1
|
Thomas L, Schwarze M, Rabus H. Radial dependence of ionization clustering around a gold nanoparticle irradiated by X-rays under charged particle equilibrium. Phys Med Biol 2024; 69:185014. [PMID: 39134027 DOI: 10.1088/1361-6560/ad6e4f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024]
Abstract
Objective.This work explores the enhancement of ionization clustering and its radial dependence around a gold nanoparticle (NP), indicative of the induction of DNA lesions, a potential trigger for cell-death.Approach.Monte Carlo track structure simulations were performed to determine (a) the spectral fluence of incident photons and electrons in water around a gold NP under charged particle equilibrium conditions and (b) the density of ionization clusters produced on average as well as conditional on the occurrence of at least one interaction in the NP using Associated Volume Clustering. Absorbed dose was determined for comparison with a recent benchmark intercomparison. Reported quantities are normalized to primary fluence, allowing to establish a connection to macroscopic dosimetric quantities.Main results.The modification of the electron spectral fluence by the gold NP is minor and mainly occurs at low energies. The net fluence of electrons emitted from the NP is dominated by electrons resulting from photon interactions. Similar to the known dose enhancement, increased ionization clustering is limited to a distance from the NP surface of up to200nm. The number of clusters per energy imparted is increased at distances of up to150nm, and accordingly the enhancement in clustering notably surpasses that of dose enhancement. Smaller NPs cause noticeable peaks in the conditional frequency of clusters between50nm-100nmfrom the NP surface.Significance.This work shows that low energy electrons emitted by NPs lead to an increase of ionization clustering in their vicinity exceeding that of energy imparted. While the electron component of the radiation field plays an important role in determining the background contribution to ionization clustering and energy imparted, the dosimetric effects of NPs are governed by the interplay of secondary electron production by photon interaction and their ability to leave the NP.
Collapse
Affiliation(s)
- Leo Thomas
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, D-10587 Berlin, Germany
| | - Miriam Schwarze
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, D-10587 Berlin, Germany
| | - Hans Rabus
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, D-10587 Berlin, Germany
| |
Collapse
|
2
|
Faddegon B, Blakely EA, Burigo L, Censor Y, Dokic I, Kondo ND, Ortiz R, Méndez JR, Rucinski A, Schubert K, Wahl N, Schulte R. Ionization detail parameters and cluster dose: a mathematical model for selection of nanodosimetric quantities for use in treatment planning in charged particle radiotherapy. Phys Med Biol 2023; 68:10.1088/1361-6560/acea16. [PMID: 37489619 PMCID: PMC10565507 DOI: 10.1088/1361-6560/acea16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Objective. To propose a mathematical model for applying ionization detail (ID), the detailed spatial distribution of ionization along a particle track, to proton and ion beam radiotherapy treatment planning (RTP).Approach. Our model provides for selection of preferred ID parameters (Ip) for RTP, that associate closest to biological effects. Cluster dose is proposed to bridge the large gap between nanoscopicIpand macroscopic RTP. Selection ofIpis demonstrated using published cell survival measurements for protons through argon, comparing results for nineteenIp:Nk,k= 2, 3, …, 10, the number of ionizations in clusters ofkor more per particle, andFk,k= 1, 2, …, 10, the number of clusters ofkor more per particle. We then describe application of the model to ID-based RTP and propose a path to clinical translation.Main results. The preferredIpwereN4andF5for aerobic cells,N5andF7for hypoxic cells. Significant differences were found in cell survival for beams having the same LET or the preferredNk. Conversely, there was no significant difference forF5for aerobic cells andF7for hypoxic cells, regardless of ion beam atomic number or energy. Further, cells irradiated with the same cluster dose for theseIphad the same cell survival. Based on these preliminary results and other compelling results in nanodosimetry, it is reasonable to assert thatIpexist that are more closely associated with biological effects than current LET-based approaches and microdosimetric RBE-based models used in particle RTP. However, more biological variables such as cell line and cycle phase, as well as ion beam pulse structure and rate still need investigation.Significance. Our model provides a practical means to select preferredIpfrom radiobiological data, and to convertIpto the macroscopic cluster dose for particle RTP.
Collapse
Affiliation(s)
- Bruce Faddegon
- University of California San Francisco, Department of Radiation Oncology 1600 Divisadero Street, San Francisco, CA 94143 United States of America
| | - Eleanor A. Blakely
- Loma Linda University School of Medicine, 11175 Campus St, Loma Linda,CA92350, United States of America
| | - Lucas Burigo
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Yair Censor
- Department of Mathematics, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, Haifa, 3498838, Israel
| | - Ivana Dokic
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Naoki Domínguez Kondo
- University of California San Francisco, Department of Radiation Oncology 1600 Divisadero Street, San Francisco, CA 94143 United States of America
| | - Ramon Ortiz
- University of California San Francisco, Department of Radiation Oncology 1600 Divisadero Street, San Francisco, CA 94143 United States of America
| | - José Ramos Méndez
- University of California San Francisco, Department of Radiation Oncology 1600 Divisadero Street, San Francisco, CA 94143 United States of America
| | - Antoni Rucinski
- Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland
| | - Keith Schubert
- Baylor University, 1311 S 5th St, Waco, TX 76706, United States of America
| | - Niklas Wahl
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Reinhard Schulte
- Loma Linda University School of Medicine, 11085 Campus St, Loma Linda, CA92350, United States of America
| |
Collapse
|
3
|
Rucinski A, Biernacka A, Schulte R. Applications of nanodosimetry in particle therapy planning and beyond. Phys Med Biol 2021; 66. [PMID: 34731854 DOI: 10.1088/1361-6560/ac35f1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/03/2021] [Indexed: 12/28/2022]
Abstract
This topical review summarizes underlying concepts of nanodosimetry. It describes the development and current status of nanodosimetric detector technology. It also gives an overview of Monte Carlo track structure simulations that can provide nanodosimetric parameters for treatment planning of proton and ion therapy. Classical and modern radiobiological assays that can be used to demonstrate the relationship between the frequency and complexity of DNA lesion clusters and nanodosimetric parameters are reviewed. At the end of the review, existing approaches of treatment planning based on relative biological effectiveness (RBE) models or dose-averaged linear energy transfer are contrasted with an RBE-independent approach based on nandosimetric parameters. Beyond treatment planning, nanodosimetry is also expected to have applications and give new insights into radiation protection dosimetry.
Collapse
Affiliation(s)
| | - Anna Biernacka
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | | |
Collapse
|
4
|
Pietrzak M, Mietelska M, Bancer A, Rucinski A, Brzozowska B. Geant4-DNA modeling of nanodosimetric quantities in the Jet Counter for alpha particles. Phys Med Biol 2021; 66. [PMID: 34706345 DOI: 10.1088/1361-6560/ac33eb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/27/2021] [Indexed: 11/11/2022]
Abstract
The purpose of this work was to validate the calculation accuracy of nanodosimetric quantities in Geant4-DNA track structure simulation code. We implemented the Jet Counter (JC) nanodosimeter geometry in the simulation platform and quantified the impact of the Geant4-DNA physics models and JC detector performance on the ionization cluster size distributions (ICSD). ICSD parameters characterize the quality of radiation field and are supposed to be correlated to the complexity of the initial DNA damage in nanoscale and eventually the response of biological systems to radiation. We compared Monte Carlo simulations of ICSD in JC geometry performed using Geant4-DNA and PTra codes with experimental data collected for alpha particles at 3.8 MeV. We investigated the impact of simulation and experimental settings, i.e., three Geant4-DNA physics models, three sizes of a nanometer sensitive volume, gas to water density scaling procedure, JC ion extraction efficiency and the presence of passive components of the detector on the ICSD and their parameters. We found that ICSD in JC geometry obtained from Geant4-DNA simulations in water correspond well to ICSD measurements in nitrogen gas for all investigated settings, while the best agreement is for Geant4-DNA physics option 4. This work also discusses the accuracy and robustness of ICSD parameters in the context of the application of track structure simulation methods for treatment planning in particle therapy.
Collapse
Affiliation(s)
| | - Monika Mietelska
- National Centre for Nuclear Research, Świerk, Poland.,Biomedical Physics Division, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | | | | | - Beata Brzozowska
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Ngcezu SA, Rabus H. Investigation into the foundations of the track-event theory of cell survival and the radiation action model based on nanodosimetry. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2021; 60:559-578. [PMID: 34427743 PMCID: PMC8551112 DOI: 10.1007/s00411-021-00936-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
This work aims at elaborating the basic assumptions behind the "track-event theory" (TET) and its derivate "radiation action model based on nanodosimetry" (RAMN) by clearly distinguishing between effects of tracks at the cellular level and the induction of lesions in subcellular targets. It is demonstrated that the model assumptions of Poisson distribution and statistical independence of the frequency of single and clustered DNA lesions are dispensable for multi-event distributions because they follow from the Poisson distribution of the number of tracks affecting the considered target volume. It is also shown that making these assumptions for the single-event distributions of the number of lethal and sublethal lesions within a cell would lead to an essentially exponential dose dependence of survival for practically relevant values of the absorbed dose. Furthermore, it is elucidated that the model equation used for consideration of repair within the TET is based on the assumption that DNA lesions induced by different tracks are repaired independently. Consequently, the model equation is presumably inconsistent with the model assumptions and requires an additional model parameter. Furthermore, the methodology for deriving model parameters from nanodosimetric properties of particle track structure is critically assessed. Based on data from proton track simulations it is shown that the assumption of statistically independent targets leads to the prediction of negligible frequency of clustered DNA damage. An approach is outlined how track structure could be considered in determining the model parameters, and the implications for TET and RAMN are discussed.
Collapse
Affiliation(s)
| | - Hans Rabus
- Physikalisch-Technische Bundesanstalt (PTB), 10587, Berlin, Germany.
| |
Collapse
|