1
|
Hong SL, Zhang MF, Wang X, Liu H, Zhang N, Tang M, Li W. Magnetic-based Microfluidic Chip: A Powerful Tool for Pathogen Detection and Affinity Reagents Selection. Crit Rev Anal Chem 2023; 54:2658-2669. [PMID: 37004164 DOI: 10.1080/10408347.2023.2195940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The global outbreak of pathogen diseases has brought a huge risk to human lives and social development. Rapid diagnosis is the key strategy to fight against pathogen diseases. Development of detection methods and discovery of related affinity reagents are important parts of pathogen diagnosis. Conventional detection methods and affinity reagents discovery have some problems including much reagent consumption and labor intensity. Magnetic-based microfluidic chip integrates the unique advantages of magnetism and microfluidic technology, improving a powerful tool for pathogen detection and their affinity reagent discovery. This review provides a summary about the summary of pathogen detection through magnetic-based microfluidic chip, which refers to the pathogen nucleic acid detection (including extraction, amplification and signal acquisition), pathogen proteins and antibodies detection. Meanwhile, affinity reagents are served as the critical tool to specially capture pathogens. New affinity reagents are discovered to further facilitate the pathogen diagnosis. Microfluidic technology has also emerged as a powerful tool for affinity reagents discovery. Thus, this review further introduced the selection progress of aptamer as next generation affinity through the magnetic-based microfluidic technology. Using this selection technology shows great potential to improve selection performance, including integration and highly efficient selection. Finally, an outlook is given on how this field will develop on the basis of ongoing pathogen challenges.
Collapse
Affiliation(s)
- Shao-Li Hong
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, People's Republic of China
| | - Meng-Fan Zhang
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Xuan Wang
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Huihong Liu
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Nangang Zhang
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Man Tang
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Wei Li
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| |
Collapse
|
2
|
Guliy O, Zaitsev B, Teplykh A, Balashov S, Fomin A, Staroverov S, Borodina I. Acoustical Slot Mode Sensor for the Rapid Coronaviruses Detection. SENSORS 2021; 21:s21051822. [PMID: 33807879 PMCID: PMC7961855 DOI: 10.3390/s21051822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/02/2022]
Abstract
A method for the rapid detection of coronaviruses is presented on the example of the transmissible gastroenteritis virus (TGEV) directly in aqueous solutions with different conductivity. An acoustic sensor based on a slot wave in an acoustic delay line was used for the research. The addition of anti-TGEV antibodies (Abs) diluted in an aqueous solution led to a change in the depth and frequency of resonant peaks on the frequency dependence of the insertion loss of the sensor. The difference in the output parameters of the sensor before and after the biological interaction of the TGE virus in solutions with the specific antibodies allows drawing a conclusion about the presence/absence of the studied viruses in the analyzed solution. The possibility for virus detection in aqueous solutions with the conductivity of 1.9–900 μs/cm, as well as in the presence of the foreign viral particles, has been demonstrated. The analysis time did not exceed 10 min.
Collapse
Affiliation(s)
- Olga Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov 410049, Russia; (O.G.); (A.F.); (S.S.)
| | - Boris Zaitsev
- Kotel’nikov Institute of Radio Engineering and Electronics of RAS, Saratov Branch, Saratov 410019, Russia; (B.Z.); (A.T.)
| | - Andrey Teplykh
- Kotel’nikov Institute of Radio Engineering and Electronics of RAS, Saratov Branch, Saratov 410019, Russia; (B.Z.); (A.T.)
| | - Sergey Balashov
- Information Technology Center Renato Archer, Campinas CEP, SP 13069-901, Brazil;
| | - Alexander Fomin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov 410049, Russia; (O.G.); (A.F.); (S.S.)
| | - Sergey Staroverov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov 410049, Russia; (O.G.); (A.F.); (S.S.)
| | - Irina Borodina
- Kotel’nikov Institute of Radio Engineering and Electronics of RAS, Saratov Branch, Saratov 410019, Russia; (B.Z.); (A.T.)
- Correspondence: ; Tel.: +7-8452-272401
| |
Collapse
|
3
|
Tamarin O, Rube M, Lachaud JL, Raimbault V, Rebière D, Dejous C. Mobile Acoustic Wave Platform Deployment in the Amazon River: Impact of the Water Sample on the Love Wave Sensor Response. SENSORS 2019; 20:s20010072. [PMID: 31877726 PMCID: PMC6982920 DOI: 10.3390/s20010072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/14/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022]
Abstract
This paper presents an experimental platform allowing in situ measurement in an aqueous medium using an acoustic Love wave sensor. The aim of this platform, which includes the sensor, a test cell for electrical connections, a microfluidic chip, and a readout electronic circuit, is to realize a first estimation of water quality without transportation of water samples from the field to the laboratory as a medium-term objective. In the first step, to validate the ability of such a platform to operate in the field and in Amazonian water, an isolated and difficult-to-access location, namely, the floodplain Logo Do Curuaï in the Brazilian Amazon, was chosen. The ability of such a platform to be transported, installed on site, and used is discussed in terms of user friendliness and versatility. The response of the Love wave sensor to in situ water samples is estimated according to the physical parameters of Amazonian water. Finally, the very good quality of the acoustic response is established, potential further improvements are discussed, and the paper is concluded.
Collapse
Affiliation(s)
- Ollivier Tamarin
- Université de Guyane, UMR 228 Espace-Dev, F-97300 Cayenne, France;
- Université de Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, F-33400 33400 Talence, France; (J.L.L.); (D.R.); (C.D.)
- Correspondence:
| | - Maxence Rube
- Université de Guyane, UMR 228 Espace-Dev, F-97300 Cayenne, France;
- Université de Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, F-33400 33400 Talence, France; (J.L.L.); (D.R.); (C.D.)
| | - Jean Luc Lachaud
- Université de Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, F-33400 33400 Talence, France; (J.L.L.); (D.R.); (C.D.)
| | | | - Dominique Rebière
- Université de Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, F-33400 33400 Talence, France; (J.L.L.); (D.R.); (C.D.)
| | - Corinne Dejous
- Université de Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, F-33400 33400 Talence, France; (J.L.L.); (D.R.); (C.D.)
| |
Collapse
|
4
|
Xu Z, Yuan YJ. Implementation of guiding layers of surface acoustic wave devices: A review. Biosens Bioelectron 2018; 99:500-512. [DOI: 10.1016/j.bios.2017.07.060] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/14/2017] [Accepted: 07/25/2017] [Indexed: 12/14/2022]
|
5
|
Sheikh S, Blaszykowski C, Thompson M. Acoustic Wave-Based Detection in Bioanalytical Chemistry: Competition for Surface Plasmon Resonance? ANAL LETT 2008. [DOI: 10.1080/00032710802368106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|