1
|
Yaqoob J, AlMohamadi H, Khan AL, Yasin M, Mahmood T, Ayub K, Anwar F, Joya KS, Gilani MA. Optimal balance: alkali metal-doped boron carbide nanosheets achieve superior stability and nonlinear optical responsiveness. RSC Adv 2024; 14:31021-31035. [PMID: 39351406 PMCID: PMC11440352 DOI: 10.1039/d4ra03882g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Nonlinear optical (NLO) materials play a vital role in various technological domains, including optoelectronics and photonic devices. Designing NLO materials, particularly inorganic ones, that strike a compromise between nonlinear optical sensitivity and stability has always been a difficult task. In order to improve the stability and NLO responsiveness, we propose and examine alkali metal-doped boron carbide nanosheets (M@BCNs) in this study. Calculated interaction energies (E int), which span from -65.5 to -94.9 kcal mol-1, show the stability of the M@BCN complexes. The first hyperpolarizability value has also increased, to a maximum of 3.11 × 105 au, indicating improved nonlinear optical characteristics. QTAIM (quantum theory of atoms in molecules) and NCI (non-covalent interactions) analyses demonstrate the validity of the interactions. According to NBO (natural bond orbital) analysis, the alkali metals gain almost +1 charge. Due to the low transition energies and considerable charge transfer between the alkali metals and nanosheet, the nonlinear optical response is significantly improved. The M@BCN complexes also show transparency in the ultraviolet region, with absorption maxima ranging from 917 to 2788 nm. This study proposes a viable approach for developing alkali metal-doped boron carbide nanosheets with improved NLO response and stability.
Collapse
Affiliation(s)
- Junaid Yaqoob
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus Lahore-54600 Pakistan
| | - Hamad AlMohamadi
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah Madinah Saudi Arabia
- Sustainability Research Center, Islamic University of Madinah Madinah Saudi Arabia
| | - Asim Laeeq Khan
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah Madinah Saudi Arabia
- Sustainability Research Center, Islamic University of Madinah Madinah Saudi Arabia
| | - Muhammad Yasin
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus Lahore-54600 Pakistan
| | - Tariq Mahmood
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus Abbottabad-22060 Pakistan
- Department of Chemistry, College of Science, University of Bahrain Sakhir P.O. Box 32038 Bahrain
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus Abbottabad-22060 Pakistan
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
- Institute of Chemistry, University of Sargodha Sargodha 40100 Pakistan
| | - Khurram Saleem Joya
- Department of Chemistry, Faculty of Science, Islamic University of Madinah Madinah 42351 Saudi Arabia
| | - Mazhar Amjad Gilani
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus Lahore-54600 Pakistan
| |
Collapse
|
2
|
Pervaiz A, Shahzad SA, Assiri MA, Javid T, Irshad H, Khan KO. Extensive optical and DFT studies on novel AIE active fluorescent sensor for Colorimetric and fluorometric detection of nitrobenzene in Solid, solution and vapor phase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124121. [PMID: 38460231 DOI: 10.1016/j.saa.2024.124121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/01/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
An electron rich isophthalamide based sensor IPA has been synthesized through a simple two-step reaction, containing noteworthy aggregation induced emission (AIE) properties. Considering the significant emission with λmax at 438 nm, sensor IPA has been employed for the sensing of nitrobenzene (NB) in solid, solution and vapor state with high sensitivity and selectivity. Sensor IPA showed noteworthy colorimetric and fluorometric quenching in fluorescence emission when exposed to NB. Small size of NB and involvement of photoinduced electron transfer (PET) lead to detection of NB down to 60 nM. IPA-NB interaction was studied through UV-Vis. spectroscopic studies along with fluorescence spectroscopy. Moreover, 1H and 13C NMR titration experiments provided additional support for determination of interaction type. Furthermore, by using density functional theory (DFT) calculations, thermodynamic stability was studied. Additionally, non-covalent interactions (NCI), frontier molecular orbitals (FMO), density of states (DOS), were investigated for providing further evidence of nitrobenzene sensing and its interaction with sensor. Natural bond orbital (NBO) analysis was carried out for charge transfer studies. Quantum theory of atom in molecule (QTAIM) and SAPT0 studies provided information about interaction points and binding energy. Additionally, IPA was investigated for NB sensing in real water samples, and its effective participation in solid state on-site detection as well as in solution phase was brought to light along with logic gate construction.
Collapse
Affiliation(s)
- Aqsa Pervaiz
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan.
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61514, P. O. Box 9004, Saudi Arabia
| | - Tayyeba Javid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Hasher Irshad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Khanzadi Omama Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| |
Collapse
|
3
|
Rasul R, Mahmood T, Ayub K, Joya KS, Anwar F, Saari N, Nawaz R, Gilani MA. Alkali metals doped cycloparaphenylene nanohoops: Promising nonlinear optical materials with enhanced performance. Heliyon 2023; 9:e21508. [PMID: 38027972 PMCID: PMC10654151 DOI: 10.1016/j.heliyon.2023.e21508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
In the ongoing pursuit of novel and efficient NLO materials, the potential of alkali metal-doped {6}cycloparaphenylene ({6}CPP) and methylene bridged {6} cycloparaphenylene (MB{6}CPP) nanohoops as excellent NLO candidates has been explored. The geometric, electronic, linear, and nonlinear optical properties of designed systems have been investigated theoretically. All the nanohoops demonstrated thermodynamic stability, with remarkable interaction energies reaching up to -1.39 eV (-0.0511 au). Notably, the introduction of alkali metals led to a significant reduction in the HOMO-LUMO energy gaps, with values as low as 2.92 eV, compared to 6.80 eV and 6.06 eV for undoped {6}CPP and MB{6}CPP, respectively. Moreover, the alkali metal-doped nanohoops exhibited exceptional NLO response, with the K@r6-{6}CPP complex achieving the highest first hyperpolarizability of 56,221.7 × 10-30 esu. Additionally, the frequency-dependent first hyperpolarizability values are also computed at two commonly used wavelengths of 1550 nm and 1907 nm, respectively. These findings highlight the potential of designed nanohoops as promising candidates for advanced NLO materials with high-tech applications.
Collapse
Affiliation(s)
- Ruqiya Rasul
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore-54600, Pakistan
| | - Tariq Mahmood
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
- Department of Chemistry, College of Science, University of Bahrain, Sakhir P. O. Box 32038, Bahrain
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Khurram Saleem Joya
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Institute of Chemistry, University of Sargodha, Sargodha-40100, Pakistan
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - R. Nawaz
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, 32093 Hawally, Kuwait
| | - Mazhar Amjad Gilani
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore-54600, Pakistan
| |
Collapse
|
4
|
Alkhalifah MA, Sheikh NS, Al-Faiyz YSS, Bayach I, Ludwig R, Ayub K. Rational Design, Stabilities and Nonlinear Optical Properties of Non-Conventional Transition Metalides; New Entry into Nonlinear Optical Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093447. [PMID: 37176328 PMCID: PMC10180138 DOI: 10.3390/ma16093447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Electronic and nonlinear optical properties of endohedral metallofullerenes are presented. The endohedral metallofullerenes contain transition metal encapsulated in inorganic fullerenes X12Y12 (X = B, Al & Y = N, P). The endohedral metallofullerenes (endo-TM@X12Y12) possess quite interesting geometric and electronic properties, which are the function of the nature of the atom and the size of fullerene. NBO charge and frontier molecular orbital analyses reveal that the transition metal encapsulated Al12N12 fullerenes (endo-TM@Al12N12) are true metalides when the transition metals are Ni, Cu and Zn. Endo-Cr@Al12N12 and endo-Co@Al12N12 are at the borderline between metalides and electrides with predominantly electride characteristics. The other members of the series are excess electron systems, which offer interesting electronic and nonlinear optical properties. The diversity of nature possessed by endo-TM@Al12N12 is not prevalent for other fullerenes. Endo-TM@Al12P12 are true metalides when the transition metals are (Cr-Zn). HOMO-LUMO gaps (EH-L) are reduced significantly for these endohedral metallofullerenes, with a maximum percent decrease in EH-L of up to 70%. Many complexes show odd-even oscillating behavior for EH-L and dipole moments. Odd electron species contain large dipole moments and small EH-L, whereas even electron systems have the opposite behavior. Despite the decrease in EH-L, these systems show high kinetic and thermodynamic stabilities. The encapsulation of transition metals is a highly exergonic process. These endo-TM@X12Y12 possess remarkable nonlinear optical response in which the first hyperpolarizability reaches up to 2.79 × 105 au for endo-V@Al12N12. This study helps in the comparative analysis of the potential nonlinear optical responses of electrides, metalides and other excess electron systems. In general, the potential nonlinear optical response of electrides is higher than metalides but lower than those of simple excess electron compounds. The higher non-linear optical response and interesting electronic characteristics of endo-TM@Al12N12 complexes may be promising contenders for potential NLO applications.
Collapse
Affiliation(s)
- Mohammed A Alkhalifah
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nadeem S Sheikh
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| | - Yasair S S Al-Faiyz
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Imene Bayach
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ralf Ludwig
- University of Rostock, Institute of Chemistry, Physical and Theoretical Chemistry, Albert-Einstein-Straße 27, 18059 Rostock, Germany
- Department of Science and Technology of Life, Light and Matter, Faculty of Interdisciplinary Research, University of Rostock, 18059 Rostock, Germany
- Leibniz-Institut für Katalyse an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, KPK, Pakistan
| |
Collapse
|
5
|
Basma REMOUGUI C, BRAHIMI N, MOUMENI H, NEMAMCHA A. Structural, electronic, nonlinear optical properties and spectroscopic study of noble metals doped C60 fullerene using M06-2X. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
6
|
Morcillo-Arencibia MF, Alcaraz-Pelegrina JM, Sarsa AJ, Randazzo JM. An off-center endohedrally confined hydrogen molecule. Phys Chem Chem Phys 2022; 24:22971-22977. [PMID: 36125249 DOI: 10.1039/d2cp03456e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we address the problem of a C60 endohedrally confined hydrogen molecule through a configuration-interaction approach to electronic dynamics. Modeling the confinement by means of a combination of two Woods-Saxon potentials, we analyze the stability of the system as a function of the nuclei position through the behavior of the electronic spectrum. After studying the convergence of two different partial wave expansions, one related to the molecular Coulomb centers and the other related to the off-centering of the C60 well, we found that the second approach provides a more accurate description of the system. Furthermore, we observed that the inter-atomic distance changes based on the position of the atoms inside the cavity. Thus, to obtain the most favourable energetic configuration for the molecule, it should be positioned inside the cavity next to the structure, where its size decreases.
Collapse
Affiliation(s)
- Milagros F Morcillo-Arencibia
- Departamento de Física, Campus de Rabanales, Edif. C2. Universidad de Córdoba, E-14071 Córdoba, Spain. .,Centro Atómico Bariloche, CNEA and CONICET, S. C. de Bariloche, Río Negro, Argentina
| | | | - Antonio J Sarsa
- Departamento de Física, Campus de Rabanales, Edif. C2. Universidad de Córdoba, E-14071 Córdoba, Spain.
| | - Juan M Randazzo
- Centro Atómico Bariloche, CNEA and CONICET, S. C. de Bariloche, Río Negro, Argentina
| |
Collapse
|
7
|
Ndjopme Wandji BL, Tamafo Fouegue AD, Nkungli NK, Ntieche RA, Wahabou A. DFT investigation on the application of pure and doped X 12N 12 (X = B and Al) fullerene-like nano-cages toward the adsorption of temozolomide. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211650. [PMID: 35401995 PMCID: PMC8992703 DOI: 10.1098/rsos.211650] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/01/2022] [Indexed: 05/03/2023]
Abstract
The sensitivity of pure and doped X12N12 (X = B and Al) fullerene-like nano-cages (FLNs) toward the anti-cancer drug temozolomide (TMZ) is probed herein at DFT/M06-2X-D3/6-311G(d,p) theoretical level in both gas phase and water. A noticeable affinity of the FLNs toward TMZ was observed along with the negative gas-phase adsorption energies -1.37 and -2.09 eV for the most stable configurations of pure B12N12 and Al12N12 pristines, respectively. Considerable charge transfer from TMZ to the FLNs was also revealed via NBO analysis and the Hirshfeld atomic charges, making the dipole moment vector of the molecular complexes to be oriented from the nano-cages to the TMZ moiety. Furthermore, a percentage decrease in the HOMO-LUMO energy gap (ΔE g) of 38.09 and 17.72% was obtained for the B12N12 and Al12N12 nano-cages, respectively. The percentage change in ΔE g was found to be reduced upon doping and solvation of the FLNs. Finally, a recovery time in vacuum ultraviolet light of 1.06 s is found for the complex with pure B12N12, which in addition to the above-mentioned parameters make this boron nitride cage the best sensor for TMZ, among the FLNs considered in the present work.
Collapse
Affiliation(s)
| | - Aymard Didier Tamafo Fouegue
- Department of Chemistry, Higher Teacher Training College Bertoua, The University of Bertoua, PO Box 652, Bertoua, Cameroon
| | - Nyiang Kennet Nkungli
- Department of Chemistry, Faculty of Science, The University of Bamenda, PO Box 39, Bambili-Bamenda, Cameroon
| | - Rahman Abdoul Ntieche
- Department of Chemistry, Higher Teacher Training College Bertoua, The University of Bertoua, PO Box 652, Bertoua, Cameroon
| | - Abdoul Wahabou
- Department of Chemistry, Faculty of Science, The University of Maroua, PO Box 814, Maroua, Cameroon
| |
Collapse
|
8
|
Wajid S, Kosar N, Ullah F, Gilani MA, Ayub K, Muhammad S, Mahmood T. Demonstrating the Potential of Alkali Metal-Doped Cyclic C 6O 6Li 6 Organometallics as Electrides and High-Performance NLO Materials. ACS OMEGA 2021; 6:29852-29861. [PMID: 34778658 PMCID: PMC8582031 DOI: 10.1021/acsomega.1c04349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
In this report, the geometric and electronic properties and static and dynamic hyperpolarizabilities of alkali metal-doped C6O6Li6 organometallics are analyzed via density functional theory methods. The thermal stability of the considered complexes is examined through interaction energy (E int) calculations. Doping of alkali metal derives diffuse excess electrons, which generate the electride characteristics in the respective systems (electrons@complexant, e-@M@C6O6Li6, M = Li, Na, and K). The electronic density shifting is also supported by natural bond orbital charge analysis. These electrides are further investigated for their nonlinear optical (NLO) responses through static and dynamic hyperpolarizability analyses. The potassium-doped C6O6Li6 (K@C6O6Li6) complex has high values of second- (βtot = 2.9 × 105 au) and third-order NLO responses (γtot = 1.6 × 108 au) along with a high refractive index at 1064 nm, indicating that the NLO response of the corresponding complex increases at a higher wavelength. UV-vis absorption analysis is used to confirm the electronic excitations, which occur from the metal toward C6O6Li6. We assume that these newly designed organometallic electrides can be used in optical and optoelectronic fields for achieving better second-harmonic-generation-based NLO materials.
Collapse
Affiliation(s)
- Sunaina Wajid
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Naveen Kosar
- Department
of Chemistry, University of Management and
Technology (UMT), C11,
Johar Town Lahore 54770, Pakistan
| | - Faizan Ullah
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Mazhar Amjad Gilani
- Department
of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Khurshid Ayub
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Shabbir Muhammad
- Department
of Physics, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Tariq Mahmood
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| |
Collapse
|