1
|
Xu M, Li T, Liu X, Islam B, Xiang Y, Zou X, Wang J. Mechanism and Clinical Application Prospects of Mitochondrial DNA Single Nucleotide Polymorphism in Neurodegenerative Diseases. Neurochem Res 2024; 50:61. [PMID: 39673588 DOI: 10.1007/s11064-024-04311-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Mitochondrial dysfunction is well recognized as a critical component of the complicated pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. This review investigates the influence of mitochondrial DNA single nucleotide polymorphisms on mitochondrial function, as well as their role in the onset and progression of these neurodegenerative diseases. Furthermore, the contemporary approaches to mitochondrial regulation in these disorders are discussed. Our objective is to uncover early diagnostic targets and formulate precision medicine strategies for neurodegenerative diseases, thereby offering new paths for preventing and treating these conditions.
Collapse
Affiliation(s)
- Mengying Xu
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Tianjiao Li
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Xuan Liu
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Binish Islam
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Yuyue Xiang
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Xiyan Zou
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Jianwu Wang
- Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| |
Collapse
|
2
|
Gil J, Nohales M, Ortega-Jaen D, Martin A, Pardiñas ML, Serra V, Labarta E, de Los Santos MJ. Impact of autologous mitochondrial transfer on obstetric and neonatal health of offspring: A small single-center case series. Placenta 2024; 158:217-222. [PMID: 39500015 DOI: 10.1016/j.placenta.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/30/2024] [Accepted: 10/13/2024] [Indexed: 12/11/2024]
Abstract
INTRODUCTION A pilot study was carried out to test the efficacy of the autologous mitochondrial transfer therapy (AUGMENT) technique. No improvements in pregnancy rate, development, or embryo quality were observed in the AUGMENT-treated group versus the Control group in this study. The main objective of this research is to analyze whether AUGMENT technology did have any impact on the obstetric and perinatal outcomes of pregnancies and children resulting from treated oocytes. METHODS Follow up study of women with a livebirth who participated in a pilot randomized controlled trial in which sibling MII oocytes were randomly allocated to AUGMENT + intracytoplasmic sperm injection (ICSI) (AUGMENT group) or ICSI alone (control group). Preimplantation genetic testing for aneuploidy was performed in both groups. Pregnancy and neonatal outcomes of 14 women (15 pregnancies) and their 18 children were analyzed. The information was retrieved by reviewing the medical records or through questionnaires sent to the patients. RESULTS No differences were found in this small case series between the AUGMENT and control groups regarding the rate of gestational complications, birth defects, gestational age at delivery (271.4 ± 12.56 vs 278 ± 10.4 days), birthweight (3.1 ± 0.6 kg vs. 3.1 ± 0.4 kg) and neonatal outcome. DISCUSSION The few pregnancies achieved using AUGMENT oocyte therapy had similar outcomes than controls in this very small series. Our very preliminary data need to be confirmed in larger samples. The long term follow up of these children also needs to be analyzed.
Collapse
Affiliation(s)
- Julia Gil
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026 Valencia Spain IVI-RMA Valencia, 46015 Valencia, Spain
| | - Mar Nohales
- Instituto Valenciano de Infertilidad (IVI), University of Valencia, Pl. Policía Local 3, Valencia, Spain
| | - David Ortega-Jaen
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026 Valencia Spain IVI-RMA Valencia, 46015 Valencia, Spain
| | - Angel Martin
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026 Valencia Spain IVI-RMA Valencia, 46015 Valencia, Spain
| | - M L Pardiñas
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026 Valencia Spain IVI-RMA Valencia, 46015 Valencia, Spain
| | - Vicente Serra
- Instituto Valenciano de Infertilidad (IVI), University of Valencia, Pl. Policía Local 3, Valencia, Spain; Departamento de Pediatría, Obstetricia y Ginecología. University of Valencia, Avda. Blasco Ibañez 17, Valencia, Spain
| | - Elena Labarta
- Instituto Valenciano de Infertilidad (IVI), University of Valencia, Pl. Policía Local 3, Valencia, Spain
| | - Maria José de Los Santos
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026 Valencia Spain IVI-RMA Valencia, 46015 Valencia, Spain; Instituto Valenciano de Infertilidad (IVI), University of Valencia, Pl. Policía Local 3, Valencia, Spain.
| |
Collapse
|
3
|
Xiao W, Akao S, Okamoto R, Otsuki J. The formation of aggregated chromatin/chromosomes in mouse oocytes treated with high concentration of IBMX as a model for a chromosome transfer in human. Syst Biol Reprod Med 2024; 70:195-203. [PMID: 38972054 DOI: 10.1080/19396368.2024.2368116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
The presence of cyclic adenosine monophosphate (cAMP) has been considered to be a fundamental factor in ensuring meiotic arrest prior to ovulation. cAMP is regarded as a key molecule in the regulation of oocyte maturation. However, it has been reported that increased levels of intracellular cAMP can result in abnormal cytokinesis, with some MI oocytes leading to symmetrically cleaved 2-cell MII oocytes. Consequently, we aimed to investigate the effects of elevated intracellular cAMP levels on abnormal cytokinesis and oocyte maturation during the meiosis of mouse oocytes. This study found that a high concentration of isobutylmethylxanthine (IBMX) also caused chromatin/chromosomes aggregation (AC) after the first meiosis. The rates of AC increased the greater the concentration of IBMX. In addition, AC formation was found to be reversible, showing that the re-formation of the spindle chromosome complex was possible after the IBMX was removed. In human oocytes, the chromosomes aggregate after the germinal vesicle breakdown and following the first and second polar body extrusions (the AC phase), while mouse oocytes do not have this AC phase. The results of our current study may indicate that the AC phase in human oocytes could be related to elevated levels of intracytoplasmic cAMP.
Collapse
Affiliation(s)
- Wei Xiao
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Kita, Okayama, Japan
| | - Sakura Akao
- Faculty of Agriculture, Department of Animal Sciences, Okayama University, Kita, Okayama, Japan
| | - Ryota Okamoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan
| | - Junko Otsuki
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Kita, Okayama, Japan
- Assisted Reproductive Technology Center, Okayama University, Kita, Okayama, Japan
| |
Collapse
|
4
|
Yildirim RM, Seli E. Mitochondria as therapeutic targets in assisted reproduction. Hum Reprod 2024; 39:2147-2159. [PMID: 39066614 DOI: 10.1093/humrep/deae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Mitochondria are essential organelles with specialized functions, which play crucial roles in energy production, calcium homeostasis, and programmed cell death. In oocytes, mitochondrial populations are inherited maternally and are vital for developmental competence. Dysfunction in mitochondrial quality control mechanisms can lead to reproductive failure. Due to their central role in oocyte and embryo development, mitochondria have been investigated as potential diagnostic and therapeutic targets in assisted reproduction. Pharmacological agents that target mitochondrial function and show promise in improving assisted reproduction outcomes include antioxidant coenzyme Q10 and mitoquinone, mammalian target of rapamycin signaling pathway inhibitor rapamycin, and nicotinamide mononucleotide. Mitochondrial replacement therapies (MRTs) offer solutions for infertility and mitochondrial disorders. Autologous germline mitochondrial energy transfer initially showed promise but failed to demonstrate significant benefits in clinical trials. Maternal spindle transfer (MST) and pronuclear transfer hold potential for preventing mitochondrial disease transmission and improving oocyte quality. Clinical trials of MST have shown promising outcomes, but larger studies are needed to confirm safety and efficacy. However, ethical and legislative challenges complicate the widespread implementation of MRTs.
Collapse
Affiliation(s)
- Raziye Melike Yildirim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
Yahyavi Y, Kheradi N, Karimi A, Ebrahimi-Kalan A, Ramezani F, Yousefi S, Teymouri Nobari S, Sadrekarimi H, Nouri M, Edalati M. Novel Advances in Cell-Free Therapy for Premature Ovarian Failure (POF): A Comprehensive Review. Adv Pharm Bull 2024; 14:543-557. [PMID: 39494249 PMCID: PMC11530876 DOI: 10.34172/apb.2024.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/23/2024] [Accepted: 07/30/2024] [Indexed: 11/05/2024] Open
Abstract
Premature ovarian failure (POF), is a condition characterized by the early decline of ovulation function. POF is a complex disorder that can be caused by various factors, and the idiopathic form represents a significant proportion of POF patients. Hormone replacement therapy (HRT) is currently considered the first-line treatment for POF. This review aims to provide a comprehensive overview of recent advancements in platelet-rich plasma (PRP), in vitro activation (IVA), stem cell therapy, exosome therapy, microRNAs, and mitochondrial targeting therapies as a promising cell-free therapeutic approach in reproductive medicine. PLT-Exos, a new generation of cells, has been used to treat POF for more than a decade and has been shown to attenuate oocyte morphology and promote the differentiation of theca cells through the upregulation of PI3K/Akt and Bcl2, as well as the downregulation of the Smad and Bax signaling pathways. This review summarizes the current state of the art in the field of PLT-Exos and discusses the advantages and limitations of their potential clinical applications.
Collapse
Affiliation(s)
- Yahya Yahyavi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Kheradi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ramezani
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudabe Yousefi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Teymouri Nobari
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hourieh Sadrekarimi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Edalati
- Department of Laboratory Science, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Pennings G, Heindryckx B, Stoop D, Mertes H. Attitude of Belgian women towards enucleated egg donation for treatment of mitochondrial diseases and infertility. Reprod Biomed Online 2024; 49:104101. [PMID: 38943811 DOI: 10.1016/j.rbmo.2024.104101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/24/2024] [Accepted: 04/29/2024] [Indexed: 07/01/2024]
Abstract
RESEARCH QUESTION What is the attitude of Belgian women of reproductive age towards enucleated egg donation? Does the willingness of women to donate differ when they would donate enucleated or whole eggs? DESIGN In 2022, an online survey was conducted among a representative sample of 1000 women in Belgium aged 18-50 years. The item on willingness to anonymously donate enucleated eggs was dichotomized into those willing to donate and those not willing to donate or uncertain. RESULTS No statistically significant difference was found between the willingness to donate enucleated eggs and whole eggs (whether anonymously or identifiably). Anonymity, however, affected the willingness to donate, with considerably fewer women willing to donate identifiably. The respondents were divided about their parental status if they were to donate enucleated eggs, with less than one-half (44%) not considering themselves to be a genetic mother. Women willing to donate enucleated eggs anonymously were less likely to view themselves as a genetic mother of the child compared with others. Fewer than one in five considered the technique unacceptable because the resulting child would carry genetic material of three persons. CONCLUSIONS Women in the general population did not show a greater willingness to donate enucleated eggs than whole eggs. The fact that the respondents were strongly divided on whether or not they would consider themselves to be a genetic mother of the resulting child may explain this result. Other factors, such as the potential high risk for the child, may also have contributed to less willingness.
Collapse
Affiliation(s)
- Guido Pennings
- Bioethics Institute Ghent (BIG), Department of Philosophy and Moral Science, Ghent University, Blandijnberg 2, B-9000 Gent, Belgium.
| | - Björn Heindryckx
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Department of Human Structure and Repair, Ghent University Hospital, C. Heymanslaan 10, B-9000 Ghent, Belgium
| | - Dominic Stoop
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, C. Heymanslaan 10, B-9000 Ghent, Belgium
| | - Heidi Mertes
- Bioethics Institute Ghent (BIG), Department of Philosophy and Moral Science, Ghent University, Blandijnberg 2, B-9000 Gent, Belgium
| |
Collapse
|
7
|
Aquino-Jarquin G. Regulatory and governance gaps for human genome editing in Mexico. Trends Biotechnol 2024; 42:665-670. [PMID: 38129214 DOI: 10.1016/j.tibtech.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Mexico has the in-house technical and regulatory capacity to undertake human genome editing (HGE) governance. However, its regulatory framework must be reformed to be more targeted and govern the application of any emerging HGE technologies, leaving no room for unethical or unsafe practices for reproductive purposes.
Collapse
Affiliation(s)
- Guillermo Aquino-Jarquin
- RNA Biology and Genome Editing Section, Genomics, Genetics, and Bioinformatics Research Laboratory, 'Federico Gómez' Children's Hospital of Mexico, Dr. Márquez 162, Doctores, Cuauhtémoc, CP 06720, CDMX, Mexico.
| |
Collapse
|
8
|
Song N, Mei S, Wang X, Hu G, Lu M. Focusing on mitochondria in the brain: from biology to therapeutics. Transl Neurodegener 2024; 13:23. [PMID: 38632601 PMCID: PMC11022390 DOI: 10.1186/s40035-024-00409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Mitochondria have multiple functions such as supplying energy, regulating the redox status, and producing proteins encoded by an independent genome. They are closely related to the physiology and pathology of many organs and tissues, among which the brain is particularly prominent. The brain demands 20% of the resting metabolic rate and holds highly active mitochondrial activities. Considerable research shows that mitochondria are closely related to brain function, while mitochondrial defects induce or exacerbate pathology in the brain. In this review, we provide comprehensive research advances of mitochondrial biology involved in brain functions, as well as the mitochondria-dependent cellular events in brain physiology and pathology. Furthermore, various perspectives are explored to better identify the mitochondrial roles in neurological diseases and the neurophenotypes of mitochondrial diseases. Finally, mitochondrial therapies are discussed. Mitochondrial-targeting therapeutics are showing great potentials in the treatment of brain diseases.
Collapse
Affiliation(s)
- Nanshan Song
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shuyuan Mei
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Xiangxu Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Gang Hu
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
- Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
9
|
Mayeur A, Magnan F, Mathieu S, Rubens P, Sperelakis Beedham B, Sonigo C, Steffann J, Frydman N. What importance do donors and recipients attribute to the nuclear DNA-related genetic heritage of oocyte donation? Hum Reprod 2024; 39:770-778. [PMID: 38420661 DOI: 10.1093/humrep/deae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
STUDY QUESTION How do oocyte donors and recipients perceive the genetic link related to the transfer of nuclear DNA between donors and offspring? SUMMARY ANSWER Whether they are donors or recipients, individuals attach great importance to the transmission of their genetic heritage, since 94.5% would opt for the pronuclear transfer method to preserve this genetic link in the context of oocyte donation. WHAT IS KNOWN ALREADY Since 1983, the use of oocyte donation has increased worldwide. Performed in France since the late 1980s and initially offered to women with premature ovarian insufficiency, its indications have progressively expanded and now it is proposed in many indications to prevent the transmission of genetically inherited diseases. This has resulted in an increase in the waiting time for access to oocyte donation due to the difficulty in recruiting oocyte donors in French ART centres. Several articles have discussed how to fairly distribute donor oocytes to couples, but few have interviewed women in the general population to record their feelings about oocyte donation, as either the donor or recipient and the importance given to the genetic link between the oocyte donors and the children born. Mitochondrial replacement therapy (MRT) is a technique originally developed for women at risk of transmitting a mitochondrial DNA mutation. Recently, MRT has been considered for embryo arrest and oocyte rejuvenation as it could help females to reproduce with their own genetic material through the transfer of their oocyte nucleus into a healthy donor oocyte cytoplasm. STUDY DESIGN, SIZE, DURATION We conducted an opinion survey from January 2021 to December 2021, during which 1956 women completed the questionnaire. Thirteen participants were excluded from the analysis due to incomplete responses to all the questions. Consequently, 1943 women were included in the study. PARTICIPANTS/MATERIALS, SETTING, METHODS We specifically developed a questionnaire for this study, which was created and distributed using the Drag'n Survey® software. The questionnaire consisted of 21 items presented alongside a video created with whiteboard animation software. The aim was to analyse whether certain factors, such as age, education level, marital status, number of children, use of ART for pregnancy, video viewing, and knowledge about oocyte donation, were associated with feelings towards oocyte donation, by using a univariate conditional logistic regression model. This statistical method was also used to assess whether women would be more inclined to consider oocyte donation with the pronuclear transfer technique rather than the whole oocyte donation. All parameters found to be statistically significant in the univariate analysis were subsequently tested in a multivariate model using logistic regression. MAIN RESULTS AND THE ROLE OF CHANCE Most women were concerned about the biological genetic contribution of the donated oocyte (94.8%). The most common reason for a women's reluctance to donate their oocytes was their unwillingness to pass on their genetic material (33.3%). Nearly 70% of women who were initially hesitant to donate their oocytes indicated that they would reconsider their decision if the oocyte donation was conducted using donated cytoplasm and the pronuclear transfer technique. Concomitantly, >75% of the respondents mentioned that it would be easier to receive a cytoplasm donation. The largest proportion of the population surveyed (94.5%) expressed their support for its legalization. LIMITATIONS, REASONS FOR CAUTION In this study, a substantial portion of the responses came from individuals with medical or paramedical backgrounds, potentially introducing a recruitment bias among potential donors. The rate of missing responses to the question regarding the desire to become an oocyte donor was 13.6%, while the question about becoming an oocyte cytoplasm donor had a missing response rate of 23%. These missing responses may introduce a bias in the interpretation of the data. WIDER IMPLICATIONS OF THE FINDINGS This study was the first to demonstrate that, for the French population studied, the combination of oocyte cytoplasm donation with pronuclear transfer could offer a promising approach to enhance the acceptance of oocyte donation for both the donor and the recipient. STUDY FUNDING/COMPETING INTEREST(S) No external funding was used for this study. The authors have no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- A Mayeur
- Service de Biologie de la Reproduction-CECOS, Assistance Publique Hôpitaux de Paris, Hôpital Antoine Béclère, Clamart, France
- Université de Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - F Magnan
- Service de Biologie de la Reproduction-CECOS, Assistance Publique Hôpitaux de Paris, Hôpital Antoine Béclère, Clamart, France
| | - S Mathieu
- École Pratique des Hautes Études (EPHE), Paris Sciences Lettres (PSL), GSRL UMR8582, Paris, France
| | - P Rubens
- Service de Médecine Génomique des Maladies rares, Assistance Publique Hôpitaux de Paris, Groupe Hospitalier Necker-Enfants Malades, Paris, France
- Université Paris Cité, Institut Imagine, INSERM UMR1163, Paris, France
| | - B Sperelakis Beedham
- Service de Médecine Génomique des Maladies rares, Assistance Publique Hôpitaux de Paris, Groupe Hospitalier Necker-Enfants Malades, Paris, France
| | - C Sonigo
- Assistance Publique-Hôpitaux de Paris (APHP), Université Paris Saclay, Service de Médecine de la Reproduction et Préservation de la Fertilité, Hôpital Antoine Béclère, Clamart, France
- France Université Paris Saclay, Inserm, Physiologie et physiopathologie endocrinienne, Le Kremlin-Bicêtre, France
| | - J Steffann
- Service de Médecine Génomique des Maladies rares, Assistance Publique Hôpitaux de Paris, Groupe Hospitalier Necker-Enfants Malades, Paris, France
- Université Paris Cité, Institut Imagine, INSERM UMR1163, Paris, France
| | - N Frydman
- Service de Biologie de la Reproduction-CECOS, Assistance Publique Hôpitaux de Paris, Hôpital Antoine Béclère, Clamart, France
- Université de Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
10
|
Christodoulaki A, He H, Zhou M, De Roo C, Baetens M, De Pretre T, Fakhar-I-Adil M, Menten B, Van Soom A, Stoop D, Boel A, Heindryckx B. Pronuclear transfer rescues poor embryo development of in vitro-grown secondary mouse follicles. Hum Reprod Open 2024; 2024:hoae009. [PMID: 38425578 PMCID: PMC10904147 DOI: 10.1093/hropen/hoae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/28/2024] [Indexed: 03/02/2024] Open
Abstract
STUDY QUESTION Is pronuclear transfer (PNT) capable of restoring embryo developmental arrest caused by cytoplasmic inferiority of in vitro-grown (IVG) mouse oocytes? SUMMARY ANSWER PNT to in vivo matured cytoplasm significantly improved embryo development of IVG mouse oocytes, leading to living, fertile offspring. WHAT IS KNOWN ALREADY In vitro follicle culture has been considered as a fertility preservation option for cancer patients. Studies describing the culture of human follicles remain scarce, owing to low availability of tissue. Mouse models have extensively been used to study and optimize follicle culture. Although important achievements have been accomplished, including the production of healthy offspring in mice, IVG oocytes are of inferior quality when compared to in vivo-grown oocytes, likely because of cytoplasmic incompetence. STUDY DESIGN SIZE DURATION The study was carried out from September 2020 to February 2022. In total, 120 15-day-old B6D2 mice were used to perform secondary follicle culture and assess the quality of IVG oocytes. In vivo-grown control oocytes were obtained from 85 8- to 12-week-old B6D2 mice, following ovarian stimulation. For sperm collection, four B6D2 males between 10 and 14 weeks old were used. For embryo transfer, 14 8- to 12-week-old CD1 females served as surrogate mothers and 10 CD1 vasectomized males 10-24 weeks old were used to generate pseudo-pregnant females. Finally, for mating, four B6D2 female mice aged 8-10 weeks and two B6D2 male mice aged 10 weeks old were used to confirm the fertility of nuclear transfer (NT)-derived pups. PARTICIPANTS/MATERIALS SETTING METHODS Secondary follicles from 15-day-old B6D2 mice were isolated from the ovaries and cultured for 9 days, before a maturation stimulus was given. Following 16-18 h of maturation, oocytes were collected and evaluated on maturation rate, oocyte diameter, activation rate, spindle morphology, calcium-releasing ability, and mitochondrial membrane potential. For every experiment, in vivo-grown oocytes were used as a control for comparison. When cytoplasmic immaturity and poor embryo development were confirmed in IVG oocytes, PNT was performed. For this, the pronuclei from IVG oocytes, created following parthenogenetic activation and IVF, were transferred to the cytoplasm of fertilized, in vivo-grown oocytes. Genetic analysis and embryo transfer of the generated embryos were implemented to confirm the safety of the technique. MAIN RESULTS AND THE ROLE OF CHANCE Following 9 days of follicle culture, 703 oocytes were collected, of which 76% showed maturation to the metaphase II stage. Oocyte diameters were significantly lower in IVG oocytes, measuring 67.4 μm versus 73.1 μm in controls (P < 0.001). Spindle morphology did not differ significantly between IVG and control oocytes, but calcium-releasing ability was compromised in the IVG group. An average calcium release of 1.62 arbitrary units was observed in IVG oocytes, significantly lower than 5.74 in control oocytes (P < 0.001). Finally, mitochondrial membrane potential was inferior in IVG compared to the control group, reaching an average value of 0.95 versus 2.27 (P < 0.001). Developmental potential of IVG oocytes was assessed following parthenogenetic activation with strontium chloride (SrCl2). Only 59.4% of IVG oocytes cleaved to two cells and 36.3% reached the blastocyst stage, significantly lower than 89.5% and 88.2% in control oocytes, respectively (P < 0.001 and 0.001). Both PNT and spindle transfer (ST) were explored in pilot experiments with parthenogenetically activated oocytes, as a means to overcome poor embryo development. After the added value of NT was confirmed, we continued with the generation of biparental embryos by PNT. For this purpose, IVG and control oocytes first underwent IVF. Only 15.5% of IVG oocytes were normally fertilized, in contrast to 45.5% in controls (P < 0.001), with resulting failure of blastocyst formation in the IVG group (0 versus 86.2%, P < 0.001). When the pronuclei of IVG zygotes were transferred to the cytoplasm of control zygotes, the blastocyst rate was restored to 86.9%, a similar level as the control. Genetic analysis of PNT embryos revealed a normal chromosomal profile, to a rate of 80%. Finally, the generation of living, fertile offspring from PNT was possible following embryo transfer to surrogate mothers. LARGE-SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION Genetic profiles of analysed embryos from PNT originate from groups that are too small to draw concrete conclusions, whilst ST, which would be the preferred NT approach, could not be used for the generation of biparental embryos owing to technical limitations. Even though promising, the use of PNT should be considered as experimental. Furthermore, results were acquired in a mouse model, so validation of the technique in human IVG oocytes needs to be performed to evaluate the clinical relevance of the technology. The genetic profiles from IVG oocytes, which would be the ultimate characterization for chromosomal abnormalities, were not analysed owing to limitations in the reliable analysis of single cells. WIDER IMPLICATIONS OF THE FINDINGS PNT has the ability to overcome the poor cytoplasmic quality of IVG mouse oocytes. Considering the low maturation efficiency of human IVG oocytes and potential detrimental effects following long-term in vitro culture, NT could be applied to rescue embryo development and could lead to an increased availability of good quality embryos for transfer. STUDY FUNDING/COMPETING INTERESTS A.C. is a holder of FWO (Fonds voor Wetenschappelijk Onderzoek) grants (1S80220N and 1S80222N). B.H. and A.V.S. have been awarded with a special BOF (Bijzonder Onderzoeksfonds), GOA (Geconcerteerde onderzoeksacties) 2018000504 (GOA030-18 BOF) funding. B.H. has been receiving unrestricted educational funding from Ferring Pharmaceuticals (Aalst, Belgium). The authors declare that they have no conflict of interest.
Collapse
Affiliation(s)
- Antonia Christodoulaki
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Haitang He
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
- Department of Obstetrics and Gynaecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhou
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Chloë De Roo
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Machteld Baetens
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium
| | - Tine De Pretre
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium
| | - Muhammad Fakhar-I-Adil
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Björn Menten
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium
| | - Ann Van Soom
- Faculty of Veterinary Medicine, Department of Reproduction, Obstetrics and Herd Health, University of Ghent, Merelbeke, Belgium
| | - Dominic Stoop
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Annekatrien Boel
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
11
|
Qi XY, Yuan JD, Liu ZY, Jiang XQ, Zhang Q, Zhang SL, Zhao L, Ke LY, Zhang CY, Li Y, Zhang LY, Xu QQ, Liu ZH, Sun JT, Jin JX. Sirtuin 3-mediated deacetylation of superoxide dismutase 2 ameliorates sodium fluoride-induced mitochondrial dysfunction in porcine oocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168306. [PMID: 37944611 DOI: 10.1016/j.scitotenv.2023.168306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Fluoride exerts detrimental effects on germ cells and increases the infertility rate in women. Nevertheless, the precise mechanisms behind the developmental abnormalities caused by fluoride in oocytes remain poorly comprehended. The current study, we established mitochondrial damage model in oocytes via 50 μg/mL sodium fluoride (NaF) supplementation. We then examined the effects of honokiol in preventing mitochondrial deficits caused by NaF and investigated the mechanisms through which honokiol protects oocytes. The findings investigated that NaF increased levels of mitochondrial reactive oxygen species (mtROS) and hindered mitochondrial function, as evidenced by the dissipation of mitochondrial membrane potential, abnormal expression of mitochondrial DNA copy numbers, and mtDNA harm in oocytes. mtROS scavenging using Mito-TEMPO alleviated oxidative damage in mitochondria and restored the oocyte developmental competence. Superoxide dismutase 2 (SOD2) acetylation was significantly increased, whereas sirtuin 3 (SIRT3) expression was decreased in NaF-treated oocytes. The addition of honokiol helped in the deacetylation of SOD2 at K122 through SIRT3, resulting in the removal of excessive mtROS and the recovery of mitochondrial function. Therefore, SIRT3/SOD2 pathway aids honokiol in mitigating fluoride-induced mitochondrial dysfunction. Overall, honokiol improved the mitochondrial harm caused by NaF by controlling mtROS and mitochondrial function, with the SIRT3/SOD2 pathway having an important function. These findings suggest honokiol as a potential therapeutic strategy for NaF-induced oocyte development and mitochondrial deficits.
Collapse
Affiliation(s)
- Xin-Yue Qi
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Jin-Dong Yuan
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Zi-Yu Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Xi-Qing Jiang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Qi Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Shan-Long Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Lu Zhao
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Ling-Yan Ke
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Chen-Yuan Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Yan Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Lu-Yan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Qian-Qian Xu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Zhong-Hua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China.
| | - Jing-Tao Sun
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China.
| | - Jun-Xue Jin
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
12
|
Zou W, Chezhian J, Yu T, Liu W, Vu J, Slone J, Huang T. Dissecting the Roles of the Nuclear and Mitochondrial Genomes in a Mouse Model of Autoimmune Diabetes. Diabetes 2024; 73:108-119. [PMID: 37847928 DOI: 10.2337/db23-0430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023]
Abstract
Mitochondria, the organelles responsible for generating ATP in eukaryotic cells, have been previously implicated as a contributor to diabetes. However, mitochondrial proteins are encoded by both nuclear DNA (nDNA) and mtDNA. In order to better understand the relative contribution of each of these genomes to diabetes, a chimeric mitochondrial-nuclear exchange (MNX) mouse was created via pronuclear transfer carrying nDNA from a strain susceptible to type 1 diabetes (NOD/ShiLtJ) and mtDNA from nondiabetic C57BL/6J mice. Inheritance of the resulting heteroplasmic mtDNA mixture was then tracked across multiple generations, showing that offspring heteroplasmy generally followed that of the mother, with occasional large shifts consistent with an mtDNA bottleneck in the germ line. In addition, survival and incidence of diabetes in MNX mice were tracked and compared with those in unaltered NOD/ShiLtJ control mice. The results indicated improved survival and a delay in diabetes onset in the MNX mice, demonstrating that mtDNA has a critical influence on disease phenotype. Finally, enzyme activity assays showed that the NOD/ShiLtJ mice had significant hyperactivity of complex I of the electron transport chain relative to MNX mice, suggesting that a particular mtDNA variant (m.9461T>C) may be responsible for disease causation in the original NOD/ShiLtJ strain. ARTICLE HIGHLIGHTS Mitochondria have been previously implicated in diabetes, but the specific genetic factors remain unclear. To better understand the contributions of mitochondrial genes in nuclear DNA (nDNA) versus mtDNA, we created mitochondrial-nuclear exchange (MNX) mice carrying nDNA from a diabetic strain and mtDNA from nondiabetic mice. Long-term tracking of MNX mice showed occasional large shifts in heteroplasmy consistent with an mtDNA bottleneck in the germ line. In addition, the MNX mice showed improved survival and delayed incidence of diabetes relative to the unaltered diabetic mice, which appeared to be linked to the activity of respiratory complex I.
Collapse
Affiliation(s)
- Weiwei Zou
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Janaki Chezhian
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Tenghui Yu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
- Human Aging Research Institute, School of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
| | - Wensheng Liu
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Jimmy Vu
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Jesse Slone
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| |
Collapse
|
13
|
Okamoto R, Xiao W, Fukasawa H, Hirata S, Sankai T, Masuyama H, Otsuki J. Aggregated chromosomes/chromatin transfer: a novel approach for mitochondrial replacement with minimal mitochondrial carryover: the implications of mouse experiments for human aggregated chromosome transfer. Mol Hum Reprod 2023; 29:gaad043. [PMID: 38039159 DOI: 10.1093/molehr/gaad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/01/2023] [Indexed: 12/03/2023] Open
Abstract
Nuclear transfer techniques, including spindle chromosome complex (SC) transfer and pronuclear transfer, have been employed to mitigate mitochondrial diseases. Nevertheless, the challenge of mitochondrial DNA (mtDNA) carryover remains unresolved. Previously, we introduced a method for aggregated chromosome (AC) transfer in human subjects, offering a potential solution. However, the subsequent rates of embryonic development have remained unexplored owing to legal limitations in Japan, and animal studies have been hindered by a lack of AC formation in other species. Building upon our success in generating ACs within mouse oocytes via utilization of the phosphodiesterase inhibitor 3-isobutyl 1-methylxanthine (IBMX), this study has established a mouse model for AC transfer. Subsequently, a comparative analysis of embryo development rates and mtDNA carryover between AC transfer and SC transfer was conducted. Additionally, the mitochondrial distribution around SC and AC structures was investigated, revealing that in oocytes at the metaphase II stage, the mitochondria exhibited a relatively concentrated arrangement around the spindle apparatus, while the distribution of mitochondria in AC-formed oocytes appeared to be independent of the AC position. The AC transfer approach produced a marked augmentation in rates of fertilization, embryo cleavage, and blastocyst formation, especially as compared to scenarios without AC transfer in IBMX-treated AC-formed oocytes. No significant disparities in fertilization and embryo development rates were observed between AC and SC transfers. However, relative real-time PCR analyses revealed that the mtDNA carryover for AC transfers was one-tenth and therefore significantly lower than that of SC transfers. This study successfully accomplished nuclear transfers with ACs in mouse oocytes, offering an insight into the potential of AC transfers as a solution to heteroplasmy-related challenges. These findings are promising in terms of future investigation with human oocytes, thus advancing AC transfer as an innovative approach in the field of human nuclear transfer methodology.
Collapse
Affiliation(s)
- R Okamoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan
| | - W Xiao
- Department of Applied Animal Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Kita, Okayama, Japan
| | - H Fukasawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - S Hirata
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - T Sankai
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki, Japan
| | - H Masuyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan
| | - J Otsuki
- Department of Applied Animal Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Kita, Okayama, Japan
- Assisted Reproductive Technology Center, Okayama University, Kita, Okayama, Japan
| |
Collapse
|
14
|
Hong S, Kim S, Kim K, Lee H. Clinical Approaches for Mitochondrial Diseases. Cells 2023; 12:2494. [PMID: 37887337 PMCID: PMC10605124 DOI: 10.3390/cells12202494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Mitochondria are subcontractors dedicated to energy production within cells. In human mitochondria, almost all mitochondrial proteins originate from the nucleus, except for 13 subunit proteins that make up the crucial system required to perform 'oxidative phosphorylation (OX PHOS)', which are expressed by the mitochondria's self-contained DNA. Mitochondrial DNA (mtDNA) also encodes 2 rRNA and 22 tRNA species. Mitochondrial DNA replicates almost autonomously, independent of the nucleus, and its heredity follows a non-Mendelian pattern, exclusively passing from mother to children. Numerous studies have identified mtDNA mutation-related genetic diseases. The consequences of various types of mtDNA mutations, including insertions, deletions, and single base-pair mutations, are studied to reveal their relationship to mitochondrial diseases. Most mitochondrial diseases exhibit fatal symptoms, leading to ongoing therapeutic research with diverse approaches such as stimulating the defective OXPHOS system, mitochondrial replacement, and allotropic expression of defective enzymes. This review provides detailed information on two topics: (1) mitochondrial diseases caused by mtDNA mutations, and (2) the mechanisms of current treatments for mitochondrial diseases and clinical trials.
Collapse
Affiliation(s)
- Seongho Hong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea;
- Department of Medicine, Korea University College of Medicine, Seoul 02708, Republic of Korea
| | - Sanghun Kim
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea;
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hyunji Lee
- Department of Medicine, Korea University College of Medicine, Seoul 02708, Republic of Korea
| |
Collapse
|
15
|
Liao X, Li W, Lin K, Jin W, Zhang S, Wang Y, Ma M, Xie Y, Yu W, Yan Z, Gao H, Zhao L, Si J, Wang Y, Lin J, Chen C, Chen L, Kuang Y, Lyu Q. Significant decrease of maternal mitochondria carryover using optimized spindle-chromosomal complex transfer. PLoS Biol 2023; 21:e3002313. [PMID: 37796762 PMCID: PMC10553349 DOI: 10.1371/journal.pbio.3002313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/25/2023] [Indexed: 10/07/2023] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) contribute to a variety of serious multi-organ human diseases, which are strictly inherited from the maternal germline. However, there is currently no curative treatment. Attention has been focused on preventing the transmission of mitochondrial diseases through mitochondrial replacement (MR) therapy, but levels of mutant mtDNA can often unexpectedly undergo significant changes known as mitochondrial genetic drift. Here, we proposed a novel strategy to perform spindle-chromosomal complex transfer (SCCT) with maximal residue removal (MRR) in metaphase II (MII) oocytes, thus hopefully eliminated the transmission of mtDNA diseases. With the MRR procedure, we initially investigated the proportions of mtDNA copy numbers in isolated karyoplasts to those of individual oocytes. Spindle-chromosomal morphology and copy number variation (CNV) analysis also confirmed the safety of this method. Then, we reconstructed oocytes by MRR-SCCT, which well developed to blastocysts with minimal mtDNA residue and normal chromosomal copy numbers. Meanwhile, we optimized the manipulation order between intracytoplasmic sperm injection (ICSI) and SCC transfer and concluded that ICSI-then-transfer was conducive to avoid premature activation of reconstructed oocytes in favor of normal fertilization. Offspring of mice generated by embryos transplantation in vivo and embryonic stem cells derivation further presented evidences for competitive development competence and stable mtDNA carryover without genetic drift. Importantly, we also successfully accomplished SCCT in human MII oocytes resulting in tiny mtDNA residue and excellent embryo development through MRR manipulation. Taken together, our preclinical mouse and human models of the MRR-SCCT strategy not only demonstrated efficient residue removal but also high compatibility with normal embryo development, thus could potentially be served as a feasible clinical treatment to prevent the transmission of inherited mtDNA diseases.
Collapse
Affiliation(s)
- Xiaoyu Liao
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| | - Wenzhi Li
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| | - Kaibo Lin
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| | - Wei Jin
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| | - Shaozhen Zhang
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| | - Yao Wang
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| | - Meng Ma
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| | - Yating Xie
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| | - Weina Yu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhiguang Yan
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| | - Hongyuan Gao
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| | - Leiwen Zhao
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| | - Jiqiang Si
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| | - Yun Wang
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| | - Jiaying Lin
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| | - Chen Chen
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| | - Li Chen
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| | - Qifeng Lyu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
16
|
Zou W, Zong K, Zhang Z, Shen L, Wang X, Su X, Wang X, Yin T, Liang C, Liu Y, Liang D, Hu C, Cao Y, Ji D. Novel economical, accurate, sensitive, single-cell analytical method for mitochondrial DNA quantification in mtDNA mutation carriers. J Assist Reprod Genet 2023; 40:2197-2209. [PMID: 37462790 PMCID: PMC10440311 DOI: 10.1007/s10815-023-02878-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/20/2023] [Indexed: 08/22/2023] Open
Abstract
PURPOSE Although a variety of analytical methods have been developed to detect mitochondrial DNA (mtDNA) heteroplasmy, there are special requirements of mtDNA heteroplasmy quantification for women carrying mtDNA mutations receiving the preimplantation genetic diagnosis (PGD) and prenatal diagnosis (PD) in clinic. These special requirements include various sample types, large sample number, long-term follow-up, and the need for detection of single-cell from biopsied embryos. Therefore, developing an economical, accurate, high-sensitive, and single-cell analytical method for mtDNA heteroplasmy is necessary. METHODS In this study, we developed the Sanger sequencing combined droplet digital polymerase chain reaction (ddPCR) method for mtDNA quantification and compared the results to next-generation sequencing (NGS). A total of seventeen families with twelve mtDNA mutations were recruited in this study. RESULTS The results showed that both Sanger sequencing and ddPCR could be used to analyze the mtDNA heteroplasmy in single-cell samples. There was no statistically significant difference in heteroplasmy levels in common samples with high heteroplasmy (≥ 5%), low heteroplasmy (< 5%), and single-cell samples, either between Sanger sequencing and NGS methods, or between ddPCR and NGS methods (P > 0.05). However, Sanger sequencing was unable to detect extremely low heteroplasmy accurately. But even in samples with extremely low heteroplasmy (0.40% and 0.92%), ddPCR was always able to quantify them. Compared to NGS, Sanger sequencing combined ddPCR analytical methods greatly reduced the cost of sequencing. CONCLUSIONS In conclusion, this study successfully established an economical, accurate, sensitive, single-cell analytical method based on the Sanger sequencing combined ddPCR methods for mtDNA heteroplasmy quantification in a clinical setting.
Collapse
Affiliation(s)
- Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kai Zong
- Technical Center of Hefei Customs District, No. 329 Tunxi Road, Hefei, 230022, Anhui, China
| | - Zhikang Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Lingchao Shen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaolei Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xun Su
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xin Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tao Yin
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chunmei Liang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yajing Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dan Liang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chao Hu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Dongmei Ji
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
17
|
Ibrahim AH, Rahman NNA, Saifuddeen SM. Mitochondrial Replacement Therapy: An Islamic Perspective. JOURNAL OF BIOETHICAL INQUIRY 2023; 20:485-495. [PMID: 37440155 DOI: 10.1007/s11673-023-10279-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/19/2023] [Indexed: 07/14/2023]
Abstract
Mitochondrial replacement technology (MRT) is an emerging and complex bioethical issue. This treatment aims to eliminate maternal inherited mitochondrial DNA (mtDNA) disorders. For Muslims, its introduction affects every aspect of human life, especially the five essential interests of human beings-namely, religion, life, lineage, intellect, and property. Thus, this technology must be assessed using a comprehensive and holistic approach addressing these human essential interests. Consequently, this article analyses and assesses tri-parent baby technology from the perspective of Maqasidic bioethics-that is, Islamic bioethics based on the framework of Maqasid al-Shariah. Using this analysis, this article suggests that tri-parent baby technology should not be permitted for Muslims due to the existence of third-party cell gametes which lead to lineage mixing and due to the uncertain safety of the therapy itself and because the major aim of the technology is to fulfil the affected couples interest to conceive their own genetically healthy child, not to treat and cure mtDNA disorders sufferers.
Collapse
Affiliation(s)
- Abdul Halim Ibrahim
- Programme of Applied Science with Islamic Studies, Academy of Islamic Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Noor Naemah Abdul Rahman
- Department of Fiqh and Usul, Academy of Islamic Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Shaikh Mohd Saifuddeen
- Centre for Science and Environment Studies, Institute of Islamic Understanding Malaysia, 2 Langgak Tunku Off Jalan Tuanku Abdul Halim, 50480, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Liao Z, Li Y, Li C, Bian X, Sun Q. Nuclear transfer improves the developmental potential of embryos derived from cytoplasmic deficient oocytes. iScience 2023; 26:107299. [PMID: 37520712 PMCID: PMC10372837 DOI: 10.1016/j.isci.2023.107299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/01/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Embryo development after fertilization is largely determined by the oocyte quality, which is in turn dependent on the competence of both the cytoplasm and nucleus. Here, to improve the efficiency of embryo development from developmentally incompetent oocytes, we performed spindle-chromosome complex transfer (ST) between in vitro matured (IVM) and in vivo matured (IVO) oocytes of the non-human primate rhesus monkey. We observed that the blastocyst rate of embryos derived from transferring the spindle-chromosome complex (SCC) of IVM oocytes into enucleated IVO oocytes was comparable with that of embryos derived from IVO oocytes. After transferring the reconstructed embryos into the uterus of surrogate mothers, two live rhesus monkeys were obtained, indicating that the nuclei of IVM oocytes support both the pre-and post-implantation embryo development of non-human primates.
Collapse
Affiliation(s)
- Zhaodi Liao
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhuo Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201210, China
| | - Chunyang Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201210, China
| | - Xinyan Bian
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201210, China
| | - Qiang Sun
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201210, China
| |
Collapse
|
19
|
Swegen A, Appeltant R, Williams SA. Cloning in action: can embryo splitting, induced pluripotency and somatic cell nuclear transfer contribute to endangered species conservation? Biol Rev Camb Philos Soc 2023; 98:1225-1249. [PMID: 37016502 DOI: 10.1111/brv.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 04/06/2023]
Abstract
The term 'cloning' refers to the production of genetically identical individuals but has meant different things throughout the history of science: a natural means of reproduction in bacteria, a routine procedure in horticulture, and an ever-evolving gamut of molecular technologies in vertebrates. Mammalian cloning can be achieved through embryo splitting, somatic cell nuclear transfer, and most recently, by the use of induced pluripotent stem cells. Several emerging biotechnologies also facilitate the propagation of genomes from one generation to the next whilst bypassing the conventional reproductive processes. In this review, we examine the state of the art of available cloning technologies and their progress in species other than humans and rodent models, in order to provide a critical overview of their readiness and relevance for application in endangered animal conservation.
Collapse
Affiliation(s)
- Aleona Swegen
- Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Priority Research Centre for Reproductive Science, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Ruth Appeltant
- Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Suzannah A Williams
- Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| |
Collapse
|
20
|
Liu M, Ji W, Zhao X, Liu X, Hu JF, Cui J. Therapeutic potential of engineering the mitochondrial genome. Biochim Biophys Acta Mol Basis Dis 2023:166804. [PMID: 37429560 DOI: 10.1016/j.bbadis.2023.166804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Mitochondrial diseases are a group of clinical disorders caused by mutations in the genes encoded by either the nuclear or the mitochondrial genome involved in mitochondrial oxidative phosphorylation. Disorders become evident when mitochondrial dysfunction reaches a cell-specific threshold. Similarly, the severity of disorders is related to the degree of gene mutation. Clinical treatments for mitochondrial diseases mainly rely on symptomatic management. Theoretically, replacing or repairing dysfunctional mitochondria to acquire and preserve normal physiological functions should be effective. Significant advances have been made in gene therapies, including mitochondrial replacement therapy, mitochondrial genome manipulation, nuclease programming, mitochondrial DNA editing, and mitochondrial RNA interference. In this paper, we review the recent progress in these technologies by focusing on advancements that overcome limitations.
Collapse
Affiliation(s)
- Mengmeng Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Wei Ji
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Xin Zhao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Xiaoliang Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Jiuwei Cui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China.
| |
Collapse
|
21
|
Tesarik J, Mendoza-Tesarik R. Mitochondria in Human Fertility and Infertility. Int J Mol Sci 2023; 24:ijms24108950. [PMID: 37240296 DOI: 10.3390/ijms24108950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/18/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
In human spermatozoa and oocytes (and their surrounding granulosa cells), mitochondria carry out important functions relating to human fertility and infertility. Sperm mitochondria are not transmitted to the future embryo, but are closely related to the generation of energy needed for sperm movement, capacitation, and acrosome reactions, as well as for sperm-oocyte fusion. On the other hand, oocyte mitochondria produce energy required for oocyte meiotic division and their abnormalities can thus cause oocyte and embryo aneuploidy. In addition, they play a role in oocyte calcium metabolism and in essential epigenetic events during the oocyte-to-embryo transition. They are transmitted to the future embryos and may thus cause hereditary diseases in the offspring. Due to the long life span of the female germ cells, the accumulation of mitochondrial DNA abnormalities often causes ovarian aging. Mitochondrial substitution therapy is the only way of dealing with these issues nowadays. New therapies based on mitochondrial DNA editing are under investigation.
Collapse
|
22
|
Palacios-González C. Genealogical obscurement: mitochondrial replacement techniques and genealogical research. JOURNAL OF MEDICAL ETHICS 2023:jme-2022-108659. [PMID: 37130754 DOI: 10.1136/jme-2022-108659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 04/12/2023] [Indexed: 05/04/2023]
Abstract
Mitochondrial replacement techniques (MRTs) are a new group of biotechnologies that aim to aid women whose eggs have disease-causing deleteriously mutated mitochondria to have genetically related healthy children. These techniques have also been used to aid women with poor oocyte quality and poor embryonic development, to have genetically related children. Remarkably, MRTs create humans with DNA from three sources: nuclear DNA from the intending mother and father, and mitochondrial DNA from the egg donor. In a recent publication Françoise Baylis argued that MRTs are detrimental for genealogical research via mitochondrial DNA because they would obscure the lines of individual descent. In this paper, I argue that MRTs do not obscure genealogical research, but rather that MRT-conceived children can have two mitochondrial lineages. I argue for this position by showing that MRTs are reproductive in nature and, thus, they create genealogy.
Collapse
|
23
|
Dode MAN, Caixeta FMC, Vargas LN, Leme LO, Kawamoto TS, Fidelis AAG, Franco MM. Genome transfer technique for bovine embryo production using the metaphase plate and polar body. J Assist Reprod Genet 2023; 40:943-951. [PMID: 36864182 PMCID: PMC10224876 DOI: 10.1007/s10815-023-02758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Despite many studies in humans and mice using genome transfer (GT), there are few reports using this technique in oocytes of wild or domestic animals. Therefore, we aimed to establish a GT technique in bovine oocytes using the metaphase plate (MP) and polar body (PB) as the sources of genetic material. In the first experiment, GT was established using MP (GT-MP), and a sperm concentration of 1 × 106 or 0.5 × 106 spermatozoa/ml gave similar fertilization rates. The cleavage rate (50%) and blastocyst rate (13.6%) in the GT-MP group was lower than that of the in vitro production control group (80.2% and 32.6%, respectively). The second experiment evaluated the same parameters using PB instead of MP; the GT-PB group had lower fertilization (82.3% vs. 96.2%) and blastocyst (7.7% vs. 36.8%) rates than the control group. No differences in the amount of mitochondrial DNA (mtDNA) were observed between groups. Finally, GT-MP was performed using vitrified oocytes (GT-MPV) as a source of genetic material. The cleavage rate of the GT-MPV group (68.4%) was similar to that of the vitrified oocytes (VIT) control group (70.0%) and to that of the control IVP group (81.25%, P < 0.05). The blastocyst rate of GT-MPV (15.7) did not differ neither from the VIT control group (5.0%) nor from the IVP control group (35.7%). The results suggested that the structures reconstructed by the GT-MPV and GT-PB technique develop in embryos even if vitrified oocytes are used.
Collapse
Affiliation(s)
- M A N Dode
- University of Brasilia, DF, Brasília, Brazil.
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil.
| | | | - L N Vargas
- Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - L O Leme
- Federal University of Espírito Santo, Alegre, ES, Brazil
| | - T S Kawamoto
- Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | - M M Franco
- Federal University of Uberlândia, Uberlândia, MG, Brazil
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| |
Collapse
|
24
|
Tolle I, Tiranti V, Prigione A. Modeling mitochondrial DNA diseases: from base editing to pluripotent stem-cell-derived organoids. EMBO Rep 2023; 24:e55678. [PMID: 36876467 PMCID: PMC10074100 DOI: 10.15252/embr.202255678] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/12/2023] [Accepted: 02/15/2023] [Indexed: 03/07/2023] Open
Abstract
Mitochondrial DNA (mtDNA) diseases are multi-systemic disorders caused by mutations affecting a fraction or the entirety of mtDNA copies. Currently, there are no approved therapies for the majority of mtDNA diseases. Challenges associated with engineering mtDNA have in fact hindered the study of mtDNA defects. Despite these difficulties, it has been possible to develop valuable cellular and animal models of mtDNA diseases. Here, we describe recent advances in base editing of mtDNA and the generation of three-dimensional organoids from patient-derived human-induced pluripotent stem cells (iPSCs). Together with already available modeling tools, the combination of these novel technologies could allow determining the impact of specific mtDNA mutations in distinct human cell types and might help uncover how mtDNA mutation load segregates during tissue organization. iPSC-derived organoids could also represent a platform for the identification of treatment strategies and for probing the in vitro effectiveness of mtDNA gene therapies. These studies have the potential to increase our mechanistic understanding of mtDNA diseases and may open the way to highly needed and personalized therapeutic interventions.
Collapse
Affiliation(s)
- Isabella Tolle
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
25
|
Jain R, Begum N, Tryphena KP, Singh SB, Srivastava S, Rai SN, Vamanu E, Khatri DK. Inter and intracellular mitochondrial transfer: Future of mitochondrial transplant therapy in Parkinson's disease. Biomed Pharmacother 2023; 159:114268. [PMID: 36682243 DOI: 10.1016/j.biopha.2023.114268] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Parkinson's disease (PD) is marked by the gradual degeneration of dopaminergic neurons and the intracellular build-up of Lewy bodies rich in α-synuclein protein. This impairs various aspects of the mitochondria including the generation of ROS, biogenesis, dynamics, mitophagy etc. Mitochondrial dynamics are regulated through the inter and intracellular movement which impairs mitochondrial trafficking within and between cells. This inter and intracellular mitochondrial movement plays a significant role in maintaining neuronal dynamics in terms of energy and growth. Kinesin, dynein, myosin, Mitochondrial rho GTPase (Miro), and TRAK facilitate the retrograde and anterograde movement of mitochondria. Enzymes such as Kinases along with Calcium (Ca2+), Adenosine triphosphate (ATP) and the genes PINK1 and Parkin are also involved. Extracellular vesicles, gap junctions, and tunneling nanotubes control intercellular movement. The knowledge and understanding of these proteins, enzymes, molecules, and movements have led to the development of mitochondrial transplant as a therapeutic approach for various disorders involving mitochondrial dysfunction such as stroke, ischemia and PD. A better understanding of these pathways plays a crucial role in establishing extracellular mitochondrial transplant therapy for reverting the pathology of PD. Currently, techniques such as mitochondrial coculture, mitopunch and mitoception are being utilized in the pre-clinical stages and should be further explored for translational value. This review highlights how intercellular and intracellular mitochondrial dynamics are affected during mitochondrial dysfunction in PD. The field of mitochondrial transplant therapy in PD is underlined in particular due to recent developments and the potential that it holds in the near future.
Collapse
Affiliation(s)
- Rachit Jain
- Molecular & Cellular Neuroscience lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
| | - Nusrat Begum
- Molecular & Cellular Neuroscience lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
| | - Kamatham Pushpa Tryphena
- Molecular & Cellular Neuroscience lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
| | - Shashi Bala Singh
- Molecular & Cellular Neuroscience lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
| | - Sachchida Nand Rai
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India.
| | - Emanuel Vamanu
- University of Agricultural Sciences and Veterinary Medicine of Bucharest, Romania.
| | - Dharmendra Kumar Khatri
- Molecular & Cellular Neuroscience lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
| |
Collapse
|
26
|
Abstract
Mitochondrial diseases require customized approaches for reproductive counseling, addressing differences in recurrence risks and reproductive options. The majority of mitochondrial diseases is caused by mutations in nuclear genes and segregate in a Mendelian way. Prenatal diagnosis (PND) or preimplantation genetic testing (PGT) are available to prevent the birth of another severely affected child. In at least 15%-25% of cases, mitochondrial diseases are caused by mitochondrial DNA (mtDNA) mutations, which can occur de novo (25%) or be maternally inherited. For de novo mtDNA mutations, the recurrence risk is low and PND can be offered for reassurance. For maternally inherited, heteroplasmic mtDNA mutations, the recurrence risk is often unpredictable, due to the mitochondrial bottleneck. PND for mtDNA mutations is technically possible, but often not applicable given limitations in predicting the phenotype. Another option for preventing the transmission of mtDNA diseases is PGT. Embryos with mutant load below the expression threshold are being transferred. Oocyte donation is another safe option to prevent the transmission of mtDNA disease to a future child for couples who reject PGT. Recently, mitochondrial replacement therapy (MRT) became available for clinical application as an alternative to prevent the transmission of heteroplasmic and homoplasmic mtDNA mutations.
Collapse
|
27
|
Morimoto Y, Gamage USK, Yamochi T, Saeki N, Morimoto N, Yamanaka M, Koike A, Miyamoto Y, Tanaka K, Fukuda A, Hashimoto S, Yanagimachi R. Mitochondrial Transfer into Human Oocytes Improved Embryo Quality and Clinical Outcomes in Recurrent Pregnancy Failure Cases. Int J Mol Sci 2023; 24:2738. [PMID: 36769061 PMCID: PMC9917531 DOI: 10.3390/ijms24032738] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
One of the most critical issues to be solved in reproductive medicine is the treatment of patients with multiple failures of assisted reproductive treatment caused by low-quality embryos. This study investigated whether mitochondrial transfer to human oocytes improves embryo quality and provides subsequent acceptable clinical results and normality to children born due to the use of this technology. We transferred autologous mitochondria extracted from oogonia stem cells to mature oocytes with sperm at the time of intracytoplasmic sperm injection in 52 patients with recurrent failures (average 5.3 times). We assessed embryo quality using the following three methods: good-quality embryo rates, transferable embryo rates, and a novel embryo-scoring system (embryo quality score; EQS) in 33 patients who meet the preset inclusion criteria for analysis. We also evaluated the clinical outcomes of the in vitro fertilization and development of children born using this technology and compared the mtDNA sequences of the children and their mothers. The good-quality embryo rates, transferable embryo rates, and EQS significantly increased after mitochondrial transfer and resulted in 13 babies born in normal conditions. The mtDNA sequences were almost identical to the respective maternal sequences at the 83 major sites examined. Mitochondrial transfer into human oocytes is an effective clinical option to enhance embryo quality in recurrent in vitro fertilization-failure cases.
Collapse
Affiliation(s)
- Yoshiharu Morimoto
- Department of Obstetrics and Gynecology, HORAC Grand Front Osaka Clinic, Osaka 530-0011, Japan
| | | | - Takayuki Yamochi
- Reproductive Science Institute, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Noriatsu Saeki
- Department of Obstetrics and Gynecology, Nippon Life Hospital, Osaka 550-0006, Japan
| | - Naoharu Morimoto
- Department of Obstetrics and Gynecology, IVF Namba Clinic, Osaka 550-0015, Japan
| | - Masaya Yamanaka
- Department of Research, IVF Namba Clinic, Osaka 550-0015, Japan
| | - Akiko Koike
- Department of Reproductive Technology, HORAC Grand Front Osaka Clinic, Osaka 530-0011, Japan
| | - Yuki Miyamoto
- Department of Reproductive Technology, HORAC Grand Front Osaka Clinic, Osaka 530-0011, Japan
| | - Kumiko Tanaka
- Department of Integrated Medicine, HORAC Grand Front Osaka Clinic, Osaka 530-0011, Japan
| | - Aisaku Fukuda
- Department of Obstetrics and Gynecology, IVF Osaka Clinic, Osaka 577-0012, Japan
| | - Shu Hashimoto
- Reproductive Science Institute, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Ryuzo Yanagimachi
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96822, USA
| |
Collapse
|
28
|
Burgstaller JP, Chiaratti MR. Mitochondrial Inheritance Following Nuclear Transfer: From Cloned Animals to Patients with Mitochondrial Disease. Methods Mol Biol 2023; 2647:83-104. [PMID: 37041330 DOI: 10.1007/978-1-0716-3064-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Mitochondria are indispensable power plants of eukaryotic cells that also act as a major biochemical hub. As such, mitochondrial dysfunction, which can originate from mutations in the mitochondrial genome (mtDNA), may impair organism fitness and lead to severe diseases in humans. MtDNA is a multi-copy, highly polymorphic genome that is uniparentally transmitted through the maternal line. Several mechanisms act in the germline to counteract heteroplasmy (i.e., coexistence of two or more mtDNA variants) and prevent expansion of mtDNA mutations. However, reproductive biotechnologies such as cloning by nuclear transfer can disrupt mtDNA inheritance, resulting in new genetic combinations that may be unstable and have physiological consequences. Here, we review the current understanding of mitochondrial inheritance, with emphasis on its pattern in animals and human embryos generated by nuclear transfer.
Collapse
Affiliation(s)
- Jörg P Burgstaller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Marcos R Chiaratti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil.
| |
Collapse
|
29
|
Korchivaia E, Silaeva Y, Mazunin I, Volodyaev I. The mitochondrial challenge: Disorders and prevention strategies. Biosystems 2023; 223:104819. [PMID: 36450320 DOI: 10.1016/j.biosystems.2022.104819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
This short review provides basic knowledge on mitochondrial inheritance, its disorders, and potential ways to overcome them in human reproductive medicine. The latter are currently mostly associated with the so-called mitochondrial replacement (nuclear transfer) procedures, performed at different stages and with slight technical differences. Being promising but obviously highly invasive, these procedures require detailed investigation of their delayed effects on embryogenesis, pregnancy and future health. A special attention is paid to the newest available data on these issues, as well as to their limitations and possible further research directions.
Collapse
Affiliation(s)
- Elena Korchivaia
- Department of Embryology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia.
| | - Yulia Silaeva
- Ministry of Science and Higher Education of the Russian Federation Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| | - Ilya Mazunin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology (Skoltech), Skolkovo, Russia; Fomin Clinics, Russia; Medical Genomics LLC, Moscow, Russia
| | - Ilya Volodyaev
- Department of Embryology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia; European Medical Center, Moscow, Russia; ICARM (Interdisciplinary Clinical Association for Reproductive Medicine), Moscow, Russia
| |
Collapse
|
30
|
Khan MM, Paez HG, Pitzer CR, Alway SE. The Therapeutic Potential of Mitochondria Transplantation Therapy in Neurodegenerative and Neurovascular Disorders. Curr Neuropharmacol 2023; 21:1100-1116. [PMID: 36089791 PMCID: PMC10286589 DOI: 10.2174/1570159x05666220908100545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative and neurovascular disorders affect millions of people worldwide and account for a large and increasing health burden on the general population. Thus, there is a critical need to identify potential disease-modifying treatments that can prevent or slow the disease progression. Mitochondria are highly dynamic organelles and play an important role in energy metabolism and redox homeostasis, and mitochondrial dysfunction threatens cell homeostasis, perturbs energy production, and ultimately leads to cell death and diseases. Impaired mitochondrial function has been linked to the pathogenesis of several human neurological disorders. Given the significant contribution of mitochondrial dysfunction in neurological disorders, there has been considerable interest in developing therapies that can attenuate mitochondrial abnormalities and proffer neuroprotective effects. Unfortunately, therapies that target specific components of mitochondria or oxidative stress pathways have exhibited limited translatability. To this end, mitochondrial transplantation therapy (MTT) presents a new paradigm of therapeutic intervention, which involves the supplementation of healthy mitochondria to replace the damaged mitochondria for the treatment of neurological disorders. Prior studies demonstrated that the supplementation of healthy donor mitochondria to damaged neurons promotes neuronal viability, activity, and neurite growth and has been shown to provide benefits for neural and extra-neural diseases. In this review, we discuss the significance of mitochondria and summarize an overview of the recent advances and development of MTT in neurodegenerative and neurovascular disorders, particularly Parkinson's disease, Alzheimer's disease, and stroke. The significance of MTT is emerging as they meet a critical need to develop a diseasemodifying intervention for neurodegenerative and neurovascular disorders.
Collapse
Affiliation(s)
- Mohammad Moshahid Khan
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hector G. Paez
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Christopher R. Pitzer
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Stephen E. Alway
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- The Tennessee Institute of Regenerative Medicine, 910 Madison Avenue, Memphis, TN, 38163, USA
| |
Collapse
|
31
|
Zhu Z, Xu W, Liu L. Ovarian aging: mechanisms and intervention strategies. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:590-610. [PMID: 37724254 PMCID: PMC10471094 DOI: 10.1515/mr-2022-0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 09/20/2023]
Abstract
Ovarian reserve is essential for fertility and influences healthy aging in women. Advanced maternal age correlates with the progressive loss of both the quantity and quality of oocytes. The molecular mechanisms and various contributing factors underlying ovarian aging have been uncovered. In this review, we highlight some of critical factors that impact oocyte quantity and quality during aging. Germ cell and follicle reserve at birth determines reproductive lifespan and timing the menopause in female mammals. Accelerated diminishing ovarian reserve leads to premature ovarian aging or insufficiency. Poor oocyte quality with increasing age could result from chromosomal cohesion deterioration and misaligned chromosomes, telomere shortening, DNA damage and associated genetic mutations, oxidative stress, mitochondrial dysfunction and epigenetic alteration. We also discuss the intervention strategies to delay ovarian aging. Both the efficacy of senotherapies by antioxidants against reproductive aging and mitochondrial therapy are discussed. Functional oocytes and ovarioids could be rejuvenated from pluripotent stem cells or somatic cells. We propose directions for future interventions. As couples increasingly begin delaying parenthood in life worldwide, understanding the molecular mechanisms during female reproductive aging and potential intervention strategies could benefit women in making earlier choices about their reproductive health.
Collapse
Affiliation(s)
- Zhengmao Zhu
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, China
| | - Wanxue Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Lin Liu
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Tianjin Union Medical Center, Institute of Translational Medicine, Nankai University, Tianjin, China
| |
Collapse
|
32
|
DeCherney AH, Brolinson M, Whiteley G, Legro RS, Santoro N. Is the "E" being removed from Reproductive Endocrinology to be replaced by a "G" for Genetics? Fertil Steril 2022; 118:1036-1043. [PMID: 36357198 DOI: 10.1016/j.fertnstert.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Alan H DeCherney
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Marja Brolinson
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Grace Whiteley
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Richard S Legro
- Department of Obstetrics and Gynecology, Pennsylvania State University, Hershey, Pennsylvania
| | - Nanette Santoro
- Department of Obstetrics and Gynecology, University of Colorado, Aurora, Colorado.
| |
Collapse
|
33
|
Siristatidis C, Mantzavinos T, Vlahos N. Maternal spindle transfer for mitochondrial disease: lessons to be learnt before extending the method to other conditions? HUM FERTIL 2022; 25:838-847. [PMID: 33993847 DOI: 10.1080/14647273.2021.1925168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mitochondrial diseases are a group of conditions attributed to mutations of specific genes that regulate mitochondrial function. Maternal spindle transfer (MST) has been proposed as a method to prevent the transmission of these diseases and utilisation of the technique resulted in the birth of a baby free of disease in 2017 in Mexico. Potential flaws in research governance and the associated criticism emerged from the expansion of MST to provide a potentially new assisted reproductive technique to overcome infertility problems characterised by repeated in vitro embryo development arrest caused by mitochondrial dysfunction and cytoplasmic deficiencies of the oocyte. This applied technique represents a good example of the need to strike "a balance between taking appropriate precautions and hampering innovation". The purpose of this article is to explore, through a comprehensive literature search, whether and how this process can evolve from an experimental method to treat a medical condition to a standard of care solution for certain types of infertility. We argue that a number of key issues should be considered before applying the technique more broadly. These include regulatory oversight, safety and efficacy, cost, implications for research, essential laboratory skills and oversight, as well as the care needs of patients and egg donors.
Collapse
Affiliation(s)
- Charalampos Siristatidis
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, "Aretaieio" University Hospital, Athens, Greece
| | - Themis Mantzavinos
- Scientific director of "Institute of Life" IVF Center, Iaso Maternity Hospital, Athens, Greece
| | - Nikos Vlahos
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, "Aretaieio" University Hospital, Athens, Greece
| |
Collapse
|
34
|
Kyrgiafini MA, Giannoulis T, Moutou KA, Mamuris Z. Investigating the Impact of a Curse: Diseases, Population Isolation, Evolution and the Mother's Curse. Genes (Basel) 2022; 13:2151. [PMID: 36421825 PMCID: PMC9690142 DOI: 10.3390/genes13112151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 09/08/2024] Open
Abstract
The mitochondrion was characterized for years as the energy factory of the cell, but now its role in many more cellular processes is recognized. The mitochondrion and mitochondrial DNA (mtDNA) also possess a set of distinct properties, including maternal inheritance, that creates the Mother's Curse phenomenon. As mtDNA is inherited from females to all offspring, mutations that are harmful to males tend to accumulate more easily. The Mother's Curse is associated with various diseases, and has a significant effect on males, in many cases even affecting their reproductive ability. Sometimes, it even leads to reproductive isolation, as in crosses between different populations, the mitochondrial genome cannot cooperate effectively with the nuclear one resulting in a mito-nuclear incompatibility and reduce the fitness of the hybrids. This phenomenon is observed both in the laboratory and in natural populations, and have the potential to influence their evolution and speciation. Therefore, it turns out that the study of mitochondria is an exciting field that finds many applications, including pest control, and it can shed light on the molecular mechanism of several diseases, improving successful diagnosis and therapeutics. Finally, mito-nuclear co-adaptation, paternal leakage, and kin selection are some mechanisms that can mitigate the impact of the Mother's Curse.
Collapse
Affiliation(s)
- Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Themistoklis Giannoulis
- Laboratory of Biology, Genetics and Bioinformatics, Department of Animal Sciences, University of Thessaly, Gaiopolis, 41336 Larissa, Greece
| | - Katerina A. Moutou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
35
|
Tang S, Yang N, Yu M, Wang S, Hu X, Ni H, Cai W. Noninvasive autologous mitochondria transport improves the quality and developmental potential of oocytes from aged mice. F&S SCIENCE 2022; 3:310-321. [PMID: 35843541 DOI: 10.1016/j.xfss.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To establish an optimized autologous mitochondria transport technique for oocyte-aging rescue, which minimizes both the patient's pains and the damage to oocytes. DESIGN Experimental laboratory study. SETTING Laboratory. ANIMAL(S) Institute of Cancer Research mice. INTERVENTION(S) The murine umbilical cord mesenchymal stem cells were isolated from the female pup and cryopreserved. After the female aged, its germinal vesicle (GV) oocytes were collected and treated to weaken the zona pellucida. Its autologous umbilical cord mesenchymal stem cells were induced into granulosa cells (iGCs). The zona-weakened GV oocytes were aggregated with iGCs into iGC-oocyte complexes. Then, these complexes were cultured in growth-differentiation factor 9-containing media for 3 days. Next, they were subjected to in vitro maturation and fertilization. Presumptive zygotes were cultured for 24 hours, and the cleaved 2-cell embryos were selected for embryo transfer. MAIN OUTCOME MEASURE(S) The oocyte quality was determined by examining mitochondrial ultrastructure using transmission electron microscopy, the adenosine triphosphate content using a luminometer, and intracellular reactive oxygen species levels by confocal microscopy. The spindle organization in mature oocytes was examined by confocal microscopy. The developmental potential of oocytes was evaluated by monitoring the in vitro embryo development and the birth rate after embryo transfer. RESULT(S) Mitochondria migrated from iGCs into the GV oocyte via transzonal filopodia. The maturation rate, quality, and developmental potential of these oocytes were substantially increased. Furthermore, the birth rate after embryo transfer has been improved. CONCLUSION(S) This approach used noninvasive procedures to collect mitochondria donor cells and optimized mitochondria transfer manipulations; thus, it may have potential in ameliorating oocyte-aging-related subfertility.
Collapse
Affiliation(s)
- Shuang Tang
- Laboratory of Animal Cell and Molecular Biology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China.
| | - Nannan Yang
- Laboratory of Animal Cell and Molecular Biology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Mingxi Yu
- Laboratory of Animal Cell and Molecular Biology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Shuo Wang
- Instrumental Analysis and Test Center, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Xiangdong Hu
- Laboratory of Animal Cell and Molecular Biology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Heliang Ni
- Laboratory of Animal Cell and Molecular Biology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Wenyang Cai
- Laboratory of Animal Cell and Molecular Biology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
36
|
Komesaroff PA, Kerridge I, Norman RJ. Mitochondrial donation is now possible: science must now ensure that it is safe. Intern Med J 2022; 52:1663-1665. [PMID: 36266067 DOI: 10.1111/imj.15925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/05/2022]
Affiliation(s)
| | - Ian Kerridge
- Haematology Department, Royal North Shore Hospital, St Leonards, New South Wales, Australia.,Sydney Health Ethics, University of Sydney, New South Australia, Australia
| | - Robert J Norman
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Monash Centre for Health Research and Implementation (MCHRI), Monash University, Melbourne, Victoria, Australia.,NHMRC Centre of Research Excellence in Women's Health in Reproductive Life (CRE-WHiRL), Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Single-cell multiomics analyses of spindle-transferred human embryos suggest a mostly normal embryonic development. PLoS Biol 2022; 20:e3001741. [PMID: 35972936 PMCID: PMC9380953 DOI: 10.1371/journal.pbio.3001741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations are often associated with incurable diseases and lead to detectable pathogenic variants in 1 out of 200 babies. Uncoupling of the inheritance of mtDNA and the nuclear genome by spindle transfer (ST) can potentially prevent the transmission of mtDNA mutations from mother to offspring. However, no well-established studies have critically assessed the safety of this technique. Here, using single-cell triple omics sequencing method, we systematically analyzed the genome (copy number variation), DNA methylome, and transcriptome of ST and control blastocysts. The results showed that, compared to that in control embryos, the percentage of aneuploid cells in ST embryos did not significantly change. The epiblast, primitive endoderm, and trophectoderm (TE) of ST blastocysts presented RNA expression profiles that were comparable to those of control blastocysts. However, the DNA demethylation process in TE cells of ST blastocysts was slightly slower than that in the control blastocysts. Collectively, our results suggest that ST seems generally safe for embryonic development, with a relatively minor delay in the DNA demethylation process at the blastocyst stage. Uncoupling of the inheritance of mtDNA and the nuclear genome by spindle transfer could prevent the transmission of mtDNA mutations. Systematic single-cell multiomic analyses of spindle transferred human embryos suggest this technique seems generally safe for human embryonic development and deserves further scientific evaluation and clinical testing.
Collapse
|
38
|
Cacciottola L, Dolmans MM, Schattman GL. A synopsis of the 2021 International Society of Fertility Preservation bi-annual meeting. J Assist Reprod Genet 2022; 39:1727-1732. [PMID: 35849256 PMCID: PMC9428092 DOI: 10.1007/s10815-022-02568-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/19/2023] Open
Abstract
On November 19, 2021, the first virtual meeting of the International Society for Fertility Preservation (ISFP) took place. Eight experts in the field of reproductive medicine presented important updates on their research in the field of fertility preservation and reproductive surgery for absolute uterine factor infertility. Presentations included talks on ovarian stem cell therapy for premature ovarian insufficiency, practical aspects of oocyte vitrification, ovarian stimulation for patients with breast cancer, in vitro maturation of oocytes at the time of ovarian tissue harvesting, male fertility preservation, and uterine transplantation. These presentations are summarized below and can be viewed in their entirety at www.isfp-fertility.org.
Collapse
Affiliation(s)
- Luciana Cacciottola
- Gynecology Research Unit, Institut de Recherche Expérimentale Et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | | | - Glenn L. Schattman
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Medical College of Cornell University, New York, NY USA
| |
Collapse
|
39
|
Ikeda S, Fukasawa H, Mabuchi T, Hirata S. Cytoplasmic streaming induced by intracytoplasmic spindle translocation contributes to developmental competence through mitochondrial distribution in mouse oocytes. F&S SCIENCE 2022; 3:210-216. [PMID: 35661817 DOI: 10.1016/j.xfss.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To evaluate the developmental competency of mouse metaphase II oocytes and the pattern of mitochondrial positioning through cytoplasmic streaming in mouse metaphase II oocytes. DESIGN We observed cytoplasmic streaming as movement indicated by fluorescently stained mitochondria using a newly developed method in which the spindle is translocated to the opposite site of the oocyte. This method is termed as intracytoplasmic spindle translocation (ICST). SETTING University research laboratory. ANIMALS Female B6D2F1 mice. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Fresh oocytes, postovulatory-aged oocytes, and oocytes treated with cytochalasin B were classified based on the presence of cytoplasmic streaming induced by ICST. The pattern of redistributed mitochondria and developmental competence caused by parthenogenetic activation were evaluated in oocytes with or without cytoplasmic streaming. RESULT(S) Induced cytoplasmic streaming occurred in 84% of the fresh oocytes but not in the postovulatory-aged oocytes and the oocytes treated with cytochalasin B. Abnormal mitochondrial aggregation was observed in oocytes in which cytoplasmic streaming was not induced. Furthermore, the developmental competence was significantly lower in oocytes without cytoplasmic streaming. CONCLUSION(S) Cytoplasmic streaming induced by ICST contributes to developmental competence through the redistribution of mitochondria and may be a valuable criterion for predicting early developmental competence in mouse oocytes.
Collapse
Affiliation(s)
- Shoko Ikeda
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hiroko Fukasawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Tadashi Mabuchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Shuji Hirata
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.
| |
Collapse
|
40
|
Dvoran M, Nemcova L, Kalous J. An Interplay between Epigenetics and Translation in Oocyte Maturation and Embryo Development: Assisted Reproduction Perspective. Biomedicines 2022; 10:biomedicines10071689. [PMID: 35884994 PMCID: PMC9313063 DOI: 10.3390/biomedicines10071689] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 12/11/2022] Open
Abstract
Germ cell quality is a key prerequisite for successful fertilization and early embryo development. The quality is determined by the fine regulation of transcriptomic and proteomic profiles, which are prone to alteration by assisted reproduction technology (ART)-introduced in vitro methods. Gaining evidence shows the ART can influence preset epigenetic modifications within cultured oocytes or early embryos and affect their developmental competency. The aim of this review is to describe ART-determined epigenetic changes related to the oogenesis, early embryogenesis, and further in utero development. We confront the latest epigenetic, related epitranscriptomic, and translational regulation findings with the processes of meiotic maturation, fertilization, and early embryogenesis that impact the developmental competency and embryo quality. Post-ART embryo transfer, in utero implantation, and development (placentation, fetal development) are influenced by environmental and lifestyle factors. The review is emphasizing their epigenetic and ART contribution to fetal development. An epigenetic parallel among mouse, porcine, and bovine animal models and human ART is drawn to illustrate possible future mechanisms of infertility management as well as increase the awareness of the underlying mechanisms governing oocyte and embryo developmental complexity under ART conditions.
Collapse
|
41
|
Role of Mitochondria Transfer in Infertility: A Commentary. Cells 2022; 11:cells11121867. [PMID: 35740996 PMCID: PMC9221194 DOI: 10.3390/cells11121867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
Mitochondria transfer techniques were first designed to prevent the transmission of diseases due to mutations in mtDNA, as these organelles are exclusively transmitted to the offspring by the oocyte. Despite this, given the crucial role of mitochondria in oocyte maturation, fertilization and subsequent embryo development, these approaches have been proposed as new potential strategies to overcome poor oocyte quality in infertile patients. This condition is a very common cause of infertility in patients of advanced maternal age, and patients with previous in vitro fertilization (IVF) attempt failures of oocyte origin. In this context, the enrichment or the replacement of the whole set of the oocyte mitochondria may improve its quality and increase these patients’ chances of success after an IVF treatment. In this short review, we will provide a brief overview of the main human studies using heterologous and autologous mitochondria transfer techniques in the reproductive field, focusing on the etiology of the treated patients and the final outcome. Although there is no current clearly superior mitochondria transfer technique, efforts must be made in order to optimize them and bring them into regular clinical practice, giving these patients a chance to achieve a pregnancy with their own oocytes.
Collapse
|
42
|
Gambini A, Briski O, Canel NG. State of the art of nuclear transfer technologies for assisting mammalian reproduction. Mol Reprod Dev 2022; 89:230-242. [PMID: 35642677 DOI: 10.1002/mrd.23615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/14/2022] [Accepted: 05/22/2022] [Indexed: 12/27/2022]
Abstract
The transfer of nuclear genomic DNA from a cell to a previously enucleated oocyte or zygote constitutes one of the main tools for studying epigenetic reprogramming, nucleus-cytoplasm compatibility, pluripotency state, and for genetic preservation or edition in animals. More than 50 years ago, the first experiences in nuclear transfer began to reveal that factors stored in the cytoplasm of oocytes could reprogram the nucleus of another cell and support the development of an embryo with new genetic information. Furthermore, when the nuclear donor cell is an oocyte, egg, or a zygote, the implementation of these technologies acquires clinical relevance for patients with repeated failures in ART associated with poor oocyte quality or mitochondrial dysfunctions. This review describes the current state, scope, and future perspectives of nuclear transfer techniques currently available for assisting mammal reproduction.
Collapse
Affiliation(s)
- Andrés Gambini
- Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.,School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - Olinda Briski
- Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Gabriela Canel
- Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.,Hospital de Clínicas "José de San Martín," Instituto Universitario de Fertilidad y Reproducción Humana, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
43
|
Ultrastructural Evaluation of the Human Oocyte at the Germinal Vesicle Stage during the Application of Assisted Reproductive Technologies. Cells 2022; 11:cells11101636. [PMID: 35626673 PMCID: PMC9139706 DOI: 10.3390/cells11101636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
After its discovery in 1825 by the physiologist J.E. Purkinje, the human germinal vesicle (GV) attracted the interest of scientists. Discarded after laparotomy or laparoscopic ovum pick up from the pool of retrieved mature oocytes, the leftover GV was mainly used for research purposes. After the discovery of Assisted Reproductive Technologies (ARTs) such as in vitro maturation (IVM), in vitro fertilization and embryo transfer (IVF-ET) and intracytoplasmic sperm injection (ICSI), its developing potential was explored, and recognized as an important source of germ cells, especially in the case of scarce availability of mature oocytes for pathological/clinical conditions or in the case of previous recurrent implantation failure. We here review the ultrastructural data available on GV-stage human oocytes and their application to ARTs.
Collapse
|
44
|
Reduction of mtDNA heteroplasmy in mitochondrial replacement therapy by inducing forced mitophagy. Nat Biomed Eng 2022; 6:339-350. [PMID: 35437313 DOI: 10.1038/s41551-022-00881-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/10/2022] [Indexed: 11/08/2022]
Abstract
Mitochondrial replacement therapy (MRT) has been used to prevent maternal transmission of disease-causing mutations in mitochondrial DNA (mtDNA). However, because MRT requires nuclear transfer, it carries the risk of mtDNA carryover and hence of the reversion of mtDNA to pathogenic levels owing to selective replication and genetic drift. Here we show in HeLa cells, mouse embryos and human embryos that mtDNA heteroplasmy can be reduced by pre-labelling the mitochondrial outer membrane of a donor zygote via microinjection with an mRNA coding for a transmembrane peptide fused to an autophagy receptor, to induce the degradation of the labelled mitochondria via forced mitophagy. Forced mitophagy reduced mtDNA carryover in newly reconstructed embryos after MRT, and had negligible effects on the growth curve, reproduction, exercise capacity and other behavioural characteristics of the offspring mice. The induction of forced mitophagy to degrade undesired donor mtDNA may increase the clinical feasibility of MRT and could be extended to other nuclear transfer techniques.
Collapse
|
45
|
Park SU, Blackledge K, Ananth CV, Sauer MV, Brandt JS. Altmetric and bibliometric analysis of influential articles in reproductive biology, 1980-2019. Reprod Biomed Online 2022; 45:384-390. [DOI: 10.1016/j.rbmo.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/01/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
|
46
|
Cakmak H. When is the right time to stop autologous in vitro fertilization treatment in poor responders? Fertil Steril 2022; 117:682-687. [DOI: 10.1016/j.fertnstert.2022.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/04/2022]
|
47
|
Artificial Oocyte: Development and Potential Application. Cells 2022; 11:cells11071135. [PMID: 35406698 PMCID: PMC8998074 DOI: 10.3390/cells11071135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/07/2023] Open
Abstract
Millions of people around the world suffer from infertility, with the number of infertile couples and individuals increasing every year. Assisted reproductive technologies (ART) have been widely developed in recent years; however, some patients are unable to benefit from these technologies due to their lack of functional germ cells. Therefore, the development of alternative methods seems necessary. One of these methods is to create artificial oocytes. Oocytes can be generated in vitro from the ovary, fetal gonad, germline stem cells (GSCs), ovarian stem cells, or pluripotent stem cells (PSCs). This approach has raised new hopes in both basic research and medical applications. In this article, we looked at the principle of oocyte development, the landmark studies that enhanced our understanding of the cellular and molecular mechanisms that govern oogenesis in vivo, as well as the mechanisms underlying in vitro generation of functional oocytes from different sources of mouse and human stem cells. In addition, we introduced next-generation ART using somatic cells with artificial oocytes. Finally, we provided an overview of the reproductive application of in vitro oogenesis and its use in human fertility.
Collapse
|
48
|
Marti Gutierrez N, Mikhalchenko A, Ma H, Koski A, Li Y, Van Dyken C, Tippner-Hedges R, Yoon D, Liang D, Hayama T, Battaglia D, Kang E, Lee Y, Barnes AP, Amato P, Mitalipov S. Horizontal mtDNA transfer between cells is common during mouse development. iScience 2022; 25:103901. [PMID: 35243258 PMCID: PMC8873606 DOI: 10.1016/j.isci.2022.103901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/12/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022] Open
Abstract
Cells transmit their genomes vertically to daughter cells during cell divisions. Here, we demonstrate the occurrence and extent of horizontal mitochondrial (mt)DNA acquisition between cells that are not in a parent-offspring relationship. Extensive single-cell sequencing from various tissues and organs of adult chimeric mice composed of cells carrying distinct mtDNA haplotypes showed that a substantial fraction of individual cardiomyocytes, neurons, glia, intestinal, and spleen cells captured donor mtDNA at high levels. In addition, chimeras composed of cells with wild-type and mutant mtDNA exhibited increased trafficking of wild-type mtDNA to mutant cells, suggesting that horizontal mtDNA transfer may be a compensatory mechanism to restore compromised mitochondrial function. These findings establish the groundwork for further investigations to identify mtDNA donor cells and mechanisms of transfer that could be critical to the development of novel gene therapies. Individual cells in adult mouse chimeras acquire donor mtDNA horizontally Significant percentage of cardiomyocytes, neurons, and glia were heteroplasmic Donor mtDNA heteroplasmy in these cells can reach up to 50% Pathogenic mtDNA mutations may potentiate horizontal acquisition of wild-type mtDNA
Collapse
Affiliation(s)
- Nuria Marti Gutierrez
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR 97239, USA
| | - Aleksei Mikhalchenko
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hong Ma
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amy Koski
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ying Li
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR 97239, USA
| | - Crystal Van Dyken
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rebecca Tippner-Hedges
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR 97239, USA
| | - David Yoon
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR 97239, USA
| | - Dan Liang
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR 97239, USA
| | - Tomonari Hayama
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR 97239, USA
| | - David Battaglia
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR 97239, USA
| | - Eunju Kang
- Stem Cell Center & Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Yeonmi Lee
- Stem Cell Center & Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Anthony Paul Barnes
- Knight Cardiovascular Institute, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Paula Amato
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
49
|
Pennings G. Enucleated oocyte donation: first for infertility treatment, then for mitochondrial diseases. J Assist Reprod Genet 2022; 39:605-608. [PMID: 35132530 PMCID: PMC8995224 DOI: 10.1007/s10815-022-02428-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/02/2022] [Indexed: 10/19/2022] Open
Abstract
There seems to be a consensus that enucleated oocyte donation (EOD) should only be used to reduce the risk of having a child with mitochondrial disorders. However, this paper argues that in the initial phase in which we are at the moment, EOD should first be used to remedy infertility caused by poor oocyte quality or poor embryonic development. That learning period will allow researchers to improve their technical skills and the knowledge of the best procedure before starting on high-risk cases. Mitochondrial carryover of pathologic mtDNA is the main cause of concern for the offspring. That risk does not exist in infertility cases. The application of EOD to treat infertility should at present be performed in a clinical research setting to obtain more evidence about efficacy and safety.
Collapse
Affiliation(s)
- Guido Pennings
- Department of Philosophy and Moral Science, Bioethics Institute Ghent (BIG), Ghent University, Blandijnberg 2, B-9000, Gent, Belgium.
| |
Collapse
|
50
|
Human germline nuclear transfer to overcome mitochondrial disease and failed fertilization after ICSI. J Assist Reprod Genet 2022; 39:609-618. [PMID: 35064435 PMCID: PMC8995215 DOI: 10.1007/s10815-022-02401-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/15/2022] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Providing additional insights on the efficacy of human nuclear transfer (NT). Here, and earlier, NT has been applied to minimize transmission risk of mitochondrial DNA (mtDNA) diseases. NT has also been proposed for treating infertility, but it is still unclear which infertility indications would benefit. In this work, we therefore additionally assess the applicability of NT to overcome failed fertilization. METHODS Patient 1 carries a homoplasmic mtDNA mutation (m.11778G > A). Seventeen metaphase II (MII) oocytes underwent pre-implantation genetic testing (PGT), while five MII oocytes were used for spindle transfer (ST), and one in vitro matured (IVM) metaphase I oocyte underwent early pronuclear transfer (ePNT). Patients 2-3 experienced multiple failed intracytoplasmic sperm injection (ICSI) and ICSI-assisted oocyte activation (AOA) cycles. For these patients, the obtained MII oocytes underwent an additional ICSI-AOA cycle, while the IVM oocytes were subjected to ST. RESULTS For patient 1, PGT-M confirmed mutation loads close to 100%. All ST-reconstructed oocytes fertilized and cleaved, of which one progressed to the blastocyst stage. The reconstructed ePNT-zygote reached the morula stage. These samples showed an average mtDNA carry-over rate of 2.9% ± 0.8%, confirming the feasibility of NT to reduce mtDNA transmission. For patient 2-3 displaying fertilization failure, ST resulted in, respectively, 4/5 and 6/6 fertilized oocytes, providing evidence, for the first time, that NT can enable successful fertilization in this patient population. CONCLUSION Our study showcases the repertoire of disorders for which NT can be beneficial, to overcome either mitochondrial disease transmission or failed fertilization after ICSI-AOA.
Collapse
|