1
|
Ma Y, Wang J, Wen T, Xu Y, Huang L, Mai Q, Xu Y. An Incidental Detection of a Rare UPD in SNP-Array Based PGT-SR: A Case Report. Reprod Sci 2024; 31:2893-2899. [PMID: 38780745 DOI: 10.1007/s43032-024-01598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Uniparental disomies (UPD) refers to the inheritance of both homologs of a chromosome from only one parent with no representative copy from the other parent. UPD was with an estimated prevalence of 0.15‰ in population. Current understanding of UPD was limited to subjects for which UPD was associated with clinical manifestation due to imprinting disorders or recessive diseases. Segmental UPD was rare, especially for a segmental UPD with a combination of hetero- and isodisomy. This paper presents a couple with reciprocal translocation 46,XY, t(14;22)(q32.3;q12.2) for PGT-SR. Among 8 biopsied blastocysts, one euploid blastocyst (No.4) with segmental loss of heterozygosity (LOH)(22) [arr[hg19] q12.1q22.3 (28,160,407 - 35,407,682)] was detected by B allele frequency. We found the chromosome contained both UPiD(22) [arr[hg19] q12.1q22.3 (28,160,407 - 35,407,682) ×2 hmz mat] and UPhD(22) [arr[hg19] q22.3qter(35,407,682 - 51,169,045) ×2 htz mat] by haplotype analysis. UPDtool software confirmed the result. What's more, the segmental UPD and reciprocal translocation shared the same breakpoint, chr22q12.1 (28,160,407), while the breakpoint between iso- and heterodisomy was chr22q22.3 (35,407,682). We reported the first segmental UPD with a combination of hetero- and isodisomy, which may result from aneuploidy rescue. This case emphasizes the importance of the combination of comprehensive chromosome screening and haplotype analysis to reduce the risk of misdiagnosis.
Collapse
Affiliation(s)
- Yuanlin Ma
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road No. 1, Yuexiu District, 510080, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Yuexiu District, 510080, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, Yuexiu District, 510080, Guangzhou, Guangdong, China
| | - Jing Wang
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road No. 1, Yuexiu District, 510080, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Yuexiu District, 510080, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, Yuexiu District, 510080, Guangzhou, Guangdong, China
| | - Tianrui Wen
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road No. 1, Yuexiu District, 510080, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Yuexiu District, 510080, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, Yuexiu District, 510080, Guangzhou, Guangdong, China
| | - Yan Xu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road No. 1, Yuexiu District, 510080, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Yuexiu District, 510080, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, Yuexiu District, 510080, Guangzhou, Guangdong, China
| | - Linhuan Huang
- Fetal Medicine Centre, The First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, Guangdong, China
| | - Qingyun Mai
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road No. 1, Yuexiu District, 510080, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Yuexiu District, 510080, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, Yuexiu District, 510080, Guangzhou, Guangdong, China
| | - Yanwen Xu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road No. 1, Yuexiu District, 510080, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Yuexiu District, 510080, Guangzhou, Guangdong, China.
- Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, Yuexiu District, 510080, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Liu D, Chen C, Huang Q, Dong Y, Xu L, Dong M, Zhu Z, Huang L, Wang F, Zhang L, Zhang X, Liu F. Preimplantation genetic testing for complex chromosomal rearrangements: clinical outcomes and potential risk factors. Front Genet 2024; 15:1401549. [PMID: 39139821 PMCID: PMC11320417 DOI: 10.3389/fgene.2024.1401549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Objective Complex chromosome rearrangements (CCR) are rare structural abnormalities involving at least three breakpoints, categorized into three types based on their structure: type A (three-way rearrangements), type B (double two-way translocations), and type C (exceptional CCR). However, thus far, limited data exists on preimplantation genetic testing for chromosomal structural rearrangements (PGT-SR) in CCR carriers. This study aims to evaluate the clinical outcomes and influencing factors of PGT-SR in couples with CCR. Methods Fifteen couples with unique CCR recruited from 793 couples following PGT-SR between January 2017 and May 2023. In addition, a total of 54 CCR cases, 39 previously reported as well as 15 newly added, were included in the analysis of factors associate with normal/balanced embryos. Results A total of 100 blastocysts were biopsied and analyzed in 15 CCR couples after 17 PGT-SR cycles, with 16.0% being euploid, 78.0% aneuploid and 6.0% mosaic. 11 normal/balanced embryos and one mosaic embryo were transferred, resulting in eight live births. Furthermore, based on the combined data from 54 CCR carriers, the proportion of normal/balanced embryos was 10.8%, with a significant decrease observed among female carriers compared to male heterozygotes (6.5% vs. 15.5%, p = 0.002). Type B exhibited the lowest rate of euploid embryos at only 6.7%, followed by type A at 11.6% and type C at 14.0%, although the differences were not significant (p = 0.182). After completing the multivariate generalized estimating equation (GEE) analysis, type B (p = 0.014) and female carrier (p = 0.002) were identified as independent risk factors for fewer euploid embryos. Conclusion The occurrence of balanced CCR in patients with reproductive abnormalities may be more frequent than we expected. Despite the proportion of normal/balanced embryos being significantly low, which can be influenced by CCR type and carrier's sex, PGT-SR may improve the reproductive outcomes among CCR cases. These findings can optimize the clinical management and genetic counseling of CCR carriers seeking assisted reproductive technology (ART).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiqian Zhang
- Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Fenghua Liu
- Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Zou J, Ni T, Yang M, Li H, Gao M, Zhu Y, Jiang W, Zhang Q, Yan J, Wei D, Chen ZJ. The effect of parental carrier of de novo mutated vs. inherited balanced reciprocal translocation on the chance of euploid embryos. F&S SCIENCE 2023; 4:193-199. [PMID: 37182600 DOI: 10.1016/j.xfss.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
OBJECTIVE To evaluate whether the effect of de novo mutated balanced reciprocal translocation on the rate of euploid embryos varied from inherited balanced reciprocal translocation. DESIGN A retrospective cohort study compared the percentage of euploid embryo and proportion of patients with at least 1 euploid embryo between de novo mutated balanced reciprocal translocation (i.e., the group of de novo mutated carriers) and inherited balanced reciprocal translocation (i.e., the group of inherited carriers). SETTING An academic fertility center. PATIENT(S) A total of 413 couples with balanced reciprocal translocation (219 female carriers and 194 male carriers) who underwent their first cycle of preimplantation genetic testing for structural rearrangements were included. INTERVENTION(S) Carriers of balanced reciprocal translocation either de novo mutated or inherited. MAIN OUTCOME MEASURE(S) The percentage of euploid embryo and proportion of patients with at least 1 euploid embryo. RESULT(S) The carriers of the de novo mutated balanced reciprocal translocation had a lower percentage of euploid embryos (19.5% vs. 25.5%), and were less likely to have at least 1 euploid embryo (47.1% vs. 60.1%) compared with the carriers of the inherited balanced reciprocal translocation. In the male-carrier subgroup, the percentage of euploid embryos (16.7% vs. 26.7%) and proportion of patients with at least 1 euploid embryo (41.9% vs. 67.5%) were lower among the de novo mutated carriers than those among the inherited carriers. However, in the female-carrier subgroup, there was no statistically significant difference in the percentage of euploid embryos (22.4% vs. 24.4%) or the proportion of patients with at least 1 euploid embryo (52.3% vs. 53.7%) between the de novo mutated carriers and inherited carriers. CONCLUSION(S) The de novo mutated balanced reciprocal translocation was associated with a lower percentage of euploid embryos and lower chance of obtaining at least 1 euploid embryo than the inherited balanced reciprocal translocation.
Collapse
Affiliation(s)
- Jialin Zou
- Center for Reproductive Medicine, Shandong University, Jinan, People's Republic of China; Medical Integration and Practice Center, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China
| | - Tianxiang Ni
- Center for Reproductive Medicine, Shandong University, Jinan, People's Republic of China; Medical Integration and Practice Center, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China
| | - Min Yang
- Center for Reproductive Medicine, Shandong University, Jinan, People's Republic of China; Medical Integration and Practice Center, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China
| | - Hongchang Li
- Center for Reproductive Medicine, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China
| | - Ming Gao
- Center for Reproductive Medicine, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China
| | - Yueting Zhu
- Center for Reproductive Medicine, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China
| | - Wenjie Jiang
- Center for Reproductive Medicine, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China
| | - Qian Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China
| | - Junhao Yan
- Center for Reproductive Medicine, Shandong University, Jinan, People's Republic of China; Medical Integration and Practice Center, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China
| | - Daimin Wei
- Center for Reproductive Medicine, Shandong University, Jinan, People's Republic of China; Medical Integration and Practice Center, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, People's Republic of China; Medical Integration and Practice Center, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, People's Republic of China; Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Del Llano E, Perrin A, Morel F, Devillard F, Harbuz R, Satre V, Amblard F, Bidart M, Hennebicq S, Brouillet S, Ray PF, Coutton C, Martinez G. Sperm Meiotic Segregation Analysis of Reciprocal Translocations Carriers: We Have Bigger FISH to Fry. Int J Mol Sci 2023; 24:ijms24043664. [PMID: 36835074 PMCID: PMC9965694 DOI: 10.3390/ijms24043664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Reciprocal translocation (RT) carriers produce a proportion of unbalanced gametes that expose them to a higher risk of infertility, recurrent miscarriage, and fetus or children with congenital anomalies and developmental delay. To reduce these risks, RT carriers can benefit from prenatal diagnosis (PND) or preimplantation genetic diagnosis (PGD). Sperm fluorescence in situ hybridization (spermFISH) has been used for decades to investigate the sperm meiotic segregation of RT carriers, but a recent report indicates a very low correlation between spermFISH and PGD outcomes, raising the question of the usefulness of spermFISH for these patients. To address this point, we report here the meiotic segregation of 41 RT carriers, the largest cohort reported to date, and conduct a review of the literature to investigate global segregation rates and look for factors that may or may not influence them. We confirm that the involvement of acrocentric chromosomes in the translocation leads to more unbalanced gamete proportions, in contrast to sperm parameters or patient age. In view of the dispersion of balanced sperm rates, we conclude that routine implementation of spermFISH is not beneficial for RT carriers.
Collapse
Affiliation(s)
- Edgar Del Llano
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, 38000 Grenoble, France
| | - Aurore Perrin
- Department of Medical Genetics and Reproductive Biology, Brest University Regional Hospital, 29200 Brest, France
- Inserm, Université de Bretagne Occidentale, EFS, UMR 1078, GGB, 29200 Brest, France
| | - Frédéric Morel
- Department of Medical Genetics and Reproductive Biology, Brest University Regional Hospital, 29200 Brest, France
- Inserm, Université de Bretagne Occidentale, EFS, UMR 1078, GGB, 29200 Brest, France
| | - Françoise Devillard
- UM de Génétique Chromosomique, Hôpital Couple-Enfant, Centre Hospitalier Universitaire de Grenoble, 38000 Grenoble, France
| | - Radu Harbuz
- UM de Génétique Chromosomique, Hôpital Couple-Enfant, Centre Hospitalier Universitaire de Grenoble, 38000 Grenoble, France
| | - Véronique Satre
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, 38000 Grenoble, France
- UM de Génétique Chromosomique, Hôpital Couple-Enfant, Centre Hospitalier Universitaire de Grenoble, 38000 Grenoble, France
| | - Florence Amblard
- UM de Génétique Chromosomique, Hôpital Couple-Enfant, Centre Hospitalier Universitaire de Grenoble, 38000 Grenoble, France
| | - Marie Bidart
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, 38000 Grenoble, France
| | - Sylviane Hennebicq
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, 38000 Grenoble, France
- Centre Clinique et Biologique d’Assistance Médicale à la Procréation, Hôpital Couple-Enfant, Centre Hospitalier Universitaire de Grenoble, 38000 Grenoble, France
| | - Sophie Brouillet
- DEFE, Université de Montpellier, INSERM 1203, Hôpital Arnaud de Villeneuve, CHU de Montpellier, IRMB, 80 Avenue Augustin Fliche, CEDEX 05, 34295 Montpellier, France
| | - Pierre F. Ray
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, 38000 Grenoble, France
| | - Charles Coutton
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, 38000 Grenoble, France
- UM de Génétique Chromosomique, Hôpital Couple-Enfant, Centre Hospitalier Universitaire de Grenoble, 38000 Grenoble, France
| | - Guillaume Martinez
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, 38000 Grenoble, France
- UM de Génétique Chromosomique, Hôpital Couple-Enfant, Centre Hospitalier Universitaire de Grenoble, 38000 Grenoble, France
- Correspondence:
| |
Collapse
|
5
|
Liu M, Bu Z, Liu Y, Liu J, Dai S. Are ovarian responses and the number of transferable embryos different in females and partners of male balanced translocation carriers? J Assist Reprod Genet 2022; 39:2019-2026. [PMID: 35925537 PMCID: PMC9474960 DOI: 10.1007/s10815-022-02563-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To compare ovarian response and the number of transferable embryos between women with balanced autosomal translocations and women whose partners carry the translocation (control group). To investigate the predictive value of metaphase II (MII) oocyte number and biopsied embryo number for gaining at lowest one transferable embryo. DESIGN We retrospectively analyzed 1942 preimplantation genetic testing for structural rearrangements (PGT-SR) cycles of 1505 balanced autosomal translocation couples over 8 years. All cycles were divided into two subgroups: Robertsonian and reciprocal translocations (ROBT and ReBT). Receiver operator characteristic (ROC) curves were plotted to ascertain a cutoff of MII oocytes and biopsied embryos as predictors of gaining at lowest one transferable embryo. RESULT There were no statistical differences in baseline features or ovarian response indicators regarding the number of retrieved/MII oocytes, E2 level on the day of HCG, and ovarian sensitivity index (OSI) between women with balanced autosomal translocations and control group (P > 0.05). A decreased number of transferable embryos were found in women with balanced autosomal translocations regardless of the type of translocation. The cutoff values for gaining at lowest one transferable embryo are 12.5 MII oocytes and 4.5 biopsied embryos, respectively. CONCLUSION Women with balanced autosomal translocations have a normal ovarian response, but fewer transferable embryos, meaning that higher gonadotropin (Gn) doses may be required to increase transferable embryos. When fewer than 12.5 MII oocytes or 4.5 blastocysts are obtained in a PGT-SR cycle, couples should be notified that the likelihood of gaining a transferable embryo is low.
Collapse
Affiliation(s)
- Mingyue Liu
- Reproductive Medical Center, Henan Province Key Laboratory for Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 1# Jianshe East, Zhengzhou, Henan Province, China
| | - Zhiqin Bu
- Reproductive Medical Center, Henan Province Key Laboratory for Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 1# Jianshe East, Zhengzhou, Henan Province, China
| | - Yan Liu
- Reproductive Medical Center, Henan Province Key Laboratory for Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 1# Jianshe East, Zhengzhou, Henan Province, China
| | - Jinhao Liu
- Reproductive Medical Center, Henan Province Key Laboratory for Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 1# Jianshe East, Zhengzhou, Henan Province, China
| | - Shanjun Dai
- Reproductive Medical Center, Henan Province Key Laboratory for Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, 1# Jianshe East, Zhengzhou, Henan Province, China.
| |
Collapse
|
6
|
Ogur C, Kahraman S, Griffin DK, Cinar Yapan C, Tufekci MA, Cetinkaya M, Temel SG, Yilmaz A. PGT for structural chromosomal rearrangements in 300 couples reveals specific risk factors but an interchromosomal effect is unlikely. Reprod Biomed Online 2022; 46:713-727. [PMID: 36803887 DOI: 10.1016/j.rbmo.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022]
Abstract
RESEARCH QUESTION What factors affect the proportion of chromosomally balanced embryos in structural rearrangement carriers? Is there any evidence for an interchromosomal effect (ICE)? DESIGN Preimplantation genetic testing outcomes of 300 couples (198 reciprocal, 60 Robertsonian, 31 inversion and 11 complex structural rearrangement carriers) were assessed retrospectively. Blastocysts were analysed either by array-comparative genomic hybridization or next-generation sequencing techniques. ICE was investigated using a matched control group and sophisticated statistical measurement of effect size (φ). RESULTS 300 couples underwent 443 cycles; 1835 embryos were analysed and 23.8% were diagnosed as both normal/balanced and euploid. The overall cumulative clinical pregnancy and live birth rates were 69.5% and 55.8%, respectively. Complex translocations and female age (≥35) were found to be risk factors associated with lower chance of having a transferable embryo (P < 0.001). Based on analysis of 5237 embryos, the cumulative de-novo aneuploidy rate was lower in carriers compared to controls (45.6% versus 53.4%, P < 0.001) but this was a 'negligible' association (φ < 0.1). A further assessment of 117,033 chromosomal pairs revealed a higher individual chromosome error rate in embryos of carriers compared to controls (5.3% versus 4.9%), which was also a 'negligible' association (φ < 0.1), despite a P-value of 0.007. CONCLUSIONS These findings suggest that rearrangement type, female age and sex of the carrier have significant impacts on the proportion of transferable embryos. Careful examination of structural rearrangement carriers and controls indicated little or no evidence for an ICE. This study helps to provide a statistical model for investigating ICE and an improved personalized reproductive genetics assessment for structural rearrangement carriers.
Collapse
Affiliation(s)
- Cagri Ogur
- Yildiz Technical University, Department of Bioengineering, Istanbul, Turkey; Igenomix Avrupa Laboratories, Istanbul, Turkey.
| | - Semra Kahraman
- Istanbul Memorial Hospital, ART and Reproductive Genetics Center, Istanbul, Turkey
| | - Darren Karl Griffin
- School of Biosciences, Centre for Interdisciplinary Studies of Reproduction, University of Kent, Canterbury CT2 7NJ, UK
| | - Cigdem Cinar Yapan
- Istanbul Memorial Hospital, ART and Reproductive Genetics Center, Istanbul, Turkey
| | - Mehmet Ali Tufekci
- Istanbul Memorial Hospital, ART and Reproductive Genetics Center, Istanbul, Turkey
| | - Murat Cetinkaya
- Istanbul Memorial Hospital, ART and Reproductive Genetics Center, Istanbul, Turkey
| | - Sehime Gulsun Temel
- Uludag University, Faculty of Medicine, Department of Medical Genetics, Bursa, Turkey.
| | - Alper Yilmaz
- Yildiz Technical University, Department of Bioengineering, Istanbul, Turkey.
| |
Collapse
|
7
|
Xie P, Hu L, Peng Y, Tan YQ, Luo K, Gong F, Lu G, Lin G. Risk Factors Affecting Alternate Segregation in Blastocysts From Preimplantation Genetic Testing Cycles of Autosomal Reciprocal Translocations. Front Genet 2022; 13:880208. [PMID: 35719400 PMCID: PMC9201810 DOI: 10.3389/fgene.2022.880208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Reciprocal translocations are the most common structural chromosome rearrangements and may be associated with reproductive problems. Therefore, the objective of this study was to analyze factors that can influence meiotic segregation patterns in blastocysts for reciprocal translocation carriers. Segregation patterns of quadrivalents in 10,846 blastocysts from 2,871 preimplantation genetic testing cycles of reciprocal translocation carriers were analyzed. The percentage of normal/balanced blastocysts was 34.3%, and 2:2 segregation was observed in 90.0% of the blastocysts. Increased TAR1 (ratio of translocated segment 1 over the chromosome arm) emerged as an independent protective factor associated with an increase in alternate segregation (p = 0.004). Female sex and involvement of an acrocentric chromosome (Acr-ch) were independent risk factors that reduced alternate segregation proportions (p < 0.001). Notably, a higher TAR1 reduced the proportion of adjacent-1 segregation (p < 0.001); a longer translocated segment and female sex increased the risk of adjacent-2 segregation (p = 0.009 and p < 0.001, respectively). Female sex and involvement of an Acr-ch enhanced the ratio of 3:1 segregation (p < 0.001 and p = 0.012, respectively). In conclusion, autosomal reciprocal translocation carriers have reduced proportions of alternate segregation in blastocysts upon the involvement of an Acr-ch, female sex, and lower TAR1. These results may facilitate more appropriate genetic counseling for couples with autosomal reciprocal translocation regarding their chances of producing normal/balanced blastocysts.
Collapse
Affiliation(s)
- Pingyuan Xie
- Hunan Normal University School of Medicine, Changsha, China
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| | - Liang Hu
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yangqin Peng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yue-qiu Tan
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Keli Luo
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Fei Gong
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Guangxiu Lu
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Ge Lin
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- *Correspondence: Ge Lin,
| |
Collapse
|