1
|
Olszewska M, Barciszewska MZ, Fraczek M, Huleyuk N, Chernykh VB, Zastavna D, Barciszewski J, Kurpisz M. Global methylation status of sperm DNA in carriers of chromosome structural aberrations. Asian J Androl 2017; 19:117-124. [PMID: 26908061 PMCID: PMC5227660 DOI: 10.4103/1008-682x.168684] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Male infertility might be clearly associated with aberrant DNA methylation patterns in human spermatozoa. An association between oxidative stress and the global methylation status of the sperm genome has also been suggested. The aim of the present study was to determine whether the global sperm DNA methylation status was affected in the spermatozoa of carriers of chromosome structural aberrations. The relationships between the 5-methylcytosine (m5C) levels in spermatozoa and chromatin integrity status were evaluated. The study patients comprised male carriers of chromosome structural aberrations with reproductive failure (n = 24), and the controls comprised normozoospermic sperm volunteers (n = 23). The global m5C level was measured using thin-layer chromatography (TLC) and immunofluorescence (IF) techniques. The sperm chromatin integrity was assessed using aniline blue (AB) staining and TUNEL assay. The mean m5C levels were similar between the investigated chromosome structural aberrations carriers (P) and controls (K). However, sperm chromatin integrity tests revealed significantly higher values in chromosomal rearrangement carriers than in controls (P < 0.05). Although the potential relationship between sperm chromatin integrity status and sperm DNA fragmentation and the m5C level juxtaposed in both analyzed groups (P vs K) was represented in a clearly opposite manner, the low chromatin integrity might be associated with the high hypomethylation status of the sperm DNA observed in carriers of chromosome structural aberrations.
Collapse
Affiliation(s)
- Marta Olszewska
- Department of Reproductive Biology and Stem Cells, Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Miroslawa Z Barciszewska
- Department of RNA Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Monika Fraczek
- Department of Reproductive Biology and Stem Cells, Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Nataliya Huleyuk
- Institute of Hereditary Pathology, Ukrainian Academy of Medical Sciences, Lysenko Street 31a, 79000 Lviv, Ukraine
| | - Vyacheslav B Chernykh
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moskvorechie Street 1, 115478 Moscow, Russian Federation
| | - Danuta Zastavna
- Institute of Hereditary Pathology, Ukrainian Academy of Medical Sciences, Lysenko Street 31a, 79000 Lviv, Ukraine
| | - Jan Barciszewski
- Department of RNA Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Maciej Kurpisz
- Department of Reproductive Biology and Stem Cells, Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| |
Collapse
|
2
|
Olszewska M, Huleyuk N, Fraczek M, Zastavna D, Wiland E, Kurpisz M. Sperm FISH and chromatin integrity in spermatozoa from a t(6;10;11) carrier. Reproduction 2014; 147:659-70. [DOI: 10.1530/rep-13-0533] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Complex chromosome rearrangements (CCRs) are structurally balanced or unbalanced aberrations involving more than two breakpoints on two or more chromosomes. CCRs can be a potential reason for genomic imbalance in gametes, which leads to a drastic reduction in fertility. In this study, the meiotic segregation pattern, aneuploidy of seven chromosomes uninvolved in the CCR and chromatin integrity were analysed in the ejaculated spermatozoa of a 46,XY,t(6;10;11)(q25.1;q24.3;q23.1)mat carrier with asthenozoospermia and a lack of conception. The frequency of genetically unbalanced spermatozoa was 78.8% with a prevalence of 4:2 segregants of 38.2%, while the prevalence of the adjacent 3:3 mode was 35.3%. Analysis of the aneuploidy of chromosomes 13, 15, 18, 21, 22, X and Y revealed an approximately fivefold increased level in comparison with that of the control group, indicating the presence of an interchromosomal effect. Sperm chromatin integrity status was evaluated using chromomycin A3 and aniline blue staining (deprotamination), acridine orange test and TUNEL assay (sperm DNA fragmentation). No differences were found when comparisons were made with a control group. We suggest that the accumulation of genetically unbalanced spermatozoa, significantly increased sperm aneuploidy level and decreased sperm motility (20%, progressive) were not responsible for the observed lack of reproductive success in the analysed infertile t(6;10;11) carrier. Interestingly, in the case described herein, a high level of sperm chromosomal imbalance appears not to be linked to sperm chromatin integrity status.
Collapse
|
3
|
Olszewska M, Fraczek M, Huleyuk N, Czernikiewicz A, Wiland E, Boksa M, Zastavna D, Panasiuk B, Midro AT, Kurpisz M. Chromatin structure analysis of spermatozoa from reciprocal chromosome translocation (RCT) carriers with known meiotic segregation patterns. Reprod Biol 2013; 13:209-20. [DOI: 10.1016/j.repbio.2013.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 05/21/2013] [Accepted: 06/21/2013] [Indexed: 10/26/2022]
|
4
|
Ferfouri F, Boitrelle F, Clement P, Molina Gomes D, Selva J, Vialard F. Sperm FISH analysis of a 44,X,der(Y),t(Y;15)(q12;q10)pat,rob(13;14)(q10;q10)mat complex chromosome rearrangement. Andrologia 2013; 46:576-82. [DOI: 10.1111/and.12112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2013] [Indexed: 01/15/2023] Open
Affiliation(s)
- F. Ferfouri
- Department of Reproductive Biology, Cytogenetics, Gynecology and Obstetrics; Poissy Saint Germain Hospital; Poissy France
- EA 2493; University of Versailles Saint-Quentin-en-Yvelines; Versailles France
| | - F. Boitrelle
- Department of Reproductive Biology, Cytogenetics, Gynecology and Obstetrics; Poissy Saint Germain Hospital; Poissy France
- EA 2493; University of Versailles Saint-Quentin-en-Yvelines; Versailles France
| | | | - D. Molina Gomes
- Department of Reproductive Biology, Cytogenetics, Gynecology and Obstetrics; Poissy Saint Germain Hospital; Poissy France
- EA 2493; University of Versailles Saint-Quentin-en-Yvelines; Versailles France
| | - J. Selva
- Department of Reproductive Biology, Cytogenetics, Gynecology and Obstetrics; Poissy Saint Germain Hospital; Poissy France
- EA 2493; University of Versailles Saint-Quentin-en-Yvelines; Versailles France
| | - F. Vialard
- Department of Reproductive Biology, Cytogenetics, Gynecology and Obstetrics; Poissy Saint Germain Hospital; Poissy France
- EA 2493; University of Versailles Saint-Quentin-en-Yvelines; Versailles France
| |
Collapse
|
5
|
Ferfouri F, Boitrelle F, Clément P, Molina Gomes D, Selva J, Vialard F. Can one translocation impact the meiotic segregation of another translocation? A sperm-FISH analysis of a 46,XY,t(1;16)(q21;p11.2),t(8;9) (q24.3;p24) patient and his 46,XY,t(8;9)(q24.3;p24) brother and cousin. ACTA ACUST UNITED AC 2012; 19:109-17. [DOI: 10.1093/molehr/gas048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|