1
|
Elabbasy MT, El-Morsy MA, Awwad NS, Ibrahium HA, Menazea AA. Adsorption and bacterial performance of Nd 2O 3 modified Ag nanoparticles with enhanced degradation of methylene blue. Sci Rep 2024; 14:9877. [PMID: 38684756 PMCID: PMC11059343 DOI: 10.1038/s41598-024-57226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 03/15/2024] [Indexed: 05/02/2024] Open
Abstract
Our study focused on the optical behavior, methylene blue (MB) dye degradation potential, antibacterial performance, and silver and trioxide mineral interaction with different bacterial species. We found that the addition of silver nanoparticles (Ag NPs) to neodymium oxide (Nd2O3) resulted in a significant response, with an enlargement of the inhibition zone for bacterial species such as Staphylococcus aureus and Escherichia coli. Specifically, the inhibition zone for S. aureus increased from 9.3 ± 0.5 mm for pure Nd2O3 to 16.7 ± 0.4 mm for the Ag/Nd2O3 nano-composite, while for E. coli, it increased from 8.8 ± 0.4 mm for Nd2O3 to 15.9 ± 0.3 mm for Ag/Nd2O3. Furthermore, the optical behavior of the composites showed a clear band-gap narrowing with the addition of Ag NPs, resulting in enhanced electronic localization. The direct and indirect transitions reduced from 6.7 to 6.1 eV and from 5.2 to 2.9 eV, respectively. Overall, these results suggest that the Ag/Nd2O3 nano-composite has potential applications in sensor industries and water treatment, thanks to its enhanced optical behavior, antibacterial performance, and efficient MB degradation capabilities. In terms of MB degradation, the Ag/Nd2O3 mixed system exhibited more efficient degradation compared to pure Nd2O3. After 150 min, the MB concentration in the mixed system decreased to almost half of its starting point, while pure Nd2O3 only reached 33%.
Collapse
Affiliation(s)
| | - M A El-Morsy
- Physics Department, Plasma Technology and Material Science Unit, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
- Physics Department, Faculty of Science, University of Damietta, New Damietta, 34517, Egypt
| | - Nasser S Awwad
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Hala A Ibrahium
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - A A Menazea
- Spectroscopy Department, Physics Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt.
| |
Collapse
|
2
|
Arman M, Ahmed M, El-Masry MM. Cellulose Acetate polymer spectroscopic study comprised LaFeO3 perovskite and graphene as a UV-to-visible light converter used in several applications. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
3
|
Khalaf MM, Gouda M, Mohamed IMA, Abd El-Lateef HM. Different additives of gold nanoparticles and lithium oxide loaded chitosan based films; controlling optical and structural properties, evaluating cell viability. Biochem Biophys Res Commun 2023; 649:118-124. [PMID: 36764114 DOI: 10.1016/j.bbrc.2023.01.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Natural chitosan-based films (CS) were fabricated by changing ingredient corporations between gold nanoparticles (AuNPs), lithium oxide (Li2O), and graphene oxide (GO). A Series of films with different components were obtained. The structural examination is executed by XRD, FTIR, and EDX to analyze crystal structure, chemical bonding, and chemical contents, respectively. The findings illustrated that, the Li2O@CS exhibited the lowest contact angle with 70 ± 4.6°. Scanning Electron Microscopy (SEM) displayd rod-shaped AuNPs with an average length of 0.3 μm and an average width of 90 nm. The refractive index of CS recorded 2.142, while AuNPs/Li2O/GO@CS slightly declined to 2.085. Concerning AuNPs/Li2O/GO@CS, the detected cell viability percentage of normal lung cells among the usage of 156.25 μg/mL is 98.91%, while 9.77 μg/mL achieved 125.78%. Therefore, combining AuNPs, GO and Li2O within the CS matrix results in films of boosted biocompatibility and can be suggested for medical applications.
Collapse
Affiliation(s)
- Mai M Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia; Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | - M Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.
| | - Ibrahim M A Mohamed
- Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia; Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| |
Collapse
|
4
|
Ramakrishna RR, Kothan S, Kaewkhao J. “GLASS” a novel framework platform for Judd-Ofelt theory: near infra-red photoluminescence studies of neodymium ions doped in barium zinc gadolinium borate glasses for lasing device applications. JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS 2023; 34:745. [DOI: 10.1007/s10854-023-10060-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/04/2023] [Indexed: 10/31/2024]
|
5
|
Alharbi KH, Alharbi W, El-Morsy MA, Farea MO, Menazea AA. Optical, Thermal, and Electrical Characterization of Polyvinyl Pyrrolidone/Carboxymethyl Cellulose Blend Scattered by Tungsten-Trioxide Nanoparticles. Polymers (Basel) 2023; 15:1223. [PMID: 36904463 PMCID: PMC10007056 DOI: 10.3390/polym15051223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
The polymeric material polyvinyl pyrrolidine/carboxymethyl cellulose (PVP/CMC) was mixed with different quantities of tungsten-trioxide nanoparticles (WO3 NPs). The samples were created using the casting method and Pulsed Laser Ablation (PLA). The manufactured samples were analyzed by utilizing various methods. The halo peak of the PVP/CMC was located at 19.65°, confirming its semi-crystalline nature, as shown in the XRD analysis. FT-IR spectra of pure PVP/CMC composite and PVP/CMC composite incorporated with various contents of WO3 obtained a shift in band locations and change in intensity. Optical band gap was calculated via UV-Vis spectra, which decreased when increasing the laser-ablation time. Thermogravimetric analyses (TGA) curves showed that samples' thermal stability had improved. The frequency-dependent composite films were used to determine AC conductivity of the generated films. When increasing the content of tungsten-trioxide nanoparticles, both (ε') and (ε'') increased. The incorporation of tungsten trioxide enhanced the ionic conductivity of PVP/CMC/WO3 nano-composite to a maximum of 10-8 S/c. It is expected that these studies will have a significant impact on several utilizations, such as energy storage, polymer organic semiconductors, and polymer solar cells.
Collapse
Affiliation(s)
- Khadijah H. Alharbi
- Department of Chemistry, Science and Arts College, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Walaa Alharbi
- Department of Chemistry, Science and Arts College, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - M. A. El-Morsy
- College of Science and Humanities in Al-Kharj, Physics Department, Plasma Technology and Material Science Unit, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Physics Department, Faculty of Science, University of Damietta, New Damietta 34517, Egypt
| | - M. O. Farea
- Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - A. A. Menazea
- Spectroscopy Department, Physics Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
- Laser Technology Unit, Center of Excellent for Advanced Science, National Research Center, Dokki, Giza 12622, Egypt
| |
Collapse
|
6
|
Rahmah MI. Study the effect of graphene and silver nanoparticles on the structural, morphological, optical, and antibacterial properties of commercial titanium oxide. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
7
|
Synthesis and Characterization of Chitosan-Containing ZnS/ZrO 2/Graphene Oxide Nanocomposites and Their Application in Wound Dressing. Polymers (Basel) 2022; 14:polym14235195. [PMID: 36501590 PMCID: PMC9738290 DOI: 10.3390/polym14235195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
The development of scaffold-based nanofilms for the acceleration of wound healing and for maintaining the high level of the healthcare system is still a challenge. The use of naturally sourced polymers as binders to deliver nanoparticles to sites of injury has been highly suggested. To this end, chitosan (CS) was embedded with different nanoparticles and examined for its potential usage in wound dressing. In detail, chitosan (CS)-containing zinc sulfide (ZnS)/zirconium dioxide (ZrO2)/graphene oxide (GO) nanocomposite films were successfully fabricated with the aim of achieving promising biological behavior in the wound healing process. Morphological examination by SEM showed the formation of porous films with a good scattering of ZnS and ZrO2 nanograins, especially amongst ZnS/ZrO2/GO@CS film. In addition, ZnS/ZrO2/GO@CS displayed the lowest contact angle of 67.1 ± 0.9°. Optically, the absorption edge records 2.35 eV for pure chitosan, while it declines to 1.8:1.9 scope with the addition of ZnS, ZrO2, and GO. Normal lung cell (WI-38) proliferation inspection demonstrated that the usage of 2.4 µg/mL ZnS/ZrO2/GO@CS led to a cell viability % of 142.79%, while the usage of 5000 µg/ mL led to a viability of 113.82%. However, the fibroblast malignant cell line exposed to 2.4 µg/mL ZnS/ZrO2/GO@CS showed a viability % of 92.81%, while this percentage showed a steep decline with the usage of 5000 µg/ mL and 2500 µg/mL, reaching 23.28% and 27.81%, respectively. Further biological assessment should be executed with a three-dimensional film scaffold by choosing surrounding media characteristics (normal/malignant) that enhance the selectivity potential. The fabricated scaffolds show promising selective performance, biologically.
Collapse
|
8
|
Doghish AS, Hashem AH, Shehabeldine AM, Sallam AAM, El-Sayyad GS, Salem SS. Nanocomposite based on gold nanoparticles and carboxymethyl cellulose: Synthesis, characterization, antimicrobial, and anticancer activities. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Al-luhaibi AA, Sendi RK. Synthesis, potential of hydrogen activity, biological and chemical stability of zinc oxide nanoparticle preparation by sol–gel: A review. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
10
|
Mushtaq A, Iqbal MZ, Kong X. Antiviral effects of coinage metal-based nanomaterials to combat COVID-19 and its variants. J Mater Chem B 2022; 10:5323-5343. [PMID: 35775993 DOI: 10.1039/d2tb00849a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The world has been suffering from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, and millions of people have been infected through human-to-human transmission and lost their lives within months. Although multidisciplinary scientific approaches have been employed to fight against this deadly pandemic, various mutations and diverse environments keep producing constraints in treating SARS-CoV-2. Indeed, the efficacy of the developed vaccines has been limited, and inoculation with the vaccines does not guarantee complete protection even though multiple doses are required, which is a frustrating process. Historically, coinage metals (Cu, Ag, and Au) have been well-known for their effectiveness in antiviral action as well as good biocompatibility, binding receptor inhibition, reactive oxygen species, and phototherapy properties. Thus, this review highlights the diagnostic and therapeutic mechanisms of SARS-CoV-2 using the antivirus ability and mode of action of coinage metals such as viral entry mechanisms into host cells and the NP-inhibition process, which are explained in detail. This article also draws attention to coinage metal nanomaterial-based approaches to treat other contagious viruses. In addition, coinage metal-based biosensors and an overview of some other biocompatible metal-based nanomaterials to fight against SARS-CoV-2 variants are discussed. Finally, the advantages, perspectives and challenges of coinage metal nanoparticles are given to fight against viral infections in the future.
Collapse
Affiliation(s)
- Asim Mushtaq
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China. .,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China. .,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China. .,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Hangzhou 310018, China
| |
Collapse
|
11
|
Han Z, Zhu H, Cheng JH. Structure modification and property improvement of plant cellulose: Based on emerging and sustainable nonthermal processing technologies. Food Res Int 2022; 156:111300. [PMID: 35651060 DOI: 10.1016/j.foodres.2022.111300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 11/19/2022]
Abstract
Cellulose has attracted high attention due to its advantages of abundant resources, renewable and biodegradable. Modification of natural plant cellulose has become a hot topic worldwide. Conventional chemical modification methods commonly cause great damage to the environment. The current review presents the effects of innovative, eco-friendly and sustainable nonthermal processing technologies on cellulose structure and properties. Typical techniques include high pressure processing, cold plasma, ultrasonic and irradiation treatment. Their superiorities in the modification of cellulose are highlighted, and the advantages and limitations of nonthermal processing technologies for plant cellulose modification are also discussed. Nonthermal processing technologies can improve cellulose functional properties by playing an important role in the chemical bonds of the molecular chains, crystalline regions or amorphous parts through energy or active particles generated in the process, or promoting the crosslinking and graft copolymerization of cellulose molecules. The development of modified cellulose functional materials will have wider applications.
Collapse
Affiliation(s)
- Zhuorui Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hong Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| |
Collapse
|
12
|
Synthesis of nanostructured Bi2O3NPs using laser ablation technique and its effect on the optical, thermal, and conductivity characterization of the PEO/CMC blend. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03030-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Subashini K, Prakash S, Sujatha V. Biological applications of green synthesized zinc oxide and nickel oxide nanoparticles mediated poly(glutaric acid-co-ethylene glycol-co-acrylic acid) polymer nanocomposites. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Pashameah RA, Ibrahium HA, Awwad NS, Farea MO, Ahmed HA, El-Morsy MA, Menazea AA. Modification and development of the optical, structural, thermal and electrical characterization of Chitosan incorporated with Au/Bi2O3/Mo NPs fabricated by laser ablation. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Optical, thermal and dielectric properties of Copper Oxide (CuO)/ chitosan (CS)/ Polyethylene oxide (PEO) blends. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Askary AE, Awwad NS, Ibrahium HA, Moustapha ME, Menazea AA. Thermal, optical and electrical properties of WO3/carboxymethyl cellulose/polyvinyl alcohol composite synthesized by laser ablation. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02993-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Optical, Structural, Electrical Characterization of (Polyvinyl Alcohol–Carboxymethyl Cellulose-Manganese Dioxide) Nanocomposite Fabricated via Laser Ablation. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02311-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Anele A, Obare S, Wei J. Recent Trends and Advances of Co 3O 4 Nanoparticles in Environmental Remediation of Bacteria in Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1129. [PMID: 35407254 PMCID: PMC9000771 DOI: 10.3390/nano12071129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023]
Abstract
Antibiotic resistance is a formidable global threat. Wastewater is a contributing factor to the prevalence of antibiotic-resistant bacteria and genes in the environment. There is increased interest evident from research trends in exploring nanoparticles for the remediation of antibiotic-resistant bacteria. Cobalt oxide (Co3O4) nanoparticles have various technological, biomedical, and environmental applications. Beyond the environmental remediation applications of degradation or adsorption of dyes and organic pollutants, there is emerging research interest in the environmental remediation potential of Co3O4 nanoparticles and its nanocomposites on antibiotic-resistant and/or pathogenic bacteria. This review focuses on the recent trends and advances in remediation using Co3O4 nanoparticles and its nanocomposites on antibiotic-resistant or pathogenic bacteria from wastewater. Additionally, challenges and future directions that need to be addressed are discussed.
Collapse
Affiliation(s)
- Anuoluwapo Anele
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA;
| | - Sherine Obare
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA;
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC 27401, USA
| | - Jianjun Wei
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA;
| |
Collapse
|
19
|
One-Pot Pulsed Laser Ablation Route Assisted Molybdenum Trioxide Nano-Belts Doped in PVA/CMC Blend for the Optical and Electrical Properties Enhancement. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02257-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Enhancement of physico-chemical, optical, dielectric and antimicrobial properties of polyvinyl alcohol/carboxymethyl cellulose blend films by addition of silver doped hydroxyapatite nanoparticles. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02943-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractHydroxyapatite nanoparticles doped with silver AgHA-NPs were synthesized successfully then added with various mass fractions to a mixed solution of polyvinyl alcohol (PVA)/ carboxymethyl cellulose (CMC) using the casting technique. Experimentally, the influence of silver doped hydroxyapatite nanoparticles on the structural, optical, dielectric and antimicrobial properties of nanocomposite films was investigated. X-ray diffraction and Fourier transformation infrared spectroscopy were used to explore the structural features of these films. The XRD analysis revealed the amorphous nature of PVA/CMC blend and the intensity of the characteristic peak of the virgin polymers in the nanocomposite spectrum being much reduced as the doping level was increased. The FT-IR spectra indicated that the blend components were miscible by revealing the functional groups of two polymers that interacted through the formation of a hydrogen bond while, the FT-IR spectra of nanocomposite confirmed the good interaction between the blend chains and AgHA-NPs. The morphological graphs of the prepared blend were formed as hexagonal grains with size distribution around 18.36–24.11 μm. The addition of AgHA-NPs changed the surface morphology of the blend significantly. The optical properties of PVA/ CMC blend and nanocomposites films were measured in the 200–800 nm wavelength range. Optical measurements showed that the optical transmittance for pure blend was nearly 90% while it decreased to 50% with increasing AgHA-NPs contents up to 40 wt.%. The energy gap values calculated by Tauc's model and those determined by ASF model are consistent, where their values reduced by AgHA-NPs incorporation. The dielectric constant of all samples were studied in range of temperatures (303–405 K) and from100 kHz to 1.0 MHz, range of frequencies. The Correlated Barrier Hopping (CBH) is the most appropriate conduction mechanism based on the frequency dependence of the ac conductivity. Silver ion release was examined showed that he film loaded with 10 wt.% AgHA-NPs has a small release of silver ion, while the amount of the Ag+ released from the samples increased slowly with increasing the content of AgHA-NPs. PVA/CMC/AgHA films were tested for antibacterial activity against both (Bacillus subtilis) and (Escherichia coli) as well as the anti-fungal activity against (Candida albicans),their results showing an increase in the activity index as the filling level of AgHA-NPs increases. The study confirmed that doping of AgHA-NPs into PVA/CMC improves both electrical conductivity and antimicrobial efficiency and these nanocomposites might be recommended for further work in biomedical applications such as wound dressing and infection control.
Collapse
|
21
|
Li Y, Li Y, Chen T, Yang X, Qiao C, Hao F, Liu M. N-(2-hydroxyl)-propyl-3-trimethylammonium chitosan chloride/carboxymethyl cellulose films filled with in-situ crystallized calcium carbonate. Carbohydr Polym 2022; 278:118975. [PMID: 34973789 DOI: 10.1016/j.carbpol.2021.118975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/05/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022]
Abstract
The research and development of substitutes for petroleum-based plastics has become a hot topic. The N-(2-hydroxyl)-propyl-3-trimethylammonium chitosan chloride (HTCC, 10 wt%)/sodium carboxymethyl cellulose (CMC) films have showed enhanced mechanical properties, which also provide a potential substitute to petroleum-based plastics. In this paper, calcium carbonate was crystallized (cry-CaCO3) in HTCC/CMC film-forming solutions, and the effects of the cry-CaCO3 particles on HTCC/CMC film properties including microstructures, mechanical properties, thermal stability, whiteness, and wettability were characterized. An HTCC/CMC film with commercially available CaCO3 (com-CaCO3) was used as a control. The results showed that the cry-CaCO3 promoted the homogeneous distribution of the HTCC/CMC matrix and significantly improved mechanical properties, but showed little effect on the thermal stability, whiteness and wettability of the films. To reveal the affecting mechanism of cry-CaCO3 on HTCC/CMC film properties, the cry-CaCO3 particles were isolated from film-forming solutions and characterized by scanning electron microscope (SEM), powder X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), thermogravimetric analysis (TGA) methods. The results showed that the HTCC/CMC matrix modulated spherical CaCO3 particles, and the macromolecules were encapsulated in cry-CaCO3 particles, decreasing their adhesion to the HTCC/CMC matrix while increasing their distribution in the HTCC/CMC matrix. The strong electrostatic, hydrogen bonding and flexible interaction between CMC and cry-CaCO3 particles played a key role in improving the mechanical properties of HTCC/CMC films.
Collapse
Affiliation(s)
- Yong Li
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yan Li
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Tao Chen
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiaodeng Yang
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Congde Qiao
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Fei Hao
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Mingxia Liu
- Department of Blood Transfusion, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China.
| |
Collapse
|
22
|
Wang W, Wang S, Xiang C, Liu S, Li M, Wang D. Graphene Oxide/Nanofiber-Based Actuation Films with Moisture and Photothermal Stimulation Response for Remote Intelligent Control Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48179-48188. [PMID: 34586793 DOI: 10.1021/acsami.1c11117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The rapid development of intelligent technology and industry has induced higher requirements for multifunctional materials, especially intelligent materials with stimulus-responsive self-actuation behavior. In this study, a Cu@PVA-co-PE/GO composite actuation film, with an asymmetric sandwich structure, was prepared by attaching graphene oxide (GO) to the surface of a polyvinyl alcohol ethylene copolymer (PVA-co-PE) nanofiber composite film containing copper nanoparticles (Cu) through layer-on-layer adsorption. This unique structural design endowed the composite film with not only excellent structural stability but also different bending directions (in response to moisture and infrared light). The actuation performance shows that when the adsorption time was 4 h, the maximum bending angle of the Cu@PVA-co-PE/GO composite film was up to 90° within 5.99 s. Furthermore, the actuation behavior was stable after 100 cycles of reversible moisture stimulation. Additionally, the maximum actuation strain of the composite film was up to 1.35 MPa during the illumination time of 6.8 s and maintained an excellent stability for 400 s under continuous infrared stimulation of 0.53 W/cm2. The rapid and sensitive stimulus response of the Cu@PVA-co-PE/GO composite film exhibited self-actuation behavior under the remote control of moisture and infrared light. This, in turn, suggests prospects for wide applications in emerging technologies, such as intelligent switches, artificial muscles, intelligent medical treatment, and flexible robots.
Collapse
Affiliation(s)
- Wen Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, China
| | - Shuang Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, China
| | - Chenxue Xiang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Shuying Liu
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, China
| | - Mufang Li
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
23
|
Yougbaré S, Mutalik C, Okoro G, Lin IH, Krisnawati DI, Jazidie A, Nuh M, Chang CC, Kuo TR. Emerging Trends in Nanomaterials for Antibacterial Applications. Int J Nanomedicine 2021; 16:5831-5867. [PMID: 34475754 PMCID: PMC8405884 DOI: 10.2147/ijn.s328767] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/04/2021] [Indexed: 01/11/2023] Open
Abstract
Around the globe, surges of bacterial diseases are causing serious health threats and related concerns. Recently, the metal ion release and photodynamic and photothermal effects of nanomaterials were demonstrated to have substantial efficiency in eliminating resistance and surges of bacteria. Nanomaterials with characteristics such as surface plasmonic resonance, photocatalysis, structural complexities, and optical features have been utilized to control metal ion release, generate reactive oxygen species, and produce heat for antibacterial applications. The superior characteristics of nanomaterials present an opportunity to explore and enhance their antibacterial activities leading to clinical applications. In this review, we comprehensively list three different antibacterial mechanisms of metal ion release, photodynamic therapy, and photothermal therapy based on nanomaterials. These three different antibacterial mechanisms are divided into their respective subgroups in accordance with recent achievements, showcasing prospective challenges and opportunities in clinical, environmental, and related fields.
Collapse
Affiliation(s)
- Sibidou Yougbaré
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Institut de Recherche en Sciences de la Santé (IRSS-DRCO)/Nanoro, Ouagadougou, Burkina Faso
| | - Chinmaya Mutalik
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Goodluck Okoro
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - I-Hsin Lin
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | | | - Achmad Jazidie
- Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
- Universitas Nahdlatul Ulama Surabaya, Surabaya, 60237, Indonesia
| | - Mohammad Nuh
- Universitas Nahdlatul Ulama Surabaya, Surabaya, 60237, Indonesia
- Department of Biomedical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
| | - Che-Chang Chang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
24
|
Electrospun membranes of cellulose acetate/polyvinylidene difluoride containing Au/Se nanoparticles via laser ablation technique for methylene blue degradation. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02680-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
A promising nanocatalyst: Upgraded Kraft lignin by titania and palladium nanoparticles for organic dyes reduction. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108746] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Wang L, Wu J. A review of recent progress in silver silicate-based photocatalysts for organic pollutant degradation. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Abd El-Kader M, Awwad NS, Ibrahium HA, Ahmed M. Graphene oxide fillers through polymeric blends of PVC/PVDF using laser ablation technique: electrical behavior, cell viability, and thermal stability. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 2021; 13:1878-1886. [DOI: 10.1016/j.jmrt.2021.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
28
|
Iqbal DN, Ehtisham-ul-Haque S, Ahmad S, Arif K, Hussain EA, Iqbal M, Alshawwa SZ, Abbas M, Amjed N, Nazir A. Enhanced antibacterial activity of chitosan, guar gum and polyvinyl alcohol blend matrix loaded with amoxicillin and doxycycline hyclate drugs. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|