1
|
Sutovsky P, Hamilton LE, Zigo M, Ortiz D’Avila Assumpção ME, Jones A, Tirpak F, Agca Y, Kerns K, Sutovsky M. Biomarker-based human and animal sperm phenotyping: the good, the bad and the ugly†. Biol Reprod 2024; 110:1135-1156. [PMID: 38640912 PMCID: PMC11180624 DOI: 10.1093/biolre/ioae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024] Open
Abstract
Conventional, brightfield-microscopic semen analysis provides important baseline information about sperm quality of an individual; however, it falls short of identifying subtle subcellular and molecular defects in cohorts of "bad," defective human and animal spermatozoa with seemingly normal phenotypes. To bridge this gap, it is desirable to increase the precision of andrological evaluation in humans and livestock animals by pursuing advanced biomarker-based imaging methods. This review, spiced up with occasional classic movie references but seriously scholastic at the same time, focuses mainly on the biomarkers of altered male germ cell proteostasis resulting in post-testicular carryovers of proteins associated with ubiquitin-proteasome system. Also addressed are sperm redox homeostasis, epididymal sperm maturation, sperm-seminal plasma interactions, and sperm surface glycosylation. Zinc ion homeostasis-associated biomarkers and sperm-borne components, including the elements of neurodegenerative pathways such as Huntington and Alzheimer disease, are discussed. Such spectrum of biomarkers, imaged by highly specific vital fluorescent molecular probes, lectins, and antibodies, reveals both obvious and subtle defects of sperm chromatin, deoxyribonucleic acid, and accessory structures of the sperm head and tail. Introduction of next-generation image-based flow cytometry into research and clinical andrology will soon enable the incorporation of machine and deep learning algorithms with the end point of developing simple, label-free methods for clinical diagnostics and high-throughput phenotyping of spermatozoa in humans and economically important livestock animals.
Collapse
Affiliation(s)
- Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia MO, USA
| | - Lauren E Hamilton
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Mayra E Ortiz D’Avila Assumpção
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Alexis Jones
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Filip Tirpak
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Yuksel Agca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Karl Kerns
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Miriam Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| |
Collapse
|
2
|
Castillo J, de la Iglesia A, Leiva M, Jodar M, Oliva R. Proteomics of human spermatozoa. Hum Reprod 2023; 38:2312-2320. [PMID: 37632247 DOI: 10.1093/humrep/dead170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/12/2023] [Indexed: 08/27/2023] Open
Abstract
Proteomic methodologies offer a robust approach to identify and quantify thousands of proteins from semen components in both fertile donors and infertile patients. These strategies provide an unprecedented discovery potential, which many research teams are currently exploiting. However, it is essential to follow a suitable experimental design to generate robust data, including proper purification of samples, appropriate technical procedures to increase identification throughput, and data analysis following quality criteria. More than 6000 proteins have been described so far through proteomic analyses in the mature sperm cell, increasing our knowledge on processes involved in sperm function, intercommunication between spermatozoa and seminal fluid, and the transcriptional origin of the proteins. These data have been complemented with comparative studies to ascertain the potential role of the identified proteins on sperm maturation and functionality, and its impact on infertility. By comparing sperm protein profiles, many proteins involved in the acquisition of fertilizing ability have been identified. Furthermore, altered abundance of specific protein groups has been observed in a wide range of infertile phenotypes, including asthenozoospermia, oligozoospermia, and normozoospermia with unsuccessful assisted reproductive techniques outcomes, leading to the identification of potential clinically useful protein biomarkers. Finally, proteomics has been used to evaluate alterations derived from semen sample processing, which might have an impact on fertility treatments. However, the intrinsic heterogeneity and inter-individual variability of the semen samples have resulted in a relatively low overlap among proteomic reports, highlighting the relevance of combining strategies for data validation and applying strict criteria for proteomic data analysis to obtain reliable results. This mini-review provides an overview of the most critical steps to conduct robust sperm proteomic studies, the most relevant results obtained so far, and potential next steps to increase the impact of sperm proteomic data.
Collapse
Affiliation(s)
- Judit Castillo
- Molecular Biology of Reproduction and Development Research Group, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona (UB), Barcelona, Spain
| | - Alberto de la Iglesia
- Molecular Biology of Reproduction and Development Research Group, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona (UB), Barcelona, Spain
| | - Marina Leiva
- Molecular Biology of Reproduction and Development Research Group, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona (UB), Barcelona, Spain
| | - Meritxell Jodar
- Molecular Biology of Reproduction and Development Research Group, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona (UB), Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Biomedical Diagnostic Center (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Rafael Oliva
- Molecular Biology of Reproduction and Development Research Group, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona (UB), Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Biomedical Diagnostic Center (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Neila-Montero M, Alvarez M, Riesco MF, Montes-Garrido R, Palacin-Martinez C, Silva-Rodríguez A, Martín-Cano FE, Peña FJ, de Paz P, Anel L, Anel-Lopez L. Ovine fertility by artificial insemination in the breeding season could be affected by intraseasonal variations in ram sperm proteomic profile. Theriogenology 2023; 208:28-42. [PMID: 37290145 DOI: 10.1016/j.theriogenology.2023.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/24/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
It is important to note that seasonality could affect ram reproductive parameters, and therefore, fertility results after artificial insemination. In this work, 1) we assessed fertility rates after cervical artificial insemination of 11,805 ewes at the beginning (June 21st to July 20th) and at the end (November 20th to December 21st) of the reproductive season in the Assaf breed for the last four years, and 2) we aimed to identify male factors influencing the different reproductive success obtained depending on the time at the mating season in which ovine artificial insemination was performed. For this purpose, we evaluated certain ram reproductive and ultrasonographical parameters as well as we performed a multiparametric and proteomic sperm analysis of 6-19 rams at two very distant points in the mating season (July as Early Breeding Season -EBS- and November as Late Breeding Season -LBS-). Rutinary assessments carried out in the ovine reproduction centers (testicular volume, libido, sperm production and mass motility) showed non-significant differences (P ≥ 0.05) between both studied times, as well as the ram ultrasonographic evaluation (Resistive and Pulsatility Index as Doppler parameters; and pixels mean gray level, and hypoechoic areas percentage and density as echotexture parameters). However, at level of sperm functionality, although sperm quality appeared non-significantly lower (P ≥ 0.05) in the EBS, we identified a significantly different (P < 0.05) sperm proteomic profile between the seasonality points. The following proteins were identified with the lowest abundance in the EBS with a fold change > 4, a P = 2.40e-07, and a q = 2.23e-06: Fibrous Sheath-Interacting Protein 2, Disintegrin and Metalloproteinase Domain-Containing Protein 20-like, Phosphoinositide-Specific Phospholipase C, Tektin 5, Armadillo Repeat-Containing Protein 12 Isoform X3, Solute Carrier Family 9B1, Radial Spoke Head Protein 3 Homolog, Pro-Interleukin-16, NADH Dehydrogenase [Ubiquinone] 1 Alpha Subcomplex Subunit 8, Testis, Prostate and Placenta-Expressed Protein, and Acyl Carrier Protein Mitochondrial. In conclusion, while our basic analyses on male and sperm quality showed similar results between the beginning and the end of the breeding season, on a proteomic level we detected a lower expression of sperm proteins linked to the energy metabolism, sperm-oocyte interactions, and flagellum structure in the EBS. Probably, this different protein expression could be related to the lower fertility rate of Assaf ewes after cervical artificial insemination at this time. More importantly, sperm proteins can be used as highly effective molecular markers in predicting sperm fertilization ability related to intraseasonal variations.
Collapse
Affiliation(s)
- Marta Neila-Montero
- Itra-ULE, INDEGSAL, University of León, León, Spain; Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Mercedes Alvarez
- Itra-ULE, INDEGSAL, University of León, León, Spain; Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Marta F Riesco
- Itra-ULE, INDEGSAL, University of León, León, Spain; Cellular Biology, Department of Molecular Biology, University of León, León, Spain.
| | - Rafael Montes-Garrido
- Itra-ULE, INDEGSAL, University of León, León, Spain; Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Cristina Palacin-Martinez
- Itra-ULE, INDEGSAL, University of León, León, Spain; Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Antonio Silva-Rodríguez
- Facility of Innovation and Analysis in Animal Source Foodstuffs, University of Extremadura, Cáceres, Spain
| | - Francisco E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Paulino de Paz
- Itra-ULE, INDEGSAL, University of León, León, Spain; Cellular Biology, Department of Molecular Biology, University of León, León, Spain
| | - Luis Anel
- Itra-ULE, INDEGSAL, University of León, León, Spain; Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| | - Luis Anel-Lopez
- Itra-ULE, INDEGSAL, University of León, León, Spain; Anatomy, Department of Veterinary Medicine, Surgery and Anatomy, University of León, León, Spain
| |
Collapse
|
4
|
Miyazaki MA, Guilharducci RL, Intasqui P, Bertolla RP. Mapping the human sperm proteome - novel insights into reproductive research. Expert Rev Proteomics 2023; 20:19-45. [PMID: 37140161 DOI: 10.1080/14789450.2023.2210764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
INTRODUCTION Spermatozoa are highly specialized cells with unique morphology. In addition, spermatozoa lose a considerable amount of cytoplasm during spermiogenesis, when they also compact their DNA, resulting in a transcriptionally quiescent cell. Throughout the male reproductive tract, sperm will acquire proteins that enable them to interact with the female reproductive tract. After ejaculation, proteins undergo post-translational modifications for sperm to capacitate, hyperactivate and fertilize the oocyte. Many proteins have been identified as predictors of male infertility, and also investigated in diseases that compromise reproductive potential. AREAS COVERED In this review we proposed to summarize the recent findings about the sperm proteome and how they affect sperm structure, function, and fertility. A literature search was performed using PubMed and Google Scholar databases within the past 5 years until August 2022. EXPERT OPINION Sperm function depends on protein abundance, conformation, and PTMs; understanding the sperm proteome may help to identify pathways essential to fertility, even making it possible to unravel the mechanisms involved in idiopathic infertility. In addition, proteomics evaluation offers knowledge regarding alterations that compromise the male reproductive potential.
Collapse
Affiliation(s)
- Mika Alexia Miyazaki
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Raquel Lozano Guilharducci
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paula Intasqui
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo Pimenta Bertolla
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Chamayou S, Giacone F, Cannarella R, Guglielmino A. What Does Intracytoplasmic Sperm Injection Change in Embryonic Development? The Spermatozoon Contribution. J Clin Med 2023; 12:671. [PMID: 36675600 PMCID: PMC9867417 DOI: 10.3390/jcm12020671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The intracytoplasmic sperm injection (ICSI) technique was invented to solve severe male infertility due to altered sperm parameters. Nowadays, it is applied worldwide for the treatment of couple infertility. ICSI is performed with any available spermatozoon from surgery or ejaculated samples, whatever are the sperm motility, morphology or quantity. The aim of the present review was to study if embryo development and kinetics would be modified by (1) ICSI under the technical aspects, (2) the micro-injected spermatozoa in connection with male infertility. From published data, it can be seen that ICSI anticipates the zygote kinetics Furthermore, because fertilization rate is higher in ICSI compared to conventional in vitro fertilization (IVF), more blastocysts are obtained for clinical use in ICSI. Sperm and spermatozoa characteristics, such as sperm parameters, morphology and vitality, DNA content (levels of sperm DNA fragmentation, microdeletions, and chromosomal abnormalities), RNA content, epigenetics, and sperm recovery site (testicular, epididymis, and ejaculated), have an impact on fertilization and blastocyst rates and embryo kinetics in different ways. Even though ICSI is the most common solution to solve couples' infertility, the causes of male infertility are crucial in building a competent spermatozoa that will contribute to normal embryonic development and healthy offspring.
Collapse
Affiliation(s)
- Sandrine Chamayou
- Centro HERA—Unità di Medicina della Riproduzione, Via Barriera del Bosco, 51/53, Sant’Agata li Battiati, 95030 Catania, Italy
| | - Filippo Giacone
- Centro HERA—Unità di Medicina della Riproduzione, Via Barriera del Bosco, 51/53, Sant’Agata li Battiati, 95030 Catania, Italy
| | - Rossella Cannarella
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Antonino Guglielmino
- Centro HERA—Unità di Medicina della Riproduzione, Via Barriera del Bosco, 51/53, Sant’Agata li Battiati, 95030 Catania, Italy
| |
Collapse
|
6
|
Fernandez-Encinas A, Ribas-Maynou J, García-Peiró A, Garcia-Segura S, Martinez-Pasarell O, Navarro J, Oliver-Bonet M, Benet J. TMT-Based Proteomic Analysis of Human Spermatozoa from Unexplained Recurrent Miscarriage Patients before and after Oral Antioxidant Treatment. Biomedicines 2022; 10:biomedicines10082014. [PMID: 36009561 PMCID: PMC9405561 DOI: 10.3390/biomedicines10082014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Recently, sperm quality and the presence of double-stranded breaks (DSB) has been pointed out as a possible cause of recurrent miscarriage, and the use of antioxidants has expanded as a treatment for male infertility. The aim of the present study was to analyze the proteomic effects of antioxidants on sperm from RM patients with high incidence of DSB. Proteomic analysis was performed using a tandem mass tag labeling technique, and subsequently compared with the PANTHER database for DEPs, and the STRING database for protein–protein interactions (PPI). Differentially expressed proteins (DEPs) both before and after antioxidant oral treatment were identified. PPI involving DEPs clustered into networks related to cell metabolism, cytoskeleton, and DNA damage. Results show that the sperm proteomic profiles before and after antioxidant treatment do not significantly differ from each other. However, some DEPs found after the antioxidant treatment shifted towards a DEPs profile typical of fertile donors. This indirect measurement suggests an improvement caused by antioxidants on the expression of several proteins. Among them were proteins involved in sperm DNA remodeling (LMO7, MMP28, BNC2, H2B, and PRDM2). The results presented here represent the first approach in the analysis and repair of the proteomic change caused by antioxidants in recurrent miscarriage patients, elucidating biomarkers that may be useful for the diagnosis and further sperm selection in this type of patient. Further studies should be conducted to validate the usefulness of these biomarkers in larger study groups.
Collapse
Affiliation(s)
- Alba Fernandez-Encinas
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Jordi Ribas-Maynou
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: (J.R.-M.); (M.O.-B.); Tel.: +34-972-419514 (J.R.-M.); Fax: +34-972-418150 (J.R.-M.)
| | - Agustín García-Peiró
- Centro de Infertilidad Masculina y Análisis de Barcelona (CIMAB), Sant Quirze del Vallès, 08193 Barcelona, Spain
| | - Sergio Garcia-Segura
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | | | - Joaquima Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Maria Oliver-Bonet
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: (J.R.-M.); (M.O.-B.); Tel.: +34-972-419514 (J.R.-M.); Fax: +34-972-418150 (J.R.-M.)
| | - Jordi Benet
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
7
|
Sperm preparedness and adaptation to osmotic and pH stressors relate to functional competence of sperm in Bos taurus. Sci Rep 2021; 11:22563. [PMID: 34799600 PMCID: PMC8604908 DOI: 10.1038/s41598-021-01928-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022] Open
Abstract
The adaptive ability of sperm in the female reproductive tract micromilieu signifies the successful fertilization process. The study aimed to analyze the preparedness of sperm to the prevailing osmotic and pH stressors in the female reproductive tract. Fresh bovine sperm were incubated in 290 (isosmotic-control), 355 (hyperosmotic-uterus and oviduct), and 420 (hyperosmotic-control) mOsm/kg and each with pH of 6.8 (uterus) and 7.4 (oviduct). During incubation, the changes in sperm functional attributes were studied. Sperm kinematics and head area decreased significantly (p < 0.05) immediately upon exposure to hyperosmotic stress at both pH. Proportion of sperm capacitated (%) in 355 mOsm/kg at 1 and 2 h of incubation were significantly (p < 0.05) higher than those in 290 mOsm media. The magnitude and duration of recovery of sperm progressive motility in 355 mOsm with pH 7.4 was correlated with the ejaculate rejection rate (R2 = 0.7). Using this information, the bulls were divided into good (n = 5) and poor (n = 5) osmo-adapters. The osmo-responsive genes such as NFAT5, HSP90AB1, SLC9C1, ADAM1B and GAPDH were upregulated (p < 0.05) in the sperm of good osmo-adapters. The study suggests that sperm are prepared for the osmotic and pH challenges in the female reproductive tract and the osmoadaptive ability is associated with ejaculate quality in bulls.
Collapse
|
8
|
Gaitskell-Phillips G, Martín-Cano FE, Ortiz-Rodríguez JM, Silva-Rodríguez A, Gil MC, Ortega-Ferrusola C, Peña FJ. Differences in the proteome of stallion spermatozoa explain stallion-to-stallion variability in sperm quality post-thaw†. Biol Reprod 2021; 104:1097-1113. [PMID: 33438027 DOI: 10.1093/biolre/ioab003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/02/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
The identification of stallions and or ejaculates that will provide commercially acceptable quality post-thaw before cryopreservation is of great interest, avoiding wasting time and resources freezing ejaculates that will not achieve sufficient quality to be marketed. Our hypothesis was that after bioinformatic analysis, the study of the stallion sperm proteome can provide discriminant variables able to predict the post-thaw quality of the ejaculate. At least three ejaculates from 10 different stallions were frozen following a split sample design. Half of the ejaculate was analyzed as a fresh aliquot and the other half was frozen and then analyzed as a frozen-thawed aliquot. Computer-assisted sperm analysis and flow cytometry were used to analyze sperm quality. Detailed proteomic analysis was performed on fresh and frozen and thawed aliquots, and bioinformatic analysis was used to identify discriminant variables in fresh samples able to predict the outcome of cryopreservation. Those with a fold change > 3, a P = 8.2e-04, and a q = 0.074 (equivalent to False discovery rate (FDR)) were selected, and the following proteins were identified in fresh samples as discriminant variables of good motility post-thaw: F6YTG8, K9K273, A0A3Q2I7V9, F7CE45, F6YU15, and F6SKR3. Other discriminant variables were also identified as predictors of good mitochondrial membrane potential and viability post-thaw. We concluded that proteomic approaches are a powerful tool to improve current sperm biotechnologies.
Collapse
Affiliation(s)
- Gemma Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Francisco E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - José M Ortiz-Rodríguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Antonio Silva-Rodríguez
- Facility of Innovation and Analysis in Animal Source Foodstuffs, University of Extremadura, Cáceres, Spain
| | - Maria C Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Cristina Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| |
Collapse
|