can reduce the product cost and simplify the preparation procedure. Not only can hydrogel be applied as adsorbent, but it also can be used as matrix for catalyst immobilization. In this review, the key advancement on the preparation and modification of hydrogels is discussed, with special emphasis on the introduction of inorganic materials into polymeric networks and consequential changes in the properties of mechanical strength, swelling, and adsorption. Besides, hydrogels used as adsorbents for removal of dyes and inorganic pollutants have been widely explored, but their use for adsorbing emerging contaminants from aqueous solution has not received much attention. Thus, this review is mainly focused on hydrogels' application in removing emerging contaminants by adsorption. Furthermore, hydrogels can be also applied in immobilizing catalysts, such as enzyme and photocatalyst, to remove pollutants completely and avoid secondary pollution, so their progress as catalyst matrix is overviewed.
Collapse
Affiliation(s)
- Hongxue Du
- Key Laboratory of Environmental Materials and Pollution Control, the Education Department of Jilin Province, Jilin Normal University, Siping, China
- College of Environmental Science and Engineering, Jilin Normal University, 1301 Haifeng Road, Siping, 136000, China
| | - Shuyun Shi
- Key Laboratory of Environmental Materials and Pollution Control, the Education Department of Jilin Province, Jilin Normal University, Siping, China
- College of Environmental Science and Engineering, Jilin Normal University, 1301 Haifeng Road, Siping, 136000, China
| | - Wei Liu
- Key Laboratory of Environmental Materials and Pollution Control, the Education Department of Jilin Province, Jilin Normal University, Siping, China
- College of Environmental Science and Engineering, Jilin Normal University, 1301 Haifeng Road, Siping, 136000, China
| | - Honghui Teng
- Key Laboratory of Environmental Materials and Pollution Control, the Education Department of Jilin Province, Jilin Normal University, Siping, China
- College of Environmental Science and Engineering, Jilin Normal University, 1301 Haifeng Road, Siping, 136000, China
| | - Mingyue Piao
- Key Laboratory of Environmental Materials and Pollution Control, the Education Department of Jilin Province, Jilin Normal University, Siping, China.
- College of Environmental Science and Engineering, Jilin Normal University, 1301 Haifeng Road, Siping, 136000, China.
| |
Collapse
|
5
|
Alehdaghi H, Assar E, Azadegan B, Baedi J, Mowlavi A. Investigation of optical and structural properties of aqueous CdS quantum dots under gamma irradiation. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|