1
|
Gleicher N, Barad DH, Patrizio P, Orvieto R. We have reached a dead end for preimplantation genetic testing for aneuploidy. Hum Reprod 2022; 37:2730-2734. [PMID: 35355062 DOI: 10.1093/humrep/deac052] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
The hypothesis of preimplantation genetic testing for aneuploidy (PGT-A) was first proposed 20 years ago, suggesting that during IVF elimination of aneuploid embryos prior to transfer will improve implantation rates of remaining embryos and, therefore, increase pregnancy and live birth rates, while also reducing miscarriages. Subsequently, unvalidated and increasingly unrestricted clinical utilization of PGT-A called for at least one properly randomized controlled trial (RCT) to assess cumulative live birth rates following a single oocyte retrieval, utilizing all fresh and frozen embryos of an IVF cycle. Only recently two such RCTs were published, however both, when properly analysed, not only failed to demonstrate significant advantages from utilization of PGT-A, but actually demonstrated outcome deficits in comparison to non-use of PGT-A, when patient selection biases in favour of PGT-A were reversed. Moreover, because of high embryo mosaicism at the blastocyst stage and, therefore, high false-positive rates from trophectoderm biopsies, large numbers of chromosomal-normal embryos with normal pregnancy potential are unnecessarily left unused or discarded, indisputably causing harm to affected couples. We, therefore, strongly call for restricting PGT-A to only research protocols and, as of this point in time, encourage professional societies in the field to follow suit with appropriate practice guidelines.
Collapse
Affiliation(s)
- Norbert Gleicher
- Center for Human Reproduction (CHR), New York, NY, USA.,Foundation for Reproductive Medicine, New York, NY, USA.,Stem Cell and Embryology Laboratory, Rockefeller University, New York, NY, USA.,Medical University of Vienna, Vienna, Austria
| | - David H Barad
- Center for Human Reproduction (CHR), New York, NY, USA
| | - Pasquale Patrizio
- Department of Obstetrics and Gynecology, University of Miami School of Medicine, Miami, FL, USA
| | - Raoul Orvieto
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Infertility and IVF Unit, Ramat Gan, Israel.,Tel Aviv University, Sackler Medical Faculty, Tel-Aviv, Israel
| |
Collapse
|
2
|
Zhang S, Lei C, Wu J, Xiao M, Zhou J, Zhu S, Fu J, Lu D, Sun X, Xu C. A comprehensive and universal approach for embryo testing in patients with different genetic disorders. Clin Transl Med 2021; 11:e490. [PMID: 34323405 PMCID: PMC8265165 DOI: 10.1002/ctm2.490] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/01/2021] [Accepted: 06/20/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND In vitro fertilization (IVF) with preimplantation genetic testing (PGT) has markedly improved clinical pregnancy outcomes for carriers of gene mutations or chromosomal structural rearrangements by the selection of embryos free of disease-causing genes and chromosome abnormalities. However, for detecting whole or segmental chromosome aneuploidies, gene variants or balanced chromosome rearrangements in the same embryo require separate procedures, and none of the existing detection platforms is universal for all patients with different genetic disorders. METHODS Here, we report a cost-effective, family-based haplotype phasing approach that can simultaneously evaluate multiple genetic variants, including monogenic disorders, aneuploidy, and balanced chromosome rearrangements in the same embryo with a single test. A total of 12 monogenic diseases carrier couples and either of them carried chromosomal rearrangements were enrolled simultaneously in this present study. Genome-wide genotyping was performed with single-nucleotide polymorphism (SNP)-array, and aneuploidies were analyzed through SNP allele frequency and Log R ratio. Parental haplotypes were phased by an available genotype from a close relative, and the embryonic genome-wide haplotypes were determined through family haplotype linkage analysis (FHLA). Disease-causing genes and chromosomal rearrangements were detected by haplotypes located within the 2 Mb region covering the targeted genes or breakpoint regions. RESULTS Twelve blastocysts were thawed, and then transferred into the uterus of female patients. Nine pregnancies had reached the second trimester and five healthy babies have been born. Fetus validation results, performed with the amniotic fluid or umbilical cord blood samples, were consistent with those at the blastocyst stage diagnosed by PGT. CONCLUSIONS We demonstrate that SNP-based FHLA enables the accurate genetic detection of a wide spectrum of monogenic diseases and chromosome abnormalities in embryos, preventing the transfer of parental genetic abnormalities to the fetus. This method can be implemented as a universal platform for embryo testing in patients with different genetic disorders.
Collapse
Affiliation(s)
- Shuo Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
| | - Caixia Lei
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
| | - Junping Wu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
| | - Min Xiao
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
| | - Jing Zhou
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
| | - Saijuan Zhu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
| | - Jing Fu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
| | - Daru Lu
- State Key Laboratory of Genetic Engineering, School of Life ScienceFudan UniversityShanghaiChina
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family PlanningScience and Technology Research InstituteChongqingChina
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
- Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
| | - Congjian Xu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
- Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
| |
Collapse
|
3
|
Zhang S, Lei C, Wu J, Zhou J, Xiao M, Zhu S, Xi Y, Fu J, Sun Y, Xu C, Sun X. Meiotic Heterogeneity of Trivalent Structure and Interchromosomal Effect in Blastocysts With Robertsonian Translocations. Front Genet 2021; 12:609563. [PMID: 33679881 PMCID: PMC7928295 DOI: 10.3389/fgene.2021.609563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/25/2021] [Indexed: 11/29/2022] Open
Abstract
Background Robertsonian translocations are common structural rearrangements and confer an increased genetic reproductive risk due to the formation of trivalent structure during meiosis. Studies on trivalent structure show meiotic heterogeneity between different translocation carriers, although the factors causing heterogeneity have not been well elaborated in blastocysts. It is also not yet known whether interchromosomal effect (ICE) phenomenon occurs in comparison with suitable non-translocation control patients. Herein, we aimed to evaluate the factors that cause meiotic heterogeneity of trivalent structure and the ICE phenomenon. Methods We designed a retrospective study, comprising 217 Robertsonian translocation carriers and 134 patients with the risk of transmitting monogenic inherited disorders (RTMIDs) that underwent preimplantation genetic testing (PGT). Data was collected between March 2014 and December 2019. The segregation products of trivalent structure were analyzed based on the carrier’s gender, age and translocation type. In addition, to analyze ICE phenomenon, aneuploidy abnormalities of non-translocation chromosomes from Robertsonian translocation carriers were compared with those from patients with RTMIDs. Results We found that the percentage of male carriers with alternate segregation pattern was significantly higher [P < 0.001, odds ratio (OR) = 2.95] than that in female carriers, while the percentage of adjacent segregation pattern was lower (P < 0.001, OR = 0.33). By contrast, no difference was observed between young and older carriers when performing stratified analysis by age. Furthermore, segregation pattern was associated with the D;G chromosomes involved in Robertsonian translocation: the rate of alternate segregation pattern in Rob(13;14) carriers was significantly higher (P = 0.010, OR = 1.74) than that in Rob(14;21) carriers, whereas the rate of adjacent segregation pattern was lower (P = 0.032, OR = 0.63). Moreover, the results revealed that the trivalent structure could significantly increase the frequencies of chromosome aneuploidies 1.30 times in Robertsonian translocation carriers compared with patients with RTMIDs (P = 0.026), especially for the male and young subgroups (P = 0.030, OR = 1.35 and P = 0.012, OR = 1.40), while the mosaic aneuploidy abnormalities presented no statistical difference. Conclusions Our study demonstrated that meiotic segregation heterogeneity of trivalent structure is associated with the carrier’s gender and translocation type, and it is independent of carrier’s age. ICE phenomenon exists during meiosis and then increases the frequencies of additional chromosome abnormalities.
Collapse
Affiliation(s)
- Shuo Zhang
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Caixia Lei
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Junping Wu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jing Zhou
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Min Xiao
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Saijuan Zhu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yanping Xi
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jing Fu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yijuan Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Congjian Xu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Tolmacheva EN, Vasilyev SA, Lebedev IN. Aneuploidy and DNA Methylation as Mirrored Features of Early Human Embryo Development. Genes (Basel) 2020; 11:E1084. [PMID: 32957536 PMCID: PMC7564410 DOI: 10.3390/genes11091084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Genome stability is an integral feature of all living organisms. Aneuploidy is the most common cause of fetal death in humans. The timing of bursts in increased aneuploidy frequency coincides with the waves of global epigenetic reprogramming in mammals. During gametogenesis and early embryogenesis, parental genomes undergo two waves of DNA methylation reprogramming. Failure of these processes can critically affect genome stability, including chromosome segregation during cell division. Abnormal methylation due to errors in the reprogramming process can potentially lead to aneuploidy. On the other hand, the presence of an entire additional chromosome, or chromosome loss, can affect the global genome methylation level. The associations of these two phenomena are well studied in the context of carcinogenesis, but here, we consider the relationship of DNA methylation and aneuploidy in early human and mammalian ontogenesis. In this review, we link these two phenomena and highlight the critical ontogenesis periods and genome regions that play a significant role in human reproduction and in the formation of pathological phenotypes in newborns with chromosomal aneuploidy.
Collapse
Affiliation(s)
- Ekaterina N. Tolmacheva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, 634050 Tomsk, Russia; (S.A.V.); (I.N.L.)
| | | | | |
Collapse
|
5
|
Toft CLF, Ingerslev HJ, Kesmodel US, Diemer T, Degn B, Ernst A, Okkels H, Kjartansdóttir KR, Pedersen IS. A systematic review on concurrent aneuploidy screening and preimplantation genetic testing for hereditary disorders: What is the prevalence of aneuploidy and is there a clinical effect from aneuploidy screening? Acta Obstet Gynecol Scand 2020; 99:696-706. [PMID: 32039470 DOI: 10.1111/aogs.13823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/23/2020] [Accepted: 02/05/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION In assisted reproductive technology, aneuploidy is considered a primary cause of failed embryo implantation. This has led to the implementation of preimplantation genetic testing for aneuploidy in some clinics. The prevalence of aneuploidy and the use of aneuploidy screening during preimplantation genetic testing for inherited disorders has not previously been reviewed. Here, we systematically review the literature to investigate the prevalence of aneuploidy in blastocysts derived from patients carrying or affected by an inherited disorder, and whether screening for aneuploidy improves clinical outcomes. MATERIAL AND METHODS PubMed and Embase were searched for articles describing preimplantation genetic testing for monogenic disorders and/or structural rearrangements in combination with preimplantation genetic testing for aneuploidy. Original articles reporting aneuploidy rates at the blastocyst stage and/or clinical outcomes (positive human chorionic gonadotropin, gestational sacs/implantation rate, fetal heartbeat/clinical pregnancy, ongoing pregnancy, miscarriage, or live birth/delivery rate on a per transfer basis) were included. Case studies were excluded. RESULTS Of the 26 identified studies, none were randomized controlled trials, three were historical cohort studies with a reference group not receiving aneuploidy screening, and the remaining were case series. In weighted analysis, 34.1% of 7749 blastocysts were aneuploid. Screening for aneuploidy reduced the proportion of embryos suitable for transfer, thereby increasing the risk of experiencing a cycle without transferable embryos. In pooled analysis the percentage of embryos suitable for transfer was reduced from 57.5% to 37.2% following screening for aneuploidy. Among historical cohort studies, one reported significantly improved pregnancy and birth rates but did not control for confounding, one did not report any statistically significant difference between groups, and one properly designed study concluded that preimplantation genetic testing for aneuploidy enhanced the chance of achieving a pregnancy while simultaneously reducing the chance of miscarriage following single embryo transfer. CONCLUSIONS On average, aneuploidy is detected in 34% of embryos when performing a single blastocyst biopsy derived from patients carrying or affected by an inherited disorder. Accordingly, when screening for aneuploidy, the risk of experiencing a cycle with no transferable embryos increases. Current available data on the clinical effect of preimplantation genetic testing for aneuploidy performed concurrently with preimplantation genetic testing for inherited disorders are sparse, rendering the clinical effect from preimplantation genetic testing for aneuploidy difficult to access.
Collapse
Affiliation(s)
- Christian Liebst Frisk Toft
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Ulrik Schiøler Kesmodel
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Fertility Unit, Aalborg University Hospital, Aalborg, Denmark
| | - Tue Diemer
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark
| | - Birte Degn
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | - Anja Ernst
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Okkels
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | | | - Inge Søkilde Pedersen
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
6
|
Delhanty JDA, SenGupta SB, Ghevaria H. How common is germinal mosaicism that leads to premeiotic aneuploidy in the female? J Assist Reprod Genet 2019; 36:2403-2418. [PMID: 31705227 PMCID: PMC6910893 DOI: 10.1007/s10815-019-01596-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/25/2019] [Indexed: 11/25/2022] Open
Abstract
Purpose Molecular cytogenetic analysis has confirmed that a proportion of apparently meiotic aneuploidy may be present in the germ cells prior to the onset of meiosis, but there is no clear perception of its frequency. The aim of this review is to assess the evidence for premeiotic aneuploidy from a variety of sources to arrive at an estimate of its overall contribution to oocyte aneuploidy in humans. Methods Relevant scientific literature was covered from 1985 to 2018 by searching PubMed databases with search terms: gonadal/germinal mosaicism, ovarian mosaicism, premeiotic aneuploidy, meiosis and trisomy 21. Additionally, a key reference from 1966 was included. Results Data from over 9000 cases of Down syndrome showed a bimodal maternal age distribution curve, indicating two overlapping distributions. One of these matched the pattern for the control population, with a peak at about 28 years and included all cases that had occurred independently of maternal age, including those due to germinal mosaicism, about 40% of the cohort. The first cytological proof of germinal mosaicism was obtained by fluorescence in situ hybridisation analysis. Comparative genomic hybridisation analysis of oocyte chromosomes suggests an incidence of up to 15% in premeiotic oocytes. Direct investigation of fetal ovarian cells led to variable results for chromosome 21 mosaicism. Conclusions Oocytes with premeiotic errors will significantly contribute to the high level of preimplantation and prenatal death. Data so far available suggests that, depending upon the maternal age, up to 40% of aneuploidy that is present in oocytes at the end of meiosis I may be due to germinal mosaicism.
Collapse
Affiliation(s)
- Joy DA Delhanty
- Preimplantation Genetics Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, U.K
| | - Sioban B SenGupta
- Preimplantation Genetics Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, U.K
| | - Harita Ghevaria
- Preimplantation Genetics Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, U.K..
| |
Collapse
|
7
|
Interchromosomal effect in carriers of translocations and inversions assessed by preimplantation genetic testing for structural rearrangements (PGT-SR). J Assist Reprod Genet 2019; 36:2547-2555. [PMID: 31696386 DOI: 10.1007/s10815-019-01593-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Balanced carriers of structural rearrangements have an increased risk of unbalanced embryos mainly due to the production of unbalanced gametes during meiosis. Aneuploidy for other chromosomes not involved in the rearrangements has also been described. The purpose of this work is to know if the incidence of unbalanced embryos, interchromosomal effect (ICE) and clinical outcomes differ in carriers of different structural rearrangements. METHODS Cohort retrospective study including 359 preimplantation genetic testing cycles for structural rearrangements from 304 couples was performed. Comparative genomic hybridisation arrays were used for chromosomal analysis. The results were stratified and compared according to female age and carrier sex. The impact of different cytogenetic features of chromosomal rearrangements was evaluated. RESULTS In carriers of translocations, we observed a higher percentage of abnormal embryos from day 3 biopsies compared with day 5/6 biopsies and for reciprocal translocations compared with other rearrangements. We observed a high percentage of embryos with aneuploidies for chromosomes not involved in the rearrangement that could be attributed to total ICE (aneuploid balanced and unbalanced embryos). No significant differences were observed in these percentages between types of rearrangements. Pure ICE (aneuploid balanced embyos) was independent of female age only for Robertsonian translocations, and significantly increased in day 3 biopsies for all types of abnormalities. Furthermore, total ICE for carriers of Robertsonian translocations and biopsy on day 3 was independent of female age too. High ongoing pregnancy rates were observed for all studied groups, with higher pregnancy rate for male carriers. CONCLUSION We observed a higher percentage of abnormal embryos for reciprocal translocations. No significant differences for total ICE was found among the different types of rearrangements, with higher pure ICE only for Robertsonian translocations. There was a sex effect for clinical outcome for carriers of translocations, with higher pregnancy rate for male carriers. The higher incidence of unbalanced and aneuploid embryos should be considered for reproductive counselling in carriers of structural rearrangements.
Collapse
|
8
|
Fodina V, Dudorova A, Alksere B, Dzalbs A, Vedmedovska N, Andersone S, Una C, Juris E, Dace B. The application of PGT-A for carriers of balanced structural chromosomal rearrangements. Gynecol Endocrinol 2019; 35:18-23. [PMID: 31532310 DOI: 10.1080/09513590.2019.1632091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The aim of this study was to analyze differences in chromosomal aberrations and euploidy in embryos of each translocation type and gender of carrier in the case series of 10 couples with balanced translocations who underwent IVF with embryos trophectoderm (TE) biopsy and PGT-A to detect chromosomal aberrations. This is a Case Series (Retrospective study). In each case, controlled ovarian hyperstimulation, oocyte insemination with intracytoplasmic sperm injection (ICSI) and cultivation gave multiple blastocysts, that underwent trophectoderm (TE) biopsy with PGT-A analysis using aCGH and NGS. Number of total unbalanced translocations compared to the number of sporadic aneuploid embryos was 39.6% to 39.6% (50% to 50% of all 37 aneuploid embryos). The highest euploidy rate was in male carrier group - 26.7% and the lowest in the Robertsonian translocation carrier group - 18.2%. Sporadic aneuploidy - 68.2% was highest in Robertsonian translocation carrier group and lowest in female group - 11.1%. Chromosomal aberrations related to translocation were highest in female carrier group - 77.8% and lowest in Robertsonian translocation carrier group - 13.6%. Our study showed that expectancy of total embryo aneuploidy rates will be higher in carriers, than in people with normal karyotype. The prevalence of chromosomal aberrations related to translocation was 4.5 times higher in Reciprocal carrier group than in Robertsonian translocation carrier group. Among maternal and paternal carrier groups, the embryos from female carriers had the lowest euploidy rate, unbalanced translocation rate 4.7 times higher than in the male carrier group and higher total aneuploidy rates.
Collapse
Affiliation(s)
- Violeta Fodina
- Department of Gynecology and Reproduction, Clinic "IVF-Riga" , Riga , Latvia
| | | | - Baiba Alksere
- Genetic laboratory, Clinic "IVF-Riga" , Riga , Latvia
| | - Aigars Dzalbs
- Genetic laboratory, Clinic "IVF-Riga" , Riga , Latvia
- Center of Medical Genetics and Prenatal Diagnostics, Children's Clinical University Hospital , Riga , Latvia
| | | | | | - Conka Una
- Genetic laboratory, Clinic "IVF-Riga" , Riga , Latvia
| | - Erenpreiss Juris
- Department of Andrology, Clinic "IVF-Riga" , Riga , Latvia
- Riga Stradins University , Latvia
| | - Berzina Dace
- Genetic laboratory, Clinic "IVF-Riga" , Riga , Latvia
| |
Collapse
|
9
|
Zhou S, Cheng D, Ouyang Q, Xie P, Lu C, Gong F, Hu L, Tan Y, Lu G, Lin G. Prevalence and authenticity of de-novo segmental aneuploidy (>16 Mb) in human blastocysts as detected by next-generation sequencing. Reprod Biomed Online 2018; 37:511-520. [PMID: 30228073 DOI: 10.1016/j.rbmo.2018.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 01/09/2023]
Abstract
RESEARCH QUESTION What is the prevalence and authenticity of de-novo segmental aneuploidies (>16 Mb) detected by next-generation sequencing (NGS) in human preimplantation blastocysts? DESIGN Between April 2013 and June 2016, 5735 blastocysts from 1854 couples (average age 33.11 ± 5.65 years) underwent preimplantation genetic testing for chromosomal structural rearrangement (PGT-SR) or for aneuploidy (PGT-A) using NGS on trophectoderm (TE) biopsy samples. The prevalence of de-novo segmental aneuploidy was calculated from these results. Forty blastocysts with de-novo segmental aneuploidy detected by NGS, which had been donated for research, were warmed for further fluorescence in-situ hybridization (FISH) analysis to confirm their authenticity. RESULTS The frequency of de-novo segmental aneuploidies in blastocysts was 10.13% (581/5735); the phenomenon was not related to maternal age and occurred on all chromosomes. Of the 40 donated blastocysts, 39 were successfully warmed and fixed for FISH analysis at the single-cell level. The de-novo segmental aneuploidies identified by NGS were confirmed by FISH in all 39 blastocysts. However, the de-novo segmental aneuploidies in these blastocysts were not all pure patterns, with 66.67% (26/39) of blastocysts exhibiting mosaic patterns varying from 8.30% to 92.86% of cells with de-novo segmental aneuploidy. The concordance rate between NGS and FISH in TE and inner cell mass (ICM) samples was 47.69% (31/65). CONCLUSIONS De-novo segmental aneuploidy above 16 Mb occurred in blastocysts and could be detected by NGS, while some aneuploidies existed as mosaics in both TE and ICM.
Collapse
Affiliation(s)
- Shuang Zhou
- National Engineering and Research Center of Human Stem Cells, Changsha, China; Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, China
| | - Dehua Cheng
- Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China; Key Laboratory of Reproductive and Stem Cell Engineering, Ministry of Health, Changsha, China; Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, China
| | - Qi Ouyang
- National Engineering and Research Center of Human Stem Cells, Changsha, China; Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, China
| | - Pingyuan Xie
- National Engineering and Research Center of Human Stem Cells, Changsha, China; Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, China
| | - Changfu Lu
- Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China; Key Laboratory of Reproductive and Stem Cell Engineering, Ministry of Health, Changsha, China; Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, China
| | - Fei Gong
- Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China; Key Laboratory of Reproductive and Stem Cell Engineering, Ministry of Health, Changsha, China; Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, China
| | - Liang Hu
- National Engineering and Research Center of Human Stem Cells, Changsha, China; Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China; Key Laboratory of Reproductive and Stem Cell Engineering, Ministry of Health, Changsha, China; Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, China
| | - Yueqiu Tan
- Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China; Key Laboratory of Reproductive and Stem Cell Engineering, Ministry of Health, Changsha, China; Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, China
| | - Guangxiu Lu
- National Engineering and Research Center of Human Stem Cells, Changsha, China; Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China; Key Laboratory of Reproductive and Stem Cell Engineering, Ministry of Health, Changsha, China
| | - Ge Lin
- National Engineering and Research Center of Human Stem Cells, Changsha, China; Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China; Key Laboratory of Reproductive and Stem Cell Engineering, Ministry of Health, Changsha, China; Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, China.
| |
Collapse
|
10
|
Minasi MG, Fiorentino F, Ruberti A, Biricik A, Cursio E, Cotroneo E, Varricchio MT, Surdo M, Spinella F, Greco E. Genetic diseases and aneuploidies can be detected with a single blastocyst biopsy: a successful clinical approach. Hum Reprod 2017. [DOI: 10.1093/humrep/dex215] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
11
|
Ghevaria H, Naja R, SenGupta S, Serhal P, Delhanty J. Meiotic outcome in two carriers of Y autosome reciprocal translocations: selective elimination of certain segregants. Mol Cytogenet 2017; 10:1. [PMID: 28184250 PMCID: PMC5289000 DOI: 10.1186/s13039-017-0303-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/13/2017] [Indexed: 11/25/2022] Open
Abstract
Background Reciprocal Y autosome translocations are rare but frequently associated with male infertility. We report on the meiotic outcome in embryos fathered by two males with the karyotypes 46,X,t(Y;4)(q12;p15.32) and 46,X,t(Y;16)(q12;q13). The two couples underwent preimplantation genetic diagnosis (PGD) enabling determination of the segregation types that were compatible with fertilization and preimplantation embryo development. Both PGD and follow up analysis were carried out via fluorescence in situ hybridization (FISH) or array comparative genomic hybridization (aCGH) allowing the meiotic segregation types to be determined in a total of 27 embryos. Results Interestingly, it was seen that the number of female embryos resulting from alternate segregation with the chromosome combination of X and the autosome from the carrier gamete differed from the corresponding balanced males with derivative Y and the derivative autosome by a ratio of 7:1 in each case (P = 0.003) while from the adjacent-1 mode of segregation, the unbalanced male embryos with the combination of der Y and the autosome were seen in all embryos from couple A and in couple B with the exception of one embryo only that had the other chromosome combination of X and derivative autosome (P = 0.011). In both cases the deficit groups have in common the der autosome chromosome that includes the segment Yq12 to qter. Conclusion The most likely explanation may be that this chromosome is associated with the X chromosome at PAR2 (pseudoautosomal region 2) in the sex-body leading to inactivation of genes on the autosomal segment that are required for the meiotic process and that this has led to degeneration of this class of spermatocytes during meiosis.
Collapse
Affiliation(s)
- Harita Ghevaria
- Preimplantation Genetics Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX UK
| | - Roy Naja
- Preimplantation Genetics Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX UK
| | - Sioban SenGupta
- Preimplantation Genetics Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX UK
| | - Paul Serhal
- The Centre for Reproductive and Genetic Health, 230-232 Great Portland Street, London, W1W 5QS UK
| | - Joy Delhanty
- Preimplantation Genetics Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX UK
| |
Collapse
|