1
|
Hernández J, Gabrielli M, Costa J, Uttaro AD. Phagocytic and pinocytic uptake of cholesterol in Tetrahymena thermophila impact differently on gene regulation for sterol homeostasis. Sci Rep 2021; 11:9067. [PMID: 33907281 PMCID: PMC8079401 DOI: 10.1038/s41598-021-88737-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 04/15/2021] [Indexed: 01/02/2023] Open
Abstract
The ciliate Tetrahymena thermophila can either synthesize tetrahymanol or when available, assimilate and modify sterols from its diet. This metabolic shift is mainly driven by transcriptional regulation of genes for tetrahymanol synthesis (TS) and sterol bioconversion (SB). The mechanistic details of sterol uptake, intracellular trafficking and the associated gene expression changes are unknown. By following cholesterol incorporation over time in a conditional phagocytosis-deficient mutant, we found that although phagocytosis is the main sterol intake route, a secondary endocytic pathway exists. Different expression patterns for TS and SB genes were associated with these entry mechanisms. Squalene synthase was down-regulated by a massive cholesterol intake only attainable by phagocytosis-proficient cells, whereas C22-sterol desaturase required ten times less cholesterol and was up-regulated in both wild-type and mutant cells. These patterns are suggestive of at least two different signaling pathways. Sterol trafficking beyond phagosomes and esterification was impaired by the NPC1 inhibitor U18666A. NPC1 is a protein that mediates cholesterol export from late endosomes/lysosomes in mammalian cells. U18666A also produced a delay in the transcriptional response to cholesterol, suggesting that the regulatory signals are triggered between lysosomes and the endoplasmic reticulum. These findings could hint at partial conservation of sterol homeostasis between eukaryote lineages.
Collapse
Affiliation(s)
- Josefina Hernández
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2000FHQ, Ocampo y Esmeralda, Rosario, Argentina
| | - Matías Gabrielli
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2000FHQ, Ocampo y Esmeralda, Rosario, Argentina
| | - Joaquín Costa
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2000FHQ, Ocampo y Esmeralda, Rosario, Argentina
| | - Antonio D Uttaro
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2000FHQ, Ocampo y Esmeralda, Rosario, Argentina.
| |
Collapse
|
2
|
Najle SR, Hernández J, Ocaña-Pallarès E, García Siburu N, Nusblat AD, Nudel CB, Slamovits CH, Uttaro AD. Genome-wide Transcriptional Analysis of Tetrahymena thermophila Response to Exogenous Cholesterol. J Eukaryot Microbiol 2019; 67:209-222. [PMID: 31705733 DOI: 10.1111/jeu.12774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 11/28/2022]
Abstract
The ciliate Tetrahymena thermophila does not require sterols for growth and synthesizes pentacyclic triterpenoid alcohols, mainly tetrahymanol, as sterol surrogates. However, when sterols are present in the environment, T. thermophila efficiently incorporates and modifies them. These modifications consist of desaturation reactions at positions C5(6), C7(8), and C22(23), and de-ethylation at C24 of 29-carbon sterols (i.e. phytosterols). Three out of four of the enzymes involved in the sterol modification pathway have been previously identified. However, identification of the sterol C22 desaturase remained elusive, as did other basic aspects of this metabolism. To get more insights into this peculiar metabolism, we here perform a whole transcriptome analysis of T. thermophila in response to exogenous cholesterol. We found 356 T. thermophila genes to be differentially expressed after supplementation with cholesterol for 2 h. Among those that were upregulated, we found two genes belonging to the long spacing family of desaturases that we tentatively identified by RNAi analysis as sterol C22 desaturases. Additionally, we determined that the inhibition of tetrahymanol synthesis after supplementation with cholesterol occurs by a transcriptional downregulation of genes involved in squalene synthesis and cyclization. Finally, we identified several uncharacterized genes that are likely involved in sterols transport and signaling.
Collapse
Affiliation(s)
- Sebastián R Najle
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario, CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda s/n, S2000FHQ, Rosario, Argentina.,Institut de Biología Evolutiva (CSIC-Universitat Pompeu Fabra), Pg. Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain
| | - Josefina Hernández
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario, CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda s/n, S2000FHQ, Rosario, Argentina
| | - Eduard Ocaña-Pallarès
- Institut de Biología Evolutiva (CSIC-Universitat Pompeu Fabra), Pg. Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain
| | - Nicolás García Siburu
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario, CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda s/n, S2000FHQ, Rosario, Argentina
| | - Alejandro D Nusblat
- Facultad de Farmacia y Bioquímica, Instituto de Nanobiotecnología (NANOBIOTEC), CONICET, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Clara B Nudel
- Facultad de Farmacia y Bioquímica, Instituto de Nanobiotecnología (NANOBIOTEC), CONICET, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Claudio H Slamovits
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, B3H 4R2, Nova Scotia, Canada
| | - Antonio D Uttaro
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario, CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda s/n, S2000FHQ, Rosario, Argentina
| |
Collapse
|