1
|
Kozlova E, Bliznyuk U, Chernyaev A, Borshchegovskaya P, Braun A, Ipatova V, Zolotov S, Nikitchenko A, Chulikova N, Malyuga A, Zubritskaya Y, Bolotnik T, Oprunenko A, Kozlov A, Beklemishev M, Yagudina R, Rodin I. Optimization Function for Determining Optimal Dose Range for Beef and Seed Potato Irradiation. Foods 2024; 13:3729. [PMID: 39682801 DOI: 10.3390/foods13233729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
The objective of this study is to develop a universally applicable approach for establishing the optimal dose range for the irradiation of plant and animal products. The approach involves the use of the optimization function for establishing the optimal irradiation dose range for each category of plant and animal product to maximize the suppression of targeted pathogens while preserving the surrounding molecules and biological structures. The proposed function implies that pathogens found in the product can be efficiently suppressed provided that irradiation is performed with the following criteria in mind: a high irradiation dose uniformity, a high probability of irradiation hitting pathogens and controlled heterogeneity of radiobiological sensitivity of pathogens. This study compares the optimal dose ranges for animal and plant products using beef tenderloin and seed potato tubers as examples. In a series of experiments, our team traced the dose dependencies of myoglobin oxidation in beef and the amount of potential damage to albumin's native structure. The behavior patterns of myoglobin derivatives and the amount of potential damage to albumin found in this study determined the optimal dose range, which appeared to be wider for beef irradiation compared to that for seed potato tubers, as they do not require uniform irradiation of the entire volume since targeted phytopathogens are predominantly found within the surface layers of the tubers. The use of proprietary methods involving spectrophotometry and high-performance liquid chromatography-mass spectrometry provides a novel perspective on the quantitative assessment of the myoglobin oxidation level and the potential damage to albumin's native structure.
Collapse
Affiliation(s)
- Elena Kozlova
- Department of Medical and Biological Physics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Ulyana Bliznyuk
- Department of Physics, Lomonosov Moscow State University, GSP-1, 1-2 Leninskiye Gory, 119991 Moscow, Russia
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, GSP-1, 1-2 Leninskiye Gory, 119991 Moscow, Russia
| | - Alexander Chernyaev
- Department of Physics, Lomonosov Moscow State University, GSP-1, 1-2 Leninskiye Gory, 119991 Moscow, Russia
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, GSP-1, 1-2 Leninskiye Gory, 119991 Moscow, Russia
| | - Polina Borshchegovskaya
- Department of Physics, Lomonosov Moscow State University, GSP-1, 1-2 Leninskiye Gory, 119991 Moscow, Russia
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, GSP-1, 1-2 Leninskiye Gory, 119991 Moscow, Russia
| | - Arcady Braun
- Department of Chemistry, Lomonosov Moscow State University, GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Victoria Ipatova
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, GSP-1, 1-2 Leninskiye Gory, 119991 Moscow, Russia
| | - Sergey Zolotov
- Department of Physics, Lomonosov Moscow State University, GSP-1, 1-2 Leninskiye Gory, 119991 Moscow, Russia
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, GSP-1, 1-2 Leninskiye Gory, 119991 Moscow, Russia
| | - Alexander Nikitchenko
- Department of Physics, Lomonosov Moscow State University, GSP-1, 1-2 Leninskiye Gory, 119991 Moscow, Russia
| | - Natalya Chulikova
- Siberian Federal Scientific Center of Agro-Biotechnologies, Russian Academy of Sciences, Novosibirsk Oblast, 630501 Krasnoobsk, Russia
| | - Anna Malyuga
- Siberian Federal Scientific Center of Agro-Biotechnologies, Russian Academy of Sciences, Novosibirsk Oblast, 630501 Krasnoobsk, Russia
| | - Yana Zubritskaya
- Department of Physics, Lomonosov Moscow State University, GSP-1, 1-2 Leninskiye Gory, 119991 Moscow, Russia
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, GSP-1, 1-2 Leninskiye Gory, 119991 Moscow, Russia
| | - Timofey Bolotnik
- Department of Chemistry, Lomonosov Moscow State University, GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Anastasia Oprunenko
- Department of Chemistry, Lomonosov Moscow State University, GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Aleksandr Kozlov
- Department of Medical and Biological Physics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Mikhail Beklemishev
- Department of Chemistry, Lomonosov Moscow State University, GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Roza Yagudina
- Department of Organization of Medical Provision and Pharmacoeconomics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Igor Rodin
- Department of Chemistry, Lomonosov Moscow State University, GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia
- Department of Epidemiology and Evidence-Based Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
2
|
Kim YJ, Cha JY, Kim TK, Lee JH, Jung S, Choi YS. The Effect of Irradiation on Meat Products. Food Sci Anim Resour 2024; 44:779-789. [PMID: 38974724 PMCID: PMC11222703 DOI: 10.5851/kosfa.2024.e35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 07/09/2024] Open
Abstract
The effects of irradiation on meat constituents including water, proteins, and lipids are multifaceted. Irradiation leads to the decomposition of water molecules, resulting in the formation of free radicals that can have both positive and negative effects on meat quality and storage. Although irradiation reduces the number of microorganisms and extends the shelf life of meat by damaging microbial DNA and cell membranes, it can also accelerate the oxidation of lipids and proteins, particularly sulfur-containing amino acids and unsaturated fatty acids. With regard to proteins, irradiation affects both myofibrillar and sarcoplasmic proteins. Myofibrillar proteins, such as actin and myosin, can undergo depolymerization and fragmentation, thereby altering protein solubility and structure. Sarcoplasmic proteins, including myoglobin, undergo structural changes that can alter meat color. Collagen, which is crucial for meat toughness, can undergo an increase in solubility owing to irradiation-induced degradation. The lipid content and composition are also influenced by irradiation, with unsaturated fatty acids being particularly vulnerable to oxidation. This process can lead to changes in the lipid quality and the production of off-odors. However, the effects of irradiation on lipid oxidation may vary depending on factors such as irradiation dose and packaging method. In summary, while irradiation can have beneficial effects, such as microbial reduction and shelf-life extension, it can also lead to changes in meat properties that need to be carefully managed to maintain quality and consumer acceptability.
Collapse
Affiliation(s)
- Yea-Ji Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Ji Yoon Cha
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| | - Jae Hoon Lee
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| |
Collapse
|
3
|
Zhang Y, Zhao J, He L, Zhu J, Zhu Y, Jin G, Cai R, Li X, Li C. Irradiation-Assisted Enhancement of Foaming and Thermal Gelation Functionality of Liquid Egg White. Foods 2024; 13:1342. [PMID: 38731713 PMCID: PMC11083238 DOI: 10.3390/foods13091342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Ionizing radiation has its unique popularity as a non-thermal decontamination technique treating with protein-rich foodstuffs to ensure the microbial and sensory quality, particularly for shell eggs. However, the changes in the functional properties of egg protein fractions such as liquid egg white (LEW) with macro/microstructural information are still controversial. Hence, this study was designed to elaborate the foaming and heat-set gelation functionality of LEW following different γ-ray irradiation dose treatments (0, 1, 3 or 5 kGy). For such, the physicochemical properties (active sulfhydryl and the hydrophobicity of protein moieties), structural characteristics (through X-ray diffraction, Fourier-transform infrared spectroscopy and differential scanning calorimetry) and interfacial activities (rheological viscosity, interfacial tension, microrheological performance) were investigated. Then, the thermal gelation of LEW in relation to the texture profile and microstructure (by means of a scanning electron microscope) was evaluated followed by the swelling potency analysis of LEW gel in enzyme-free simulated gastric juice. The results indicated that irradiation significantly increased the hydrophobicity of liquid egg white proteins (LEWPs) (p < 0.05) by exposing non-polar groups and the interfacial rearrangement from a β-sheet to linear and smaller crystal structure, leading to an enhanced foaming capacity. Microstructural analysis revealed that the higher dose irradiation (up to 5 kGy) could promote the proteins' oxidation of LEW alongside protein aggregates formed in the amorphous region, which favored heat-set gelation. As evidenced in microrheology, ≤3 kGy irradiation provided an improved viscoelastic interface film of LEW during gelatinization. Particularly, the LEW gel treated with 1 kGy irradiation had evident swelling resistance during the times of acidification at pH 1.2. These results gave new insight into the irradiation-assisted enhancement of foaming and heat-set gelation properties of LEW.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), China Food Flavor and Nutrition Health Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jianying Zhao
- Department of Tea and Food Science and Technology, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China
| | - Lichao He
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), China Food Flavor and Nutrition Health Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jin Zhu
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), China Food Flavor and Nutrition Health Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yue Zhu
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), China Food Flavor and Nutrition Health Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Guofeng Jin
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), China Food Flavor and Nutrition Health Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Ruihang Cai
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China
| | - Xiaola Li
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China
| | - Chengliang Li
- Key Laboratory of Geriatric Nutrition and Health (Ministry of Education), China Food Flavor and Nutrition Health Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Kim TK, Kim YJ, Kang MC, Cha JY, Kim YJ, Choi YJ, Jung S, Choi YS. Effects of myofibril-palatinose conjugate as a phosphate substitute on meat emulsion quality. Heliyon 2024; 10:e28315. [PMID: 38586345 PMCID: PMC10998059 DOI: 10.1016/j.heliyon.2024.e28315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
The objective of this study was to investigate a replacement for phosphate in meat products. Protein structural modification was employed in this study, and grafted myofibrillar protein (MP) with palatinose was added to meat emulsion without phosphate. Here, 0.15% of sodium polyphosphate (SPP) was replaced by the same (0.15%) concentration and double (0.3%) the concentration of grafted MP. Although the thermal stability was decreased, the addition of transglutaminase could increase stability. The rheological properties and pH also increased with the addition of grafted MP and transglutaminase. The addition of grafted protein could be perceived by the naked eye by observing a color difference before cooking, but it was not easy to detect after cooking. The cooking loss, emulsion stability, water holding capacity, lipid oxidation, and textural properties improved with the addition of grafted MP. However, the excessive addition of grafted MP and transglutaminase was not recommended to produce a high quality of phosphate replaced meat emulsion, and 0.15% was identified as a suitable addition ratio of grafted MP.
Collapse
Affiliation(s)
- Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Yun Jeong Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Min-Cheol Kang
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Ji Yoon Cha
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Yea-Ji Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Yoo-Jeong Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, 55365, South Korea
| |
Collapse
|
5
|
Cui B, Zeng X, Liang H, Li J, Zhou B, Wu D, Du X, Li B. Construction of a soybean protein isolate/polysaccharide-based whole muscle meat analog: Physical properties and freeze-thawing stability study. Int J Biol Macromol 2024; 265:131037. [PMID: 38521300 DOI: 10.1016/j.ijbiomac.2024.131037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
A growing interest has arisen in recreating real meat by mimicking its texture characteristics and muscle fiber structure. Our previous work successfully created meat analog fiber based on soybean protein isolate (SPI) and sodium alginate (SA) with the wet-spinning method. In this work, we analyzed the microstructure, texture profile, and water retainability of the assembled plant-based whole muscle meat analog (PMA) made of SPI/SA-based meat analog fiber and systematically studied the effect of different combinations and contents of transglutaminase (TG), salt, and soybean oil on the rheological behavior of the formulated adhesive. The estimated optimal condition that has the most similar texture characteristic with real chicken breast meat is: for every 1:1 mass ratio of simulated plant meat fibers to the adhesive, add 0.1 % TG enzyme addition in the adhesive and 100 mM NaCl addition. The physical behavior of PMA during cryopreservation was investigated through freeze-thaw cycles and freezing times. The addition of a small amount of oil and salt can efficiently prevent the PMA through freezing conditions which is comparable with the addition of D-Trehalose (TD). Overall, this study not only created a plant-based whole muscle meat analog product that is similar in texture to real chicken breast meat but also provided a new direction for constructing fiber-rich structure protein-based muscle meat analogs and their further commercialization.
Collapse
Affiliation(s)
- Bing Cui
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Xinyue Zeng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Bin Zhou
- Key Laboratory of Fermentation Engineering, Ministry of Education, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Di Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Xuezhu Du
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, Hubei, China.
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China; Functional Food Engineering & Technology Research Center of Hubei Province, China.
| |
Collapse
|
6
|
Dos Santos M, Ribeiro WO, Monteiro JDS, Dos Santos BA, Campagnol PCB, Pollonio MAR. Effect of Transglutaminase Treatment on the Structure and Sensory Properties of Rice- or Soy-Based Hybrid Sausages. Foods 2023; 12:4226. [PMID: 38231662 DOI: 10.3390/foods12234226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
Partial substitution of meat with non-protein sources in hybrid meat products generally leads to a decrease in texture attributes and, consequently, in sensory acceptance. In this study, we investigated the effects of transglutaminase (TG) at two concentrations (0.25% and 0.5%) on the physicochemical, textural, and sensory properties of hybrid sausages formulated with concentrated soy or rice proteins. TG caused a reduction in the heat treatment yield of hybrid sausages, particularly those made with rice protein. pH and color parameters were marginally affected by TG addition. Texture parameters increased substantially with TG, although escalating the TG level from 0.25% to 0.5% did not result in a proportional improvement in texture parameters; in fact, for rice-based hybrid sausages, no difference was achieved for all attributes, while only cohesiveness and chewiness were improved for soy-based ones. TG enhanced the sensory attributes of soy-based hybrid sausages to a level comparable to control meat emulsion, as evidenced by ordinate preference score and projective mapping. Our findings suggest that TG is a viable strategy for enhancing texture and sensory parameters in hybrid sausages, particularly for plant proteins that exhibit greater compatibility with the meat matrix.
Collapse
Affiliation(s)
- Mirian Dos Santos
- School of Food Engineering, Universidade Estadual de Campinas (Unicamp), Cidade Universitária Zeferino Vaz, Campinas 13083-862, SP, Brazil
| | - Wanessa Oliveira Ribeiro
- School of Food Engineering, Universidade Estadual de Campinas (Unicamp), Cidade Universitária Zeferino Vaz, Campinas 13083-862, SP, Brazil
| | - Jamille de Sousa Monteiro
- School of Food Engineering, Universidade Estadual de Campinas (Unicamp), Cidade Universitária Zeferino Vaz, Campinas 13083-862, SP, Brazil
| | - Bibiana Alves Dos Santos
- Department of Food Science and Technology (DTCA), Universidade Federal de Santa Maria, Av. Roraima 1000, Camobi, Santa Maria 97105-900, RS, Brazil
| | - Paulo Cezar Bastianello Campagnol
- Department of Food Science and Technology (DTCA), Universidade Federal de Santa Maria, Av. Roraima 1000, Camobi, Santa Maria 97105-900, RS, Brazil
| | | |
Collapse
|
7
|
Fallah AA, Sarmast E, Habibian Dehkordi S, Isvand A, Dini H, Jafari T, Soleimani M, Mousavi Khaneghah A. Low-dose gamma irradiation and pectin biodegradable nanocomposite coating containing curcumin nanoparticles and ajowan (Carum copticum) essential oil nanoemulsion for storage of chilled lamb loins. Meat Sci 2021; 184:108700. [PMID: 34768181 DOI: 10.1016/j.meatsci.2021.108700] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
The current investigation assessed the effect of pectin (PE) biodegradable nanocomposite coating containing curcumin nanoparticles (CNP) and ajowan (Carum copticum) essential oil nanoemulsion (ANE) combined with low-dose gamma irradiation on microbial, physiochemical, and sensorial qualities of lamb loins during refrigeration conditions. Active coating combined with gamma irradiation reduced the count number of mesophilic and psychrotrophic bacteria, lactic acid bacteria, Enterobacteriaceae; and minimized lipid and protein oxidation changes, total volatile basic nitrogen content, met-myoglobin formation, and color deterioration in the loin samples. The increased shelf-life of lamb loins up to 25 days compared with 5 days assigned for the control group can be associated with the application of ionizing radiation and edible PE coating containing CNP and ANE, which might be due to the synergistic or additive effects of treatments. Overall, as an effective preservation technique, a combination of PE + CNP + ANE and irradiation can be recommended for prolonging the shelf-life of lamb loins during refrigerated storage.
Collapse
Affiliation(s)
- Aziz A Fallah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord 34141, Iran.
| | - Elham Sarmast
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord 34141, Iran
| | - Saied Habibian Dehkordi
- Department of Pharmacology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord 34141, Iran
| | - Abbas Isvand
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord 34141, Iran
| | - Hossein Dini
- Department of Public Health and Preventive Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Tina Jafari
- Department of Biochemistry and Nutrition, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Soleimani
- Department of Microbiology, Faculty of Medicine and Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Sao Paulo, Brazil
| |
Collapse
|
8
|
Technologies for the Production of Meat Products with a Low Sodium Chloride Content and Improved Quality Characteristics-A Review. Foods 2021; 10:foods10050957. [PMID: 33924794 PMCID: PMC8145339 DOI: 10.3390/foods10050957] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/17/2022] Open
Abstract
In recent years, consumer concerns regarding high levels of sodium chloride (NaCl) intake have increased, given the associated risk of cardiovascular disease. This has led food industries to consider lowering the use of sodium in food products. However, it is well known that the addition of NaCl to meat products enhances their quality, including water-holding capacity, emulsification capacity, juiciness, and texture. Thus, it is difficult to completely remove salt from meat products; however, it is possible to reduce the salt content using salt substitutes, flavor enhancers, textural enhancers, or other processing technologies. Several recent studies have also suggested that processing technologies, including hot-boning, high pressure, radiation, and pulsed electric fields, can be used to manufacture meat products with reduced salt content. In conclusion, as the complete removal of NaCl from food products is not possible, combined technologies can be used to reduce the NaCl content of meat products, and the appropriate technology should be chosen and studied according to its effects on the quality of the specific meat product.
Collapse
|
9
|
Interaction between papain and transglutaminase enzymes on the textural softening of burgers. Meat Sci 2021; 174:108421. [PMID: 33429336 DOI: 10.1016/j.meatsci.2020.108421] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 11/20/2022]
Abstract
The present study investigated the effect of the enzymes papain (0.2%) and microbial transglutaminase (MTG) (1%) on the texture properties of beef and chicken burgers to develop a meat product with significant increase in softness due to the physiological limitations of the elderly. The products were characterized for pH, objective color, water activity, texture profile analysis (TPA), shear force, compression test, electrophoretic profile, cooking loss, and diameter reduction. A pronounced increase in softness was observed for both raw materials containing papain. An increase in shear force was observed for the beef burger containing only MTG, while the chicken burger showed a reduction of this parameter. The compression tests showed papain alone or combined with MTG decreased the hardness of the burgers. The results showed that the combination of the enzymes papain and MTG can be an effective strategy to develop beef and chicken burgers much softer, contributing to the future studies focused on the physiological needs of the elderly.
Collapse
|
10
|
Yong HI, Kim TK, Kim YB, Jung S, Choi YS. Functional and instrumental textural properties of reduced-salt meat emulsions with konjac gel: Combined effects of transglutaminase, isolate soy protein, and alginate. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1797784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hae in Yong
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
| | - Young-Boong Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Republic of Korea
| |
Collapse
|
11
|
Kim TK, Yong HI, Jang HW, Kim YB, Choi YS. Functional Properties of Extracted Protein from Edible Insect Larvae and Their Interaction with Transglutaminase. Foods 2020; 9:E591. [PMID: 32384629 PMCID: PMC7278604 DOI: 10.3390/foods9050591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 11/23/2022] Open
Abstract
Global concern about food supply shortage has increased interest on novel food sources. Among them, edible insects have been studied as a potential major food source. This study aimed to improve the functional properties of protein solutions extracted from Protaetia brevitarsis (PB) by use of transglutaminase (TG) as a cross-linking agent. After various incubation times (10, 20, 30, 60, and 90 min) with TG, the protein solutions were assessed with regard to their amino acid composition, protein nutritional quality, pH, color (yellowness), molecular weight distribution, thermal stability, foam ability (capacity and stability), and emulsion ability (capacity and stability). Incubation with TG changed the amino acid composition of the proteins and shifted the molecular weight distribution towards higher values, while improving the rest of the aforementioned properties. Since the incubation time for 90 min decreased the protein functionality, the optimum incubation time for cross-linking PB-derived protein with TG is 60 min. The application of TG to edible insect proteins ultimately increases its functionality and allows for the development of novel insect processing technology.
Collapse
Affiliation(s)
| | | | | | | | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea; (T.-K.K.); (H.I.Y.); (H.W.J.); (Y.-B.K.)
| |
Collapse
|