1
|
Giacomini E, Pagliardini L, Minetto S, Pinna M, Kleeman F, Bonesi F, Makieva S, Pavone V, Reschini M, Papaleo E, Candiani M, Somigliana E, Viganò P. The relationship between CYP19A1 gene expression in luteinized granulosa cells and follicular estradiol output in women with endometriosis. J Steroid Biochem Mol Biol 2024; 237:106439. [PMID: 38048918 DOI: 10.1016/j.jsbmb.2023.106439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
Endometriosis was claimed to negatively affect the intrafollicular environment, hindering oocyte competence. Previous studies evaluated expression levels of cytochrome P450 aromatase (CYP19A) in granulosa and cumulus oophorus cells collected from endometriosis women, but results are controversial. To further investigate the intrafollicular environment whose alteration may potentially disturb ovarian steroidogenesis in endometriosis, gene expression of CYP19A and of its upstream enzymes, StAR and 3βHSD was assessed in luteinized granulosa cells isolated from follicular fluids (FF) collected during Assisted Reproduction Technology (ART) procedures in women with stage III-IV disease and from subjects without the condition. In a subgroup of patients, cumulus oophorus cells (COCs) were also assessed for CYP19A, StAR and 3βHSD gene expression. No difference in mRNA expression of CYP19A1, StAR and 3βHSD in both granulosa cells and COCs was observed between the two groups of patients. No significant difference was also found between estradiol FF levels detected in endometriosis patients (median=873, IQR=522-1221 ng/ml)) and control patients (median=878, IQR=609-1137 ng/ml). To gain more insight into the intrafollicular regulation of CYP19A in patients with endometriosis, associations between expression of the analyzed genes, systemic and follicular 17β-estradiol levels and ART outcomes were assessed. While in the control group, levels of CYP19A1, StAR and 3βHSD transcripts significantly correlated with follicular estradiol levels (adjusted R² of 0.60), no significant association was detected in affected women (adjusted R² of 0.23). After stratification of the populations based on the presence of the disease, CYP19A1 expression was shown to correlate with the number of oocytes retrieved [β:- 1.214;95%CI: - 2.085 - (-0.343); p = 0.007] in the control group while this association was not present in patients with endometriosis [β:- 0.003; 95%CI:- 0.468-0.461; p = 0.988)]. These results do not support data from the literature indicating a reduced aromatase expression in granulosa cells of affected women, but they highlight a potential subtle mechanism affecting the ovulation process in these women.
Collapse
Affiliation(s)
- Elisa Giacomini
- Reproductive Sciences Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Pagliardini
- Reproductive Sciences Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Sabrina Minetto
- Reproductive Sciences Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Pinna
- Infertility Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Fabiola Kleeman
- Reproductive Sciences Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Bonesi
- Reproductive Sciences Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sofia Makieva
- Reproductive Sciences Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Pavone
- Reproductive Sciences Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Reschini
- Infertility Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Enrico Papaleo
- Centro Scienze della Natalità, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Candiani
- Department of Obstetrics and Gynecology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edgardo Somigliana
- Infertility Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Paola Viganò
- Reproductive Sciences Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
2
|
He X, Chen H, Liao M, Zhao X, Zhang D, Jiang M, Jiang Z. The role of CoQ10 in embryonic development. J Assist Reprod Genet 2024; 41:767-779. [PMID: 38372883 PMCID: PMC10957822 DOI: 10.1007/s10815-024-03052-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/01/2024] [Indexed: 02/20/2024] Open
Abstract
Coenzyme Q10 (CoQ10) is a natural component widely present in the inner membrane of mitochondria. CoQ10 functions as a key cofactor for adenosine triphosphate (ATP) production and exhibits antioxidant properties in vivo. Mitochondria, as the energy supply center of cells, play a crucial role in germ cell maturation and embryonic development, a complicated process of cell division and cellular differentiation that transforms from a single cell (zygote) to a multicellular organism (fetus). Here, we discuss the effects of CoQ10 on oocyte maturation and the important role of CoQ10 in the growth of various organs during different stages of fetal development. These allowed us to gain a deeper understanding of the pathophysiology of embryonic development and the potential role of CoQ10 in improving fertility quality. They also provide a reference for further developing its application in clinical treatments.
Collapse
Affiliation(s)
- Xueke He
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hao Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Minjun Liao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaomei Zhao
- College of Public Health, University of South China, Hengyang, 421001, Hunan, China
| | - Dawei Zhang
- Group On the Molecular and Cell Biology of Lipids, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Miao Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Postdoctoral Research Station of Basic Medicine, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, China
| |
Collapse
|
3
|
Casalechi M, Di Stefano G, Fornelli G, Somigliana E, Viganò P. Impact of endometriosis on the ovarian follicles. Best Pract Res Clin Obstet Gynaecol 2024; 92:102430. [PMID: 38311379 DOI: 10.1016/j.bpobgyn.2023.102430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 02/10/2024]
Abstract
A significant body of evidence has supported a negative impact of endometriosis on ovarian follicles; however, the origin and relevance of this ovarian impairment in endometriosis is still a matter of debate. The ovarian damage can be caused by endometriosis itself or by surgeries aiming to remove endometriotic lesions. In this review, we summarized the existing knowledge on the mechanisms by which endometriosis can impact the ovarian follicles, from molecular to clinical points of view. From a molecular standpoint, the presence of endometriosis or its consequences can induce oxidative stress, inflammation, aberrant mitochondrial energy metabolism and inappropriate steroid production in granulosa cells, phenomena that may impair the quality of oocytes to variable degrees. These alterations may have clinical relevance on the accelerated exhaustion of the ovarian reserve, on the ovarian response to gonadotrophin stimulation in IVF cycles and on the competence of the oocytes. Critical points to be considered in current clinical practices related to fertility issues in endometriosis are discussed.
Collapse
Affiliation(s)
- Maíra Casalechi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Infertility Unit, Milan, Italy.
| | - Giorgia Di Stefano
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Infertility Unit, Milan, Italy
| | - Gianfranco Fornelli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Infertility Unit, Milan, Italy
| | - Edgardo Somigliana
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Infertility Unit, Milan, Italy
| | - Paola Viganò
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Infertility Unit, Milan, Italy
| |
Collapse
|
4
|
Amini MA, Karimi M, Talebi SS, Piri H, Karimi J. The Association of Oxidative Stress and Reactive Oxygen Species Modulator 1 (ROMO1) with Infertility: A Mini Review. Chonnam Med J 2022; 58:91-95. [PMID: 36245774 PMCID: PMC9535111 DOI: 10.4068/cmj.2022.58.3.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
Infertility is one of the disorders that worries many couples around the world, although novel and molecular methods can be used to cure this disease in different stages. One of the factors that causes infertility in men and women is the increased oxidative stress within the cells, which can lead to damage in zygote formation. ROMO1 is one of the most important proteins in the production of reactive oxygen species. This protein can enhance oxidative stress in the cells and body through cellular pathways, such as TNF-α and NF-κB routes, which will eventually lead to many diseases, especially infertility. We engage several international databases by using keywords; ROMO1, Infertility, and Reactive Oxygen Species, and gained a great quantity of information about ROMO1, Infertility, and Oxidative Stress. Although not proven, it is hypothesized that ROMO1 might elevate oxidative stress by activating NF-κB pathway in the cells, furthermore, TNF-α can arouse ROMO1 that can end up with apoptosis and cell death, which consequently can have a lot of disturbing effects on the body, especially the reproductive system. To sum up, revealing the exact cellular and molecular mechanisms of ROMO1-dependent TNF-α and NF-κB pathways in the pathogenesis of infertility might find interesting therapeutic and management strategies for this disorder.
Collapse
Affiliation(s)
- Mohammad Amin Amini
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Karimi
- Department of Medical Biotechnology, School of Sciences and Advanced Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Saman Talebi
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Piri
- Department of Biochemistry and Genetics, Qazvin University of Medical Science, Faculty of Medicine, Qazvin, Iran
| | - Jamshid Karimi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
5
|
Da Luz CM, Da Broi MG, Koopman LDO, Plaça JR, da Silva-Jr WA, Ferriani RA, Meola J, Navarro PA. Transcriptomic analysis of cumulus cells shows altered pathways in patients with minimal and mild endometriosis. Sci Rep 2022; 12:5775. [PMID: 35388025 PMCID: PMC8986826 DOI: 10.1038/s41598-022-09386-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/11/2022] [Indexed: 11/09/2022] Open
Abstract
Endometriosis is a chronic inflammatory disorder that is highly associated with infertility. This association seems to be related to oocyte impairment, mainly in the initial stages of endometriosis (minimal and mild), where no distortions or adhesions are present. Nonetheless, invasive oocyte analyses are not routinely feasible; thus, indirect assessment of oocyte quality is highly desirable, and, in this context, cumulus cells (CCs) may be more suitable targets of analysis. CCs are crucial in oocyte development and could be used as an index of oocyte quality. Therefore, this prospective case–control study aimed to shed light on the infertility mechanisms of endometriosis I/II by analyzing the CCs’ mRNA transcription profile (women with endometriosis I/II, n = 9) compared to controls (women with tubal abnormalities or male factor, n = 9). The transcriptomic analyses of CCs from patients with minimal and mild endometriosis revealed 26 differentially expressed genes compared to the controls. The enrichment analysis evidenced some altered molecular processes: Cytokine-cytokine receptor interactions, Chemokine signaling, TNF signaling, NOD-like receptor signaling, NF-kappa B signaling, and inflammatory response. With the exception of CXCL12, all enriched genes were downregulated in CCs from patients with endometriosis. These findings provide a significant achievement in the field of reproductive biology, directing future studies to discover biomarkers of oocyte quality in endometriosis.
Collapse
Affiliation(s)
- Caroline Mantovani Da Luz
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil. .,National Institute of Hormones and Women's Health, CNPq, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil.
| | - Michele Gomes Da Broi
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil.,National Institute of Hormones and Women's Health, CNPq, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil
| | - Larissa de Oliveira Koopman
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil.,National Institute of Hormones and Women's Health, CNPq, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil
| | - Jessica Rodrigues Plaça
- Center for Integrative Systems Biology - CISBi, NAP/USP, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Wilson Araújo da Silva-Jr
- Center for Integrative Systems Biology - CISBi, NAP/USP, Ribeirão Preto, São Paulo, 14049-900, Brazil.,Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Rui Alberto Ferriani
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil.,National Institute of Hormones and Women's Health, CNPq, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil
| | - Juliana Meola
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil.,National Institute of Hormones and Women's Health, CNPq, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil
| | - Paula Andrea Navarro
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil.,National Institute of Hormones and Women's Health, CNPq, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil
| |
Collapse
|