1
|
Wu X, Zhang W, Chen H, Weng J. Multifaceted paternal exposures before conception and their epigenetic impact on offspring. J Assist Reprod Genet 2024:10.1007/s10815-024-03243-1. [PMID: 39230664 DOI: 10.1007/s10815-024-03243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
As scientific research progresses, there is an increasing understanding of the importance of paternal epigenetics in influencing the health and developmental path of offspring. Prior to conception, the environmental exposures and lifestyle choices of fathers can significantly influence the epigenetic state of sperm, including DNA methylation and histone changes, among other factors. These alterations in epigenetic patterns have the potential for transgenerational transmission potential and may exert profound effects on the biological characteristics of descendants. Paternal epigenetic changes not only affect the regulation of gene expression patterns in offspring but also increase the risk to certain diseases. It is crucial to comprehend the conditions that fathers are exposed to before conception and the potential outcomes of these conditions. This understanding is essential for assessing personal reproductive decisions and anticipating health risks for future generations. This review article systematically summarizes and analyzes current research findings regarding how paternal pre-pregnancy exposures influence offspring as well as elucidates underlying mechanisms, aiming to provide a comprehensive perspective for an enhanced understanding of the impact that paternal factors have on offspring health.
Collapse
Affiliation(s)
- Xiaojing Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Weiping Zhang
- The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Huijun Chen
- The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jianfei Weng
- The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| |
Collapse
|
2
|
Osadchuk L, Kleshchev M, Osadchuk A. Effects of cigarette smoking on semen quality, reproductive hormone levels, metabolic profile, zinc and sperm DNA fragmentation in men: results from a population-based study. Front Endocrinol (Lausanne) 2023; 14:1255304. [PMID: 37920251 PMCID: PMC10619690 DOI: 10.3389/fendo.2023.1255304] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/16/2023] [Indexed: 11/04/2023] Open
Abstract
Background Cigarette smoking seems to have a negative impact on men's reproductive health, but our knowledge of its effects on the reproductive function of Russian men is still very limited. The purpose of this study was to evaluate the effect of cigarette smoking on semen quality, including sperm DNA fragmentation, hormonal, zinc and metabolic status in young men from the general multi-ethnic Russian population (n=1,222, median age 23 years) and to find out the ethno-specific effects of smoking by comparing male groups of different ethnicity. Methods Each participant filled out a standardized questionnaire, provided one blood and semen sample. Semen parameters, serum reproductive hormones, lipids, glucose, uric acid and seminal zinc were analyzed. Participants were classified as smokers (n=450) and non-smokers (n=772), and smokers were stratified into moderate (≤10 cigarettes/day) and heavy (>10 cigarettes/day) smokers. Results In the entire study population, heavy smokers were characterized by a decrease in semen volume, total sperm count, sperm concentration and motility, and an increase in sperm DNA fragmentation and teratozoospermia compared with non-smokers (p<0.05). There was also a reduction in the serum and seminal zinc level as well as an impairment in metabolic health in smokers compared with non-smokers (p<0.05). No significant differences between smokers and non-smokers were found for serum levels of LH, FSH, inhibin B, testosterone and estradiol. In the second part of our study, the most numerous ethnic groups of Slavs (n=654), Buryats (n=191), and Yakuts (n=125) were selected from the entire study population. Among three ethnic groups, the smoking intensity was higher in Slavs than in Buryats or Yakuts suggesting a greater tobacco addiction in Slavs than in Asians. A decrease in semen parameters and seminal zinc levels, and an increase in sperm DNA fragmentation and teratozoospermia was observed only in smoking Slavs (p<0.05); moderate decrease in testosterone and increase in triglyceride levels were revealed in smoking Yakuts (p<0.05), but no significant changes were detected in smoking Buryats. Conclusion We concluded that cigarette smoking has an ethno-specific effect on male reproductive function, probably due to the different activity of the seminal antioxidant system, which is yet to be elucidated.
Collapse
Affiliation(s)
- Ludmila Osadchuk
- Department of Human Molecular Genetics, Federal Research Center 'Institute of Cytology and Genetics', the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Maxim Kleshchev
- Department of Human Molecular Genetics, Federal Research Center 'Institute of Cytology and Genetics', the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander Osadchuk
- Department of Human Molecular Genetics, Federal Research Center 'Institute of Cytology and Genetics', the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
3
|
Kitaba NT, Knudsen GTM, Johannessen A, Rezwan FI, Malinovschi A, Oudin A, Benediktsdottir B, Martino D, González FJC, Gómez LP, Holm M, Jõgi NO, Dharmage SC, Skulstad SM, Watkins SH, Suderman M, Gómez-Real F, Schlünssen V, Svanes C, Holloway JW. Fathers' preconception smoking and offspring DNA methylation. Clin Epigenetics 2023; 15:131. [PMID: 37649101 PMCID: PMC10469907 DOI: 10.1186/s13148-023-01540-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Experimental studies suggest that exposures may impact respiratory health across generations via epigenetic changes transmitted specifically through male germ cells. Studies in humans are, however, limited. We aim to identify epigenetic marks in offspring associated with father's preconception smoking. METHODS We conducted epigenome-wide association studies (EWAS) in the RHINESSA cohort (7-50 years) on father's any preconception smoking (n = 875 offspring) and father's pubertal onset smoking < 15 years (n = 304), using Infinium MethylationEPIC Beadchip arrays, adjusting for offspring age, own smoking and maternal smoking. EWAS of maternal and offspring personal smoking were performed for comparison. Father's smoking-associated dmCpGs were checked in subpopulations of offspring who reported no personal smoking and no maternal smoking exposure. RESULTS Father's smoking commencing preconception was associated with methylation of blood DNA in offspring at two cytosine-phosphate-guanine sites (CpGs) (false discovery rate (FDR) < 0.05) in PRR5 and CENPP. Father's pubertal onset smoking was associated with 19 CpGs (FDR < 0.05) mapped to 14 genes (TLR9, DNTT, FAM53B, NCAPG2, PSTPIP2, MBIP, C2orf39, NTRK2, DNAJC14, CDO1, PRAP1, TPCN1, IRS1 and CSF1R). These differentially methylated sites were hypermethylated and associated with promoter regions capable of gene silencing. Some of these sites were associated with offspring outcomes in this cohort including ever-asthma (NTRK2), ever-wheezing (DNAJC14, TPCN1), weight (FAM53B, NTRK2) and BMI (FAM53B, NTRK2) (p < 0.05). Pathway analysis showed enrichment for gene ontology pathways including regulation of gene expression, inflammation and innate immune responses. Father's smoking-associated sites did not overlap with dmCpGs identified in EWAS of personal and maternal smoking (FDR < 0.05), and all sites remained significant (p < 0.05) in analyses of offspring with no personal smoking and no maternal smoking exposure. CONCLUSION Father's preconception smoking, particularly in puberty, is associated with offspring DNA methylation, providing evidence that epigenetic mechanisms may underlie epidemiological observations that pubertal paternal smoking increases risk of offspring asthma, low lung function and obesity.
Collapse
Affiliation(s)
- Negusse Tadesse Kitaba
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Gerd Toril Mørkve Knudsen
- Department of Clinical Sciences, University of Bergen, Bergen, Norway
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ane Johannessen
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Faisal I Rezwan
- Department of Computer Science, Aberystwyth University, Aberystwyth, UK
| | - Andrei Malinovschi
- Department of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Anna Oudin
- Section of Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Bryndis Benediktsdottir
- Department of Allergy, Respiratory Medicine and Sleep, Landspitali University Hospital, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - David Martino
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | | | | | - Mathias Holm
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Nils Oskar Jõgi
- Department of Clinical Sciences, University of Bergen, Bergen, Norway
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Shyamali C Dharmage
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Svein Magne Skulstad
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Sarah H Watkins
- University of Bristol, MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Matthew Suderman
- University of Bristol, MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Francisco Gómez-Real
- Department of Clinical Sciences, University of Bergen, Bergen, Norway
- Department of Gynaecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Vivi Schlünssen
- Department of Public Health, Work, Environment and Health, Danish Ramazzini Centre, Aarhus University Denmark, Aarhus, Denmark
- National Research Center for the Working Environment, Copenhagen, Denmark
| | - Cecilie Svanes
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
- NIHR Southampton Biomedical Research Center, University Hospitals Southampton, Southampton, UK.
| |
Collapse
|
4
|
Amor H, Alkhaled Y, Bibi R, Hammadeh ME, Jankowski PM. The Impact of Heavy Smoking on Male Infertility and Its Correlation with the Expression Levels of the PTPRN2 and PGAM5 Genes. Genes (Basel) 2023; 14:1617. [PMID: 37628668 PMCID: PMC10454138 DOI: 10.3390/genes14081617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Smoking has been linked to male infertility by affecting the sperm epigenome and genome. In this study, we aimed to determine possible changes in the transcript levels of PGAM5 (the phosphoglycerate mutase family member 5), PTPRN2 (protein tyrosine phosphatase, N2-type receptor), and TYRO3 (tyrosine protein kinase receptor) in heavy smokers compared to non-smokers, and to investigate their association with the fundamental sperm parameters. In total, 118 sperm samples (63 heavy-smokers (G1) and 55 non-smokers (G2)) were included in this study. A semen analysis was performed according to the WHO guidelines. After a total RNA extraction, RT-PCR was used to quantify the transcript levels of the studied genes. In G1, a significant decrease in the standard semen parameters in comparison to the non-smokers was shown (p < 0.05). Moreover, PGAM5 and PTPRN2 were differentially expressed (p ≤ 0.03 and p ≤ 0.01, respectively) and downregulated in the spermatozoa of G1 compared to G2. In contrast, no difference was observed for TYRO3 (p ≤ 0.3). In G1, the mRNA expression level of the studied genes was correlated negatively with motility, sperm count, normal form, vitality, and sperm membrane integrity (p < 0.05). Therefore, smoking may affect gene expression and male fertility by altering the DNA methylation patterns in the genes associated with fertility and sperm quality, including PGAM5, PTPRN2, and TYRO3.
Collapse
Affiliation(s)
- Houda Amor
- Department of Obstetrics, Gynecology and Reproductive Medicine, Saarland University Clinic, 66424 Homburg, Germany
| | - Yaser Alkhaled
- Department of Obstetrics, Gynecology and Reproductive Medicine, Saarland University Clinic, 66424 Homburg, Germany
| | - Riffat Bibi
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad 44000, Pakistan;
| | - Mohamad Eid Hammadeh
- Department of Obstetrics, Gynecology and Reproductive Medicine, Saarland University Clinic, 66424 Homburg, Germany
| | - Peter Michael Jankowski
- Department of Obstetrics, Gynecology and Reproductive Medicine, Saarland University Clinic, 66424 Homburg, Germany
| |
Collapse
|
5
|
Laqqan MM, Yassin MM. Cigarette heavy smoking alters DNA methylation patterns and gene transcription levels in humans spermatozoa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26835-26849. [PMID: 34855177 DOI: 10.1007/s11356-021-17786-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/23/2021] [Indexed: 05/27/2023]
Abstract
Tobacco smoking is considered the most common reason of death and infertility around the world. This study was designed to assess the impact of tobacco heavy smoking on sperm DNA methylation patterns and to determine whether the transcription level of ALDH3B2, PTGIR, PRICKLE2, and ALS2CR12 genes is different in heavy smokers compared to non-smokers. As a screening study, the 450 K array was used to assess the alteration in DNA methylation patterns between heavy smokers (n = 15) and non-smokers (n = 15). Then, four CpGs that have the highest difference in methylation level (cg16338278, cg08408433, cg05799088, and cg07227024) were selected for validation using deep bisulfite sequencing in an independent cohort of heavy smokers (n = 200) and non-smokers (n = 100). A significant variation was found between heavy smokers and non-smokers in the methylation level at all CpGs within the PRICKLE2 and ALS2CR12 gene amplicon (P < 0.001). Similarly, a significant variation was found in the methylation level at nine out of thirteen CpGs within the ALDH3B2 gene amplicon (P < 0.01). Additionally, eighteen CpGs out of the twenty-six within the PTGIR gene amplicon have a significant difference in the methylation level between heavy smokers and non-smokers (P < 0.01). The study showed a significant difference in sperm global DNA methylation, chromatin non-condensation, and DNA fragmentation (P < 0.001) between heavy smokers and non-smokers. A significant decline was shown in the transcription level of ALDH3B2, PTGIR, PRICKLE2, and ALS2CR12 genes (P < 0.001) in heavy smokers. In conclusion, heavy smoking influences DNA methylation at several CpGs, sperm global DNA methylation, and transcription level of the PRICKLE2, ALS2CR12, ALDH3B2, and PTGIR genes, which affects negatively the semen parameters of heavy smokers.
Collapse
Affiliation(s)
- Mohammed M Laqqan
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Islamic University, Gaza, Palestinian Territories, Palestine.
| | - Maged M Yassin
- Department of Human Physiology, Faculty of Medicine, Islamic University, Gaza, Palestinian Territories, Palestine
| |
Collapse
|
6
|
Boursier A, Dumont A, Boitrelle F, Prasivoravong J, Lefebvre-Khalil V, Robin G, Barbotin AL. Necrozoospermia: The tree that hides the forest. Andrology 2022; 10:642-659. [PMID: 35246969 DOI: 10.1111/andr.13172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Necrozoospermia is a condition found in 0.2 to 0.4 % of male infertility cases. The causes of necrozoospermia are multiple: they can be related to testicular and/or post-testicular damage. Additionally, these causes most often involve the production of reactive oxygen species (ROS) and/or sperm DNA fragmentation (SDF) which can reduce the chances of spontaneous pregnancy or affect the outcome of assisted reproductive technologies. OBJECTIVE To focus on potential etiologies of necrozoospermia, its diagnosis and its therapeutic management especially before the employment of ICSI. METHODS Authors searched PubMed/Medline, Web of Science, Cochrane Library, Google and Institutional websites for medical subheading terms and free text words referred to "necrozoospermia", "sperm vitality", "sperm viability", "sperm DNA fragmentation" and "ICSI". RESULTS We identified twelve main etiologies of necrozoospermia responsible for either a decrease of sperm vitality, a mild a moderate or a severe necrozoospermia. In case of a confirmed decreased vitality, a thorough check-up should be conducted and if available, etiological treatment should be proposed. Therapeutic management could also include repeated ejaculations, drug treatments, the use of ICSI with ejaculated or surgically extracted spermatozoa in case of a non-treatable necrozoospermia. DISCUSSION AND CONCLUSION The potential causes of necrozoospermia should be investigated because many of them could be corrected, thus avoiding the use of ICSI. Moreover, if ICSI procedure remains necessary, the therapeutic management of necrozoospermia could also improve the chances of success by reducing oxidative stress and/or sperm DNA fragmentation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Angele Boursier
- Institut de Biologie de La Reproduction-Spermiologie-CECOS, Hôpital Jeanne de Flandre, CHU Lille, Lille, F-59000, France
| | - A Dumont
- Service de Gynécologie Endocrinienne et Médecine de La Reproduction, Assistance Médicale à La Procréation et Préservation de La Fertilité, Hôpital Jeanne de Flandre, Avenue Eugène Avinée, CHU Lille, Lille, F-59000, France
| | - F Boitrelle
- Service de Biologie de la Reproduction et de Cytogénétique, Centre Hospitalier Poissy-Saint-Germain-en-Laye, Poissy, 78303, France
| | | | - V Lefebvre-Khalil
- Institut de Biologie de La Reproduction-Spermiologie-CECOS, Hôpital Jeanne de Flandre, CHU Lille, Lille, F-59000, France
| | - Geoffroy Robin
- Service de Gynécologie Endocrinienne et Médecine de La Reproduction, Assistance Médicale à La Procréation et Préservation de La Fertilité, Hôpital Jeanne de Flandre, Avenue Eugène Avinée, CHU Lille, Lille, F-59000, France.,Service d'Andrologie, Hôpital Huriez, CHU Lille, Lille, F-59000, France.,EA 4308 Gamètogenèse Et Qualité du Gamète, Université de Lille Et CHU de Lille, Lille, F-59000, France
| | - Anne-Laure Barbotin
- Institut de Biologie de La Reproduction-Spermiologie-CECOS, Hôpital Jeanne de Flandre, CHU Lille, Lille, F-59000, France.,EA 4308 Gamètogenèse Et Qualité du Gamète, Université de Lille Et CHU de Lille, Lille, F-59000, France
| |
Collapse
|
7
|
Liu Y, Chen S, Pang D, Zhou J, Xu X, Yang S, Huang Z, Yu B. Effects of paternal exposure to cigarette smoke on sperm DNA methylation and long-term metabolic syndrome in offspring. Epigenetics Chromatin 2022; 15:3. [PMID: 35063005 PMCID: PMC8780762 DOI: 10.1186/s13072-022-00437-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although paternal exposure to cigarette smoke may contribute to obesity and metabolic syndrome in offspring, the underlying mechanisms remain uncertain. METHODS In the present study, we analyzed the sperm DNA-methylation profiles in tobacco-smoking normozoospermic (SN) men, non-tobacco-smoking normozoospermic (N) men, and non-smoking oligoasthenozoospermic (OA) men. Using a mouse model, we also analyzed global methylation and differentially methylated regions (DMRs) of the DLK1 gene in paternal spermatozoa and the livers of progeny. In addition, we quantified DLK1 expression, executed an intra-peritoneal glucose tolerance test (IPGTT), measured serum metabolites, and analyzed liver lipid accumulation in the F1 offspring. RESULTS Global sperm DNA-methylation levels were significantly elevated (p < 0.05) in the SN group, and the methylation patterns were different among N, SN, and OA groups. Importantly, the methylation level of the DLK1 locus (cg11193865) was significantly elevated in the SN group compared to both N and OA groups (p < 0.001). In the mouse model, the group exposed to cigarette smoke extract (CSE) exhibited a significantly higher global methylation DNA level in spermatozoa (p < 0.001) and on the DMR sites of Dlk1 in 10-week-old male offspring (p < 0.05), with a significant increase in Dlk1 expression in their livers (p < 0.001). In addition, IPGTT and LDL levels were significantly altered (p < 0.001), with elevated liver fat accumulation (p < 0.05) in F1 offspring. CONCLUSION Paternal exposure to cigarette smoke led to increased global methylation of sperm DNA and alterations to the DMR of the DLK1 gene in the F1 generation, which may be inherited parentally and may perturb long-term metabolic function.
Collapse
Affiliation(s)
- Yunyun Liu
- Department of Obstetrics and Gynecology, BioResource Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong, China
| | - Shengzhu Chen
- Department of Obstetrics and Gynecology, BioResource Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong, China
| | - Dejian Pang
- Department of Obstetrics and Gynecology, BioResource Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong, China
| | - Jiayi Zhou
- Department of Obstetrics and Gynecology, BioResource Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong, China
| | - Xiuting Xu
- Department of Obstetrics and Gynecology, BioResource Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong, China
| | - Si Yang
- Department of Obstetrics and Gynecology, BioResource Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong, China
| | - Zhaofeng Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bolan Yu
- Department of Obstetrics and Gynecology, BioResource Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong, China.
| |
Collapse
|
8
|
Laqqan MM, Yassin MM. Influence of tobacco cigarette heavy smoking on DNA methylation patterns and transcription levels of MAPK8IP3, GAA, ANXA2, PRRC2A, and PDE11A genes in human spermatozoa. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2021. [DOI: 10.1186/s43043-021-00084-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Tobacco smoking is considered as one of the lifestyles factors that influence the sperm DNA methylation and global sperm DNA methylation and that may affect the sperm phenotype. This study was performed to investigate whether tobacco cigarette heavy smoking influences sperm DNA methylation patterns and semen parameters and to determine whether there is an alteration in the transcription level of MAPK8IP3, GAA, ANXA2, PRRC2A, and PDE11A genes in heavy smokers compared to non-smokers. Thirty samples were subjected to 450K arrays as a screening study to assess the variation in sperm DNA methylation levels between heavy smokers and non-smokers. Five CpG sites have the highest difference in methylation levels (cg07869343, cg05813498, cg09785377, cg06833981, and cg02745784), which are located in the MAPK8IP3, GAA, ANXA2, PRRC2A, and PDE11A genes, respectively, and were selected for further analysis using deep bisulfite sequencing in 280 independent samples (120 proven non-smokers and 160 heavy smokers) with a mean age of 33.8 ± 8.4 years. The global sperm DNA methylation, sperm DNA fragmentation, and chromatin non-condensation were evaluated also.
Results
A significant increase was found in the methylation level at seven, three, and seventeen CpGs within the GAA, ANXA2, and MAPK8IP3 genes amplicon, respectively (P< 0.01) in heavy smokers compared to non-smokers. Additionally, a significant increase was found in the methylation levels at all CpGs within PRRC2A and PDE11A gene amplicon (P< 0.01). A significant increase was found in the level of sperm chromatin non-condensation, DNA fragmentation, and global DNA methylation (P < 0.001) in heavy smokers compared to non-smokers.
Conclusion
These results indicate that tobacco cigarette smoking can alter the DNA methylation level at several CpGs, the status of global DNA methylation, and transcription level of the following genes “MAPK8IP3, GAA, ANXA2, PRRC2A, and PDE11A” in human spermatozoa. These findings may affect negatively semen parameters and men’s fertility.
Collapse
|
9
|
Rotondo JC, Lanzillotti C, Mazziotta C, Tognon M, Martini F. Epigenetics of Male Infertility: The Role of DNA Methylation. Front Cell Dev Biol 2021; 9:689624. [PMID: 34368137 PMCID: PMC8339558 DOI: 10.3389/fcell.2021.689624] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, a number of studies focused on the role of epigenetics, including DNA methylation, in spermatogenesis and male infertility. We aimed to provide an overview of the knowledge concerning the gene and genome methylation and its regulation during spermatogenesis, specifically in the context of male infertility etiopathogenesis. Overall, the findings support the hypothesis that sperm DNA methylation is associated with sperm alterations and infertility. Several genes have been found to be differentially methylated in relation to impaired spermatogenesis and/or reproductive dysfunction. Particularly, DNA methylation defects of MEST and H19 within imprinted genes and MTHFR within non-imprinted genes have been repeatedly linked with male infertility. A deep knowledge of sperm DNA methylation status in association with reduced reproductive potential could improve the development of novel diagnostic tools for this disease. Further studies are needed to better elucidate the mechanisms affecting methylation in sperm and their impact on male infertility.
Collapse
Affiliation(s)
- John Charles Rotondo
- Laboratories of Cell Biology and Molecular Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Carmen Lanzillotti
- Laboratories of Cell Biology and Molecular Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Chiara Mazziotta
- Laboratories of Cell Biology and Molecular Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Laboratories of Cell Biology and Molecular Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Laboratories of Cell Biology and Molecular Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
10
|
Laqqan MM, Yassin MM. Potential effect of tobacco cigarettes smoking on global DNA methylation status and protamines transcripts in human spermatozoa. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2021. [DOI: 10.1186/s43043-021-00066-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
Background
Epigenetics refers to an alteration in gene expression without alteration in the sequence of DNA and this process may be affected by environmental factors and lifestyle like cigarette smoking. This study was designed to evaluate the potential effect of cigarette smoking on the global DNA methylation status and the transcription level of protamine 1 and protamine 2 in human spermatozoa. A total of 188 semen samples were collected from men with a mean age of 34.9 ± 5.8 years old (98 heavy smokers and 90 non-smokers). The DNA and RNA were isolated from purified spermatozoa, then the status of global DNA methylation and the transcription level of protamine 1 and protamine 2 were evaluated using ELISA and qPCR, respectively. The chromatin non-condensation and DNA fragmentation in human spermatozoa were evaluated using chromomycin A3 staining and TUNEL assay, respectively.
Results
A significant increase has been found in the status of global DNA methylation in spermatozoa of heavy smokers compared to non-smokers (7.69 ± 0.69 ng/μl vs. 4.90 ± 0.40 ng/μl, P < 0.001). Additionally, a significant reduction has been found in transcription level of protamine 1 (25.49 ± 0.31 vs. 23.94 ± 0.40, P < 0.001) and protamine 2 (28.27 ± 0.39 vs. 23.45 ± 0.30, P < 0.001) in heavy smokers. A downregulation has been found in the transcription level of protamine 1 and protamine 2 with a fold change of 0.497 and 0.047, respectively. A significant increase has been shown in the level of DNA fragmentation and chromatin non-condensation in heavy smokers compared to non-smokers (P < 0.001). On the other hand, a significant positive correlation has been found between sperm chromatin non-condensation, sperm DNA fragmentation, transcription level of protamine 1, transcription level of protamine 2, and global DNA methylation status (r = 0.304, P < 0.001; r = 0.399, P < 0.001; r = 0.216, P = 0.003; r = 0.494, P < 0.001, respectively).
Conclusion
Tobacco cigarette smoking has a potential influence on the global DNA methylation and the transcription level of protamine genes in human spermatozoa, and consequently, affect negatively on the semen parameters.
Collapse
|
11
|
Åsenius F, Danson AF, Marzi SJ. DNA methylation in human sperm: a systematic review. Hum Reprod Update 2021; 26:841-873. [PMID: 32790874 DOI: 10.1093/humupd/dmaa025] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Studies in non-human mammals suggest that environmental factors can influence spermatozoal DNA methylation, and some research suggests that spermatozoal DNA methylation is also implicated in conditions such as subfertility and imprinting disorders in the offspring. Together with an increased availability of cost-effective methods of interrogating DNA methylation, this premise has led to an increasing number of studies investigating the DNA methylation landscape of human spermatozoa. However, how the human spermatozoal DNA methylome is influenced by environmental factors is still unclear, as is the role of human spermatozoal DNA methylation in subfertility and in influencing offspring health. OBJECTIVE AND RATIONALE The aim of this systematic review was to critically appraise the quality of the current body of literature on DNA methylation in human spermatozoa, summarize current knowledge and generate recommendations for future research. SEARCH METHODS A comprehensive literature search of the PubMed, Web of Science and Cochrane Library databases was conducted using the search terms 'semen' OR 'sperm' AND 'DNA methylation'. Publications from 1 January 2003 to 2 March 2020 that studied human sperm and were written in English were included. Studies that used sperm DNA methylation to develop methodologies or forensically identify semen were excluded, as were reviews, commentaries, meta-analyses or editorial texts. The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) criteria were used to objectively evaluate quality of evidence in each included publication. OUTCOMES The search identified 446 records, of which 135 were included in the systematic review. These 135 studies were divided into three groups according to area of research; 56 studies investigated the influence of spermatozoal DNA methylation on male fertility and abnormal semen parameters, 20 studies investigated spermatozoal DNA methylation in pregnancy outcomes including offspring health and 59 studies assessed the influence of environmental factors on spermatozoal DNA methylation. Findings from studies that scored as 'high' and 'moderate' quality of evidence according to GRADE criteria were summarized. We found that male subfertility and abnormal semen parameters, in particular oligozoospermia, appear to be associated with abnormal spermatozoal DNA methylation of imprinted regions. However, no specific DNA methylation signature of either subfertility or abnormal semen parameters has been convincingly replicated in genome-scale, unbiased analyses. Furthermore, although findings require independent replication, current evidence suggests that the spermatozoal DNA methylome is influenced by cigarette smoking, advanced age and environmental pollutants. Importantly however, from a clinical point of view, there is no convincing evidence that changes in spermatozoal DNA methylation influence pregnancy outcomes or offspring health. WIDER IMPLICATIONS Although it appears that the human sperm DNA methylome can be influenced by certain environmental and physiological traits, no findings have been robustly replicated between studies. We have generated a set of recommendations that would enhance the reliability and robustness of findings of future analyses of the human sperm methylome. Such studies will likely require multicentre collaborations to reach appropriate sample sizes, and should incorporate phenotype data in more complex statistical models.
Collapse
Affiliation(s)
| | - Amy F Danson
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sarah J Marzi
- UK Dementia Research Institute, Imperial College London, London W12 0NN, UK.,Department of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
12
|
Global Methylation and Protamine Deficiency in Ram Spermatozoa Correlate with Sperm Production and Quality but Are Not Influenced by Melatonin or Season. Animals (Basel) 2020; 10:ani10122302. [PMID: 33291841 PMCID: PMC7762013 DOI: 10.3390/ani10122302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Though environmental factors can alter the epigenome of mammalian spermatozoa, it is currently unclear whether these epigenetic changes are linked to sperm production, quality and fertility. This study aimed to identify whether the hormone melatonin, responsible for upregulating ram reproductive function, is able to alter broad epigenetic markers in spermatozoa, namely sperm global methylation and protamine deficiency. It was also investigated whether these parameters corresponded to ram endocrinology, semen production and quality. Though no effects of season or melatonin were found, both sperm global methylation and protamine deficiency correlated with several semen production and quality parameters. These moderate associations with sperm production and quality support that sperm protamine deficiency and global methylation are broadly indicative of testicular function. Abstract This study assessed whether the seasonal effects of melatonin that upregulate ram reproductive function alter sperm global methylation or protamine deficiency and whether these parameters corresponded to ram endocrinology, semen production and quality. Ejaculates were assessed from rams that received melatonin implants (n = 9) or no implants (n = 9) during the non-breeding season. Ejaculates (n = 2/ram/week) were collected prior to implantation (week 0), 1, 6 and 12 weeks post implantation and during the following breeding season (week 30). Flow cytometry was used to assess the sperm global methylation and protamine deficiency in each ejaculate, which had known values for sperm concentration, motility, morphology, DNA fragmentation, seminal plasma levels of melatonin, anti-Mullerian hormone and inhibin A. Serum levels of testosterone and melatonin were also evaluated. Though there was no effect of melatonin or season, sperm protamine deficiency was negatively correlated with sperm production and seminal plasma levels of anti-Mullerian hormone and positively correlated with sperm DNA fragmentation and morphology. Global methylation of spermatozoa was positively correlated with sperm DNA fragmentation, morphology and serum testosterone and negatively correlated with sperm motility. These moderate associations with sperm production and quality suggest that sperm protamine deficiency and global methylation are indicative of ram testicular function.
Collapse
|
13
|
Stimpfel M, Vrtacnik-Bokal E. Minor DNA methylation changes are observed in spermatozoa prepared using different protocols. Andrology 2020; 8:1312-1323. [PMID: 32470185 DOI: 10.1111/andr.12832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND DNA methylation patterns can show transgenerational inheritance and are influenced by lifestyle and environmental factors. It is suggested that these patterns can be changed by assisted reproductive technology. OBJECTIVES To evaluate the impact of two different sperm preparation methods, conventional density gradient centrifugation (DGC) vs. density gradient centrifugation followed by magnetic-activated cell sorting (MACS) of non-apoptotic spermatozoa, on sperm DNA methylation profile. MATERIALS AND METHODS We analyzed semen of patients included in our IVF treatment program. Half of the semen from each included patient was prepared for ICSI using the DGC method and the other half with DGC followed by MACS. The remaining samples were processed for DNA methylation analysis with reduced representation bisulfite sequencing (RRBS). In addition to the DNA methylation profile, we assessed the morphology and DNA fragmentation of spermatozoa. RESULTS RRBS analysis revealed that the average genome-wide methylation level was similar between both groups (DGC vs. MACS group) and ranged from 0.53 to 0.56. Furthermore, RRBS analysis identified 99 differentially methylated regions (DMRs) and 800 differentially methylated positions (DMPs). In the DGC group, 43 DMRs and 392 DMPs were hypermethylated whereas 56 DMRs and 408 DMPs were hypomethylated compared with those in the MACS group. When DMRs and DMPs were annotated to genes, 3 genes associated with imprinting were found: IGF2, PRDM16, and CLF4/BRUNOL4. The percentage of morphologically normal spermatozoa (MACS vs. DGC; 14.0 ± 10.8 vs. 13.2 ± 10.0; P = .335) and of spermatozoa with fragmented DNA of patients with RRBS analysis (22.9 ± 21.1% vs. 34.4 ± 21.2; P = .529) were also similar between groups. DISCUSSION AND CONCLUSION Although the average genome-wide level of sperm DNA methylation was similar in both sample groups, a distinctive number of methylation changes were observed in DMR and DMP levels. A larger number of samples should be analyzed and additional sperm preparation methods should be tested to confirm our findings.
Collapse
Affiliation(s)
- Martin Stimpfel
- Department of Human Reproduction, Division of Gynaecology, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Eda Vrtacnik-Bokal
- Department of Human Reproduction, Division of Gynaecology, University Medical Center Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
14
|
Zhang W, Li M, Sun F, Xu X, Zhang Z, Liu J, Sun X, Zhang A, Shen Y, Xu J, Miao M, Wu B, Yuan Y, Huang X, Shi H, Du J. Association of Sperm Methylation at LINE-1, Four Candidate Genes, and Nicotine/Alcohol Exposure With the Risk of Infertility. Front Genet 2019; 10:1001. [PMID: 31681430 PMCID: PMC6813923 DOI: 10.3389/fgene.2019.01001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022] Open
Abstract
In this study, we examined whether smoking and drinking affect sperm quality and the DNA methylation of the repetitive element LINE-1, MEST, P16, H19, and GNAS in sperm. Semen samples were obtained from 143 male residents in a minority-inhabited district of Guizhou province in southwest China. Quantitative DNA methylation analysis of the samples was performed using MassARRAY EpiTYPER assays. Sperm motility was significantly lower in both the nicotine-exposed (P = 0.0064) and the nicotine- and alcohol-exposed (P = 0.0008) groups. Follicle-stimulating hormone (FSH) levels were higher in the nicotine-exposed group (P = 0.0026). The repetitive element LINE-1 was hypermethylated in the three exposed groups, while P16 was hypomethylated in the alcohol and both the alcohol and nicotine exposure groups. Our results also show that alcohol and nicotine exposure altered sperm cell quality, which may be related to the methylation levels of MEST and GNAS. In addition, MEST, GNAS, and the repetitive element LINE1 methylation was significantly associated with the concentration of sperm as well as FSH and luteinizing hormone levels.
Collapse
Affiliation(s)
- Wenjing Zhang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China.,Reproductive Medical Center, Changhai Hospital of Shanghai, Shanghai, China
| | - Min Li
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Feng Sun
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xuting Xu
- Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Zhejiang, China
| | - Zhaofeng Zhang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Junwei Liu
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Xiaowei Sun
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Aiping Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yupei Shen
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Jianhua Xu
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Maohua Miao
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Bin Wu
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Yao Yuan
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Xianliang Huang
- Shanghai Institute of Planned Parenthood Research Hospital, Shanghai, China
| | - Huijuan Shi
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Jing Du
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| |
Collapse
|
15
|
Kaur G, Begum R, Thota S, Batra S. A systematic review of smoking-related epigenetic alterations. Arch Toxicol 2019; 93:2715-2740. [PMID: 31555878 DOI: 10.1007/s00204-019-02562-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023]
Abstract
The aim of this study is to provide a systematic review of the known epigenetic alterations caused by cigarette smoke; establish an evidence-based perspective of their clinical value for screening, diagnosis, and treatment of smoke-related disorders; and discuss the challenges and ethical concerns associated with epigenetic studies. A well-defined, reproducible search strategy was employed to identify relevant literature (clinical, cellular, and animal-based) between 2000 and 2019 based on AMSTAR guidelines. A total of 80 studies were identified that reported alterations in DNA methylation, histone modifications, and miRNA expression following exposure to cigarette smoke. Changes in DNA methylation were most extensively documented for genes including AHRR, F2RL3, DAPK, and p16 after exposure to cigarette smoke. Likewise, miR16, miR21, miR146, and miR222 were identified to be differentially expressed in smokers and exhibit potential as biomarkers for determining susceptibility to COPD. We also identified 22 studies highlighting the transgenerational effects of maternal and paternal smoking on offspring. This systematic review lists the epigenetic events/alterations known to occur in response to cigarette smoke exposure and identifies the major genes and miRNAs that are potential targets for translational research in associated pathologies. Importantly, the limitations and ethical concerns related to epigenetic studies are also highlighted, as are the effects on the ability to address specific questions associated with exposure to tobacco/cigarette smoke. In the future, improved interpretation of epigenetic signatures will lead to their increased use as biomarkers and/or in drug development.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Laboratory of Pulmonary Immuno-toxicology, Department of Environmental Toxicology, 129 Health Research Centre, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Rizwana Begum
- Laboratory of Pulmonary Immuno-toxicology, Department of Environmental Toxicology, 129 Health Research Centre, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Shilpa Thota
- Laboratory of Pulmonary Immuno-toxicology, Department of Environmental Toxicology, 129 Health Research Centre, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Sanjay Batra
- Laboratory of Pulmonary Immuno-toxicology, Department of Environmental Toxicology, 129 Health Research Centre, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
16
|
Neri A, Banci M, Pietropolli A, Gloria-Bottini F, Magrini A. Smoking, ACP<sub>1</sub> and Infertility in Subjects with Varicocele. Health (London) 2019. [DOI: 10.4236/health.2019.1110102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Abstract
Epigenetic information refers to heritable changes in gene expression that occur without modifications at the DNA sequence level. These changes are orchestrated by different epigenetic mechanisms such as DNA methylation, posttranslational modifications of histones, and the presence of noncoding RNAs. Epigenetic information regulates chromatin structure to confer cell-specific gene expression.The sperm epigenome is the result of three periods of global resetting during men's life. Germ cell epigenome reprogramming is designed to allow cell totipotency and to prevent the transmission of epimutations via spermatozoa. At the end of these reprogramming events, the sperm epigenome has a very specific epigenetic pattern that is a footprint of past reprogramming events and has an influence on embryo development.Several data demonstrate that not all regions of the epigenome are erased during the reprogramming periods, suggesting the transmission of epigenetic information from fathers to offspring via spermatozoa. Moreover, it is becoming increasingly clear that the sperm epigenome is sensitive to environmental factors during the process of gamete differentiation, suggesting the plasticity of the sperm epigenetic signature according to the circumstances of the individual's life.In this chapter, we provided strong evidences about the association between variations of the sperm epigenome and the exposure to environmental factors. Moreover, we will present data about how epigenetic mechanisms are candidates for transferring paternal environmental information to offspring.
Collapse
|