1
|
Li J, Liu D, Zhao H, Zhang P, Cai F, Li H, Chu S. Chinese medicine compound prescription HeQi San ameliorates chronic inflammatory states and modulates gut flora in dehydroepiandrosterone-induced polycystic ovary syndrome mouse model. Int Immunopharmacol 2024; 137:112491. [PMID: 38909499 DOI: 10.1016/j.intimp.2024.112491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common and complex endocrine disease in women, with a prevalence of 5% to 18% worldwide. HeQi San (HQS) is a Chinese medicine compound prescription, which has been applied to treat various endocrine and metabolic diseases. OBJECTIVE The study was intended to investigate the effect of HQS on PCOS, and clarify the potential mechanism via in vivo and in vitro experiments. METHODS The PCOS mouse model was established by injecting the dehydroepiandrosterone (DHEA) subcutaneously and fading high-fat diet for 3 weeks. After making model, PCOS mice were treated with HQS (8.75 g/kg and 17.5 g/kg, ig.) for 4 weeks. Firstly, we assessed the histopathological changes in ovary tissues and detected the hormone level. Subsequently, the study evaluated the capability of anti-inflammatory and regulating macrophage polarization of HQS in vivo and in vitro. The secretion of inflammation indicators was measured with Elisa kits, and the expression level of phosphorylated nuclear factor kappa-B (P-NFκB) and B-lymphocyte activation antigen B7 (CD80) was measured by immunofluorescence and Western blot. Meanwhile, the apoptosis of ovarian granulosa cells was detected via tunel staining and Western blot. The co-culture model in vitro was utilized to assess the effect between macrophage polarization and human ovarian granulosa cells (KGN cells) apoptosis. Furthermore, 16S rDNA sequencing was utilized to elevate gut microbiota change in PCOS mice. RESULTS HQS reversed the abnormal hormone increase, ameliorated insulin resistance, and improved histopathological changes of the ovary tissue to exert the therapeutic effect. HQS inhibited the expression of P-NF-κB and decreased the production of interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) to further prohibit the macrophage M1 polarization in ovary tissues and macrophages. The apoptosis-positive cells, Bcl-2 Assaciated X protein (BAX), and cleaved-caspase 3 expression were also decreased in the treatment group. The B-cell lymphoma-2 (Bcl2) expression was enhanced after HQS treatment in vivo. The co-culture experiments also verified that HQS could prevent the apoptosis of KGN cells. Furthermore, HQS mediated the abundance of gut flora. The abundance of bifldobacterium and parasutterella was increased and the abundance of lachnoclostridium was decreased. CONCLUSION The study verified that HQS has the effect of anti-inflammation and inhibits macrophage M1 polarization. Besides, HQS could mediate the abundance of gut microbiota in mice with PCOS. Thus, this study would provide more reasonable basis of HQS for clinical use. In conclusion, HQS might be a potential candidate for PCOS treatment.
Collapse
Affiliation(s)
- Juntong Li
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong, China
| | - Deliang Liu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Hengxia Zhao
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Pengxiang Zhang
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Fangying Cai
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Huilin Li
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Shufang Chu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
2
|
Wang Y, Li R, Yuan R, Wang L, Qiao Q, Han Z, Li Q, Li Y, Guo Y, Guo C. Dehydroepiandrosterone attenuated the immune escape of oral squamous cell carcinoma through NF-κB p65/miR-15b-5p/B7-H4 axis. Int Immunopharmacol 2024; 137:112480. [PMID: 38885603 DOI: 10.1016/j.intimp.2024.112480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
OBJECTIVES We aimed to explore the effects and mechanisms of action of dehydroepiandrosterone (DHEA) on immune evasion of oral squamous cell carcinoma (OSCC) to provide evidence for enhancing the effect of immunotherapy. MATERIALS AND METHODS A xenograft mouse model and immunohistochemistry were used to reveal the patterns of tumor-infiltrating lymphocytes (TILs). The CAL27 and SCC VII cell lines were used for the in vitro study. Western blotting, qPCR, immunofluorescence, and flow cytometry were used to evaluate the expression of B7-H4. Recombinant mouse B7-H4 protein (rmB7-H4) and PG490, an inhibitor of NF-κB p65 were used for the "rescue study." Gain- and loss-of-function, luciferase reporter, and chromatin immunoprecipitation assays were performed to verify this mechanism. RESULTS DHEA inhibited tumor growth in an OSCC xenograft mouse model, increased CD8 + cells, and decreased FOXP3 + cells in TILs. DHEA reduced the expression of B7-H4 in CAL27 and SCC VII cells RmB7-H4 reverses the effect of DHEA on tumor growth and TIL patterns. DHEA increased the expression of miR-15b-5p and activated its transcriptional factor NF-κB p65. Further experiments demonstrated that miR-15b-5p inhibited B7-H4 expression by binding to its 3'-UTR regions, and NF-κB p65 activated miR-15b transcription. PG490 reversed the effects of DHEA on tumor growth, antitumor immunity in the OSCC xenograft model, and the expression/phosphorylation of NF-κB p65, miR-15b-5p, and B7-H4. CONCLUSIONS This study indicates that DHEA attenuates the immune escape of OSCC cells by inhibiting B7-H4 expression, providing new insights for cancer immunotherapy.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China.
| | - Ruiliu Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Ruoshui Yuan
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Lin Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Qiao Qiao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Zhenyuan Han
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Qingxiang Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Yuke Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Yuxing Guo
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Chuanbin Guo
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China.
| |
Collapse
|
3
|
He Y, Li X, Li Y, Kuai D, Zhang H, Wang Y, Tian W. Dehydroepiandrosterone with a high-fat diet treatment at inducing polycystic ovary syndrome in rat model. Steroids 2024; 206:109424. [PMID: 38642598 DOI: 10.1016/j.steroids.2024.109424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
OBJECTIVE This study aimed to evaluate the effects of dehydroepiandrosterone (DHEA) and DHEA combined with a high-fat diet (HFD) treatment of reproductive and endocrine metabolism in rats and then identify an ideal model of polycystic ovary syndrome (PCOS). METHODS Three-week-old female Sprague-Dawley rats were injected subcutaneously with DHEA or oil, fed with or without a HFD, for 21 days, during which body weight, feed intake, and estrous cycle monitoring were carried out. Fasting blood glucose was measured, and serum fasting insulin, testosterone, dihydrotestosterone (DHT), estradiol, progesterone, luteinizing hormone (LH), anti-Müllerian hormone (AMH), and follicle-stimulating hormone (FSH) were estimated by ELISA. Serum total cholesterol (TC), total triglycerides (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) were measured by colorimetric assay. Whereas, histologic changes in rat ovaries were evaluated by H&E staining. Ovarian steroid hormone synthases and their protein levels (StAR, 3β-HSD2, 17β-HSD1, CYP11A1, CYP17A1, and CYP19A1) were examined by Western blotting. RESULTS Both DHEA and DHEA + HFD-treated rats lost a regular estrous cycle; had polycystic ovarian changes, significantly higher serum fasting insulin and testosterone levels; and increased ovarian StAR, 3β-HSD2, and CYP11A1 protein levels. Additionally, rats in the DHEA + HFD-treated group were obese; had elevated fasting blood glucose, TG, DHT, AMH levels and LH:FSH ratios; increased ovarian 17β-HSD1 protein levels. CONCLUSION DHEA combined with HFD treatment is more effective at inducing PCOS than DHEA alone. The reproductive and endocrine metabolic aspects of this method are more consistent with the clinical characteristics of PCOS patients.
Collapse
Affiliation(s)
- Ying He
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoyan Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Yueying Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Dan Kuai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Huiying Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenyan Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
4
|
Dar MA, Maqbool M, Ara I. The PCOS puzzle: putting the pieces together for optimal care. Int J Adolesc Med Health 2023; 35:299-311. [PMID: 37596861 DOI: 10.1515/ijamh-2023-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 07/30/2023] [Indexed: 08/20/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a multifaceted hormonal disorder that has significant ramifications for both women's reproductive and metabolic well-being. This analysis aims to offer a thorough comprehension of PCOS by investigating the various contributing factors that are crucial for its effective management. We delve into the topic of hormonal imbalances, such as elevated androgens and disrupted estrogen-progesterone dynamics, and their effects on reproductive and metabolic health. Furthermore, we explore the intricate connection between insulin resistance, hyperinsulinemia, and PCOS, highlighting their pivotal role in metabolic dysfunction. Additionally, we examine fertility challenges, irregular menstrual patterns, and metabolic complications while also reviewing current treatment methodologies. Moreover, we address the latest research concerning genetic, environmental, and epigenetic influences on PCOS. By piecing together these essential elements, healthcare professionals can attain a comprehensive understanding of PCOS and deliver optimal care for those affected by the condition.
Collapse
Affiliation(s)
- Mohd Altaf Dar
- Department of Pharmacology, CT Institute of Pharmaceutical Sciences, PTU, Jalandhar, Punjab, India
| | - Mudasir Maqbool
- Department of Pharmaceutical Sciences, University Of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Irfat Ara
- Regional Research Institute of Unani Medicine, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
5
|
Zhou C, Gao Y, Ding P, Wu T, Ji G. The role of CXCL family members in different diseases. Cell Death Discov 2023; 9:212. [PMID: 37393391 DOI: 10.1038/s41420-023-01524-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Chemokines are a large family mediating a lot of biological behaviors including chemotaxis, tumor growth, angiogenesis and so on. As one member of this family, CXC subfamily possesses the same ability. CXC chemokines can recruit and migrate different categories of immune cells, regulate tumor's pathological behaviors like proliferation, invasion and metastasis, activate angiogenesis, etc. Due to these characteristics, CXCL subfamily is extensively and closely associated with tumors and inflammatory diseases. As studies are becoming more and more intensive, CXCLs' concrete roles are better described, and CXCLs' therapeutic applications including biomarkers and targets are also deeply explained. In this review, the role of CXCL family members in various diseases is summarized.
Collapse
Affiliation(s)
- Chenjia Zhou
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Ying Gao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Peilun Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China.
| |
Collapse
|
6
|
Pervaz S, Ullah A, Adu-Gyamfi EA, Lamptey J, Sah SK, Wang MJ, Wang YX. Role of CPXM1 in Impaired Glucose Metabolism and Ovarian Dysfunction in Polycystic Ovary Syndrome. Reprod Sci 2023; 30:526-543. [PMID: 35697923 DOI: 10.1007/s43032-022-00987-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022]
Abstract
Polycystic ovary syndrome (PCOS), a common female endocrinopathy associated with both reproductive and metabolic disorders, has an unclear etiology and unsatisfactory management methods. Carboxypeptidase X, M14 family member 1 (CPXM1) is a protein involved in follicular atresia, insulin production, and adipose tissue production, though its role in PCOS is not fully understood. We used a 60% high-fat diet (HFD) plus dehydroepiandrosterone (DHEA)-induced PCOS mouse model to determine the role of CPXM1 in abnormal glucose metabolism and ovarian dysfunction in PCOS. We found that serum CPXM1 concentrations were higher in PCOS mice and positively correlated with increased levels of serum testosterone and insulin. In both ovarian and adipose tissues of PCOS mice, CPXM1 mRNA and protein levels were significantly increased but GLUT4 levels were significantly decreased. Immunohistochemistry (IHC) staining of the ovary showed increased CPXM1 expression in PCOS. In addition, the protein expression of phosphorylated protein kinase B (p-Akt) was also significantly decreased in PCOS mice. Furthermore, mRNA levels of inflammatory markers such as TNF-α, IL-6, IFN-α, and IFN-γ were increased in ovarian and adipose tissues of PCOS mice. However, IRS-1, IRS-2, and INSR levels were significantly decreased. Our results indicated for the first time that abnormally high expression of CPXM1, increased adiposity, impaired glucose tolerance, and chronic low-grade inflammation may act together in a vicious cycle in the pathophysiology of PCOS. Our research suggests the possibility of CPXM1 as a potential therapeutic target for the treatment of PCOS.
Collapse
Affiliation(s)
- Sadaf Pervaz
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, YiXueYuanLu Street No.1, YuZhong District, Chongqing, People's Republic of China
| | - Amin Ullah
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, YiXueYuanLu Street No.1, YuZhong District, Chongqing, People's Republic of China
| | - Enoch Appiah Adu-Gyamfi
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, YiXueYuanLu Street No.1, YuZhong District, Chongqing, People's Republic of China
| | - Jones Lamptey
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, YiXueYuanLu Street No.1, YuZhong District, Chongqing, People's Republic of China.,Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| | - Sanjay Kumar Sah
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, YiXueYuanLu Street No.1, YuZhong District, Chongqing, People's Republic of China
| | - Mei-Jiao Wang
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, YiXueYuanLu Street No.1, YuZhong District, Chongqing, People's Republic of China. .,Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China.
| | - Ying-Xiong Wang
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, YiXueYuanLu Street No.1, YuZhong District, Chongqing, People's Republic of China. .,Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|