1
|
Fritz J, Rashidi A, de Cesar Netto C. Magnetic Resonance Imaging of Total Ankle Arthroplasty: State-of-The-Art Assessment of Implant-Related Pain and Dysfunction. Clin Podiatr Med Surg 2024; 41:619-647. [PMID: 39237176 DOI: 10.1016/j.cpm.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Total ankle arthroplasty (TAA) is an effective alternative for treating patients with end-stage ankle degeneration, improving mobility, and providing pain relief. Implant survivorship is constantly improving; however, complications occur. Many causes of pain and dysfunction after total ankle arthroplasty can be diagnosed accurately with clinical examination, laboratory, radiography, and computer tomography. However, when there are no or inconclusive imaging findings, magnetic resonance imaging (MRI) is highly accurate in identifying and characterizing bone resorption, osteolysis, infection, osseous stress reactions, nondisplaced fractures, polyethylene damage, nerve injuries and neuropathies, as well as tendon and ligament tears. Multiple vendors offer effective, clinically available MRI techniques for metal artifact reduction MRI of total ankle arthroplasty. This article reviews the MRI appearances of common TAA implant systems, clinically available techniques and protocols for metal artifact reduction MRI of TAA implants, and the MRI appearances of a broad spectrum of TAA-related complications.
Collapse
Affiliation(s)
- Jan Fritz
- Department of Orthopedic Surgery, Division of Foot and Ankle Surgery, Duke University, Durham, NC, USA.
| | - Ali Rashidi
- Division of Musculoskeletal Radiology, Department of Radiology, NYU Grossman School of Medicine, 660 1st Ave, 3rd Floor, Rm 313, New York, NY 10016, USA
| | - Cesar de Cesar Netto
- Department of Radiology, Molecular Imaging Program at StanDepartment of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
2
|
Fritz B, de Cesar Netto C, Fritz J. Multiaxial 3D MRI of the Ankle: Advanced High-Resolution Visualization of Ligaments, Tendons, and Articular Cartilage. Clin Podiatr Med Surg 2024; 41:685-706. [PMID: 39237179 DOI: 10.1016/j.cpm.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
MRI is a valuable tool for diagnosing a broad spectrum of acute and chronic ankle disorders, including ligament tears, tendinopathy, and osteochondral lesions. Traditional two-dimensional (2D) MRI provides a high image signal and contrast of anatomic structures for accurately characterizing articular cartilage, bone marrow, synovium, ligaments, tendons, and nerves. However, 2D MRI limitations are thick slices and fixed slice orientations. In clinical practice, 2D MRI is limited to 2 to 3 mm slice thickness, which can cause blurred contours of oblique structures due to volume averaging effects within the image slice. In addition, image plane orientations are fixated and cannot be changed after the scan, resulting in 2D MRI lacking multiplanar and multiaxial reformation abilities for individualized image plane orientations along oblique and curved anatomic structures, such as ankle ligaments and tendons. In contrast, three-dimensional (3D) MRI is a newer, clinically available MRI technique capable of acquiring high-resolution ankle MRI data sets with isotropic voxel size. The inherently high spatial resolution of 3D MRI permits up to five times thinner (0.5 mm) image slices. In addition, 3D MRI can be acquired image voxel with the same edge length in all three space dimensions (isotropism), permitting unrestricted multiplanar and multiaxial image reformation and postprocessing after the MRI scan. Clinical 3D MRI of the ankle with 0.5 to 0.7 mm isotropic voxel size resolves the smallest anatomic ankle structures and abnormalities of ligament and tendon fibers, osteochondral lesions, and nerves. After acquiring the images, operators can align image planes individually along any anatomic structure of interest, such as ligaments and tendons segments. In addition, curved multiplanar image reformations can unfold the entire course of multiaxially curved structures, such as perimalleolar tendons, into one image plane. We recommend adding 3D MRI pulse sequences to traditional 2D MRI protocols to visualize small and curved ankle structures to better advantage. This article provides an overview of the clinical application of 3D MRI of the ankle, compares diagnostic performances of 2D and 3D MRI for diagnosing ankle abnormalities, and illustrates clinical 3D ankle MRI applications.
Collapse
Affiliation(s)
- Benjamin Fritz
- Department of Radiology, Balgrist University Hospital, Forchstrasse 340, Zurich 8008, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Cesar de Cesar Netto
- Department of Orthopaedics and Rehabilitation, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Jan Fritz
- Department of Radiology, Division of Musculoskeletal Radiology, NYU Grossman School of Medicine, 660 1st Avenue, New York, NY 10016, USA.
| |
Collapse
|
3
|
Fritz B. [Imaging of the anterior cruciate ligament and anterolateral rotational instability of the knee joint]. RADIOLOGIE (HEIDELBERG, GERMANY) 2024; 64:261-270. [PMID: 38441595 DOI: 10.1007/s00117-024-01278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/28/2024]
Abstract
The anterior cruciate ligament (ACL) is essential for the stability of the knee joint and ACL tears are one of the most common sports injuries with a high incidence, especially in sports that require rotational movements and abrupt changes in direction. Injuries of the ACL are rarely isolated and are often accompanied by meniscal and other internal knee injuries, which increase the risk of osteoarthritis. The spectrum of ACL injuries includes strains, partial tears and complete tears. Magnetic resonance imaging (MRI) plays a pivotal role in the diagnostics as it can accurately depict not only the ACL but also accompanying injuries. Proton density and T2-weighted sequences are particularly suitable for evaluating the ACL, which is usually well visible and assessable in all planes. In addition to depicting fiber disruption as a direct sign and central diagnostic indicator of an ACL tear, there are numerous other direct and indirect signs of an ACL injury in MRI. These include abnormal fiber orientations, signal increases and an anterior subluxation of the tibia relative to the femur. The bone marrow edema patterns often associated with ACL tears are indicative of the underlying injury mechanism. The treatment of ACL tears can be conservative or surgical depending on various factors, such as the patient's activity level and the presence of accompanying injuries. The precise and comprehensive description of ACL injuries by radiology is crucial for optimal treatment planning. Anterolateral rotational instability (ALRI) of the knee joint characterizes a condition of excessive lateral and rotational mobility of the tibia in relation to the femur in the anterolateral knee region. This instability is primarily caused by a rupture of the ACL, with the anterolateral ligament (ALL) that was rediscovered about 10 years ago, also being attributed a role in stabilizing the knee. Although ALRI is primarily diagnosed through clinical examinations, MRI is indispensable for detecting injuries to the ACL, ALL, and other internal knee structures, which is essential for developing an optimal treatment strategy.
Collapse
Affiliation(s)
- Benjamin Fritz
- Abteilung für Radiologie, Universitätsklinik Balgrist, Forchstr. 340, 8008, Zürich, Schweiz.
- Medizinische Fakultät, Universität Zürich, Zürich, Schweiz.
| |
Collapse
|
4
|
Jadidi S, Lee AD, Pierko EJ, Choi H, Jones NS. Non-operative Management of Acute Knee Injuries. Curr Rev Musculoskelet Med 2024; 17:1-13. [PMID: 38095838 PMCID: PMC10767052 DOI: 10.1007/s12178-023-09875-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE OF REVIEW Acute knee injuries are commonly encountered in both the clinical and sideline setting and may be treated operatively or non-operatively. This article describes an evidence-based approach to non-operative acute knee injury. This includes history, physical exam, imaging, and initial management. In addition, the non-operative management of three such injuries-ligament injury, meniscus injury, and patellar dislocation injury-will be discussed via a case-based practical approach. RECENT FINDINGS Aside from grade III ACL tears, most acute knee ligament injuries, especially in the absence of other concurrent injuries, can be treated non-operatively. There is new evidence that acute traumatic meniscus tears in those younger than 40 can be successfully treated non-operatively and can do equally, as well as those that undergo surgery, at 1 year out from injury. Based on the current literature, a short period of knee bracing in extension with progression to weightbearing to tolerance is recommended after initial patellar dislocation. Many of the most common acute knee injuries, including MCL tears, meniscus tears, and patellar dislocations, can be managed non-operatively. A detailed systemic approach to initial evaluation, including pertinent history, physical exam, and appropriate imaging, is essential and complementary to the subsequent non-operative treatment algorithm.
Collapse
Affiliation(s)
- Shaheen Jadidi
- Department of Orthopedics, Edward-Elmhurst Health, Naperville, IL, USA
| | - Aaron D Lee
- Department of Orthopedics and Family Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Eliza J Pierko
- Department of Orthopedics and Family Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Haemi Choi
- Department of Orthopedics and Family Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Nathaniel S Jones
- Department of Orthopedics and Family Medicine, Loyola University Medical Center, Maywood, IL, USA.
| |
Collapse
|
5
|
Fritz B, de Cesar Netto C, Fritz J. Multiaxial 3D MRI of the Ankle: Advanced High-Resolution Visualization of Ligaments, Tendons, and Articular Cartilage. Foot Ankle Clin 2023; 28:529-550. [PMID: 37536817 DOI: 10.1016/j.fcl.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
MRI is a valuable tool for diagnosing a broad spectrum of acute and chronic ankle disorders, including ligament tears, tendinopathy, and osteochondral lesions. Traditional two-dimensional (2D) MRI provides a high image signal and contrast of anatomic structures for accurately characterizing articular cartilage, bone marrow, synovium, ligaments, tendons, and nerves. However, 2D MRI limitations are thick slices and fixed slice orientations. In clinical practice, 2D MRI is limited to 2 to 3 mm slice thickness, which can cause blurred contours of oblique structures due to volume averaging effects within the image slice. In addition, image plane orientations are fixated and cannot be changed after the scan, resulting in 2D MRI lacking multiplanar and multiaxial reformation abilities for individualized image plane orientations along oblique and curved anatomic structures, such as ankle ligaments and tendons. In contrast, three-dimensional (3D) MRI is a newer, clinically available MRI technique capable of acquiring high-resolution ankle MRI data sets with isotropic voxel size. The inherently high spatial resolution of 3D MRI permits up to five times thinner (0.5 mm) image slices. In addition, 3D MRI can be acquired image voxel with the same edge length in all three space dimensions (isotropism), permitting unrestricted multiplanar and multiaxial image reformation and postprocessing after the MRI scan. Clinical 3D MRI of the ankle with 0.5 to 0.7 mm isotropic voxel size resolves the smallest anatomic ankle structures and abnormalities of ligament and tendon fibers, osteochondral lesions, and nerves. After acquiring the images, operators can align image planes individually along any anatomic structure of interest, such as ligaments and tendons segments. In addition, curved multiplanar image reformations can unfold the entire course of multiaxially curved structures, such as perimalleolar tendons, into one image plane. We recommend adding 3D MRI pulse sequences to traditional 2D MRI protocols to visualize small and curved ankle structures to better advantage. This article provides an overview of the clinical application of 3D MRI of the ankle, compares diagnostic performances of 2D and 3D MRI for diagnosing ankle abnormalities, and illustrates clinical 3D ankle MRI applications.
Collapse
Affiliation(s)
- Benjamin Fritz
- Department of Radiology, Balgrist University Hospital, Forchstrasse 340, Zurich 8008, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Cesar de Cesar Netto
- Department of Orthopaedics and Rehabilitation, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Jan Fritz
- Department of Radiology, Division of Musculoskeletal Radiology, NYU Grossman School of Medicine, 660 1st Avenue, New York, NY 10016, USA.
| |
Collapse
|
6
|
Fritz J, Rashidi A, de Cesar Netto C. Magnetic Resonance Imaging of Total Ankle Arthroplasty: State-of-The-Art Assessment of Implant-Related Pain and Dysfunction. Foot Ankle Clin 2023; 28:463-492. [PMID: 37536814 DOI: 10.1016/j.fcl.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Total ankle arthroplasty (TAA) is an effective alternative for treating patients with end-stage ankle degeneration, improving mobility, and providing pain relief. Implant survivorship is constantly improving; however, complications occur. Many causes of pain and dysfunction after total ankle arthroplasty can be diagnosed accurately with clinical examination, laboratory, radiography, and computer tomography. However, when there are no or inconclusive imaging findings, magnetic resonance imaging (MRI) is highly accurate in identifying and characterizing bone resorption, osteolysis, infection, osseous stress reactions, nondisplaced fractures, polyethylene damage, nerve injuries and neuropathies, as well as tendon and ligament tears. Multiple vendors offer effective, clinically available MRI techniques for metal artifact reduction MRI of total ankle arthroplasty. This article reviews the MRI appearances of common TAA implant systems, clinically available techniques and protocols for metal artifact reduction MRI of TAA implants, and the MRI appearances of a broad spectrum of TAA-related complications.
Collapse
Affiliation(s)
- Jan Fritz
- Department of Orthopedic Surgery, Division of Foot and Ankle Surgery, Duke University, Durham, NC, USA.
| | - Ali Rashidi
- Division of Musculoskeletal Radiology, Department of Radiology, NYU Grossman School of Medicine, 660 1st Ave, 3rd Floor, Rm 313, New York, NY 10016, USA
| | - Cesar de Cesar Netto
- Department of Radiology, Molecular Imaging Program at StanDepartment of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
7
|
Park EH, Fritz J. The role of imaging in osteoarthritis. Best Pract Res Clin Rheumatol 2023; 37:101866. [PMID: 37659890 DOI: 10.1016/j.berh.2023.101866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 09/04/2023]
Abstract
Osteoarthritis is a complex whole-organ disorder that involves molecular, anatomic, and physiologic derangement. Advances in imaging techniques have expanded the role of imaging in evaluating osteoarthritis and functional changes. Radiography, magnetic resonance imaging, computed tomography (CT), and ultrasonography are commonly used imaging modalities, each with advantages and limitations in evaluating osteoarthritis. Radiography comprehensively analyses alignment and osseous features, while MRI provides detailed information about cartilage damage, bone marrow edema, synovitis, and soft tissue abnormalities. Compositional imaging derives quantitative data for detecting cartilage and tendon degeneration before structural damage occurs. Ultrasonography permits real-time scanning and dynamic joint evaluation, whereas CT is useful for assessing final osseous detail. Imaging plays an essential role in the diagnosis, management, and research of osteoarthritis. The use of imaging can help differentiate osteoarthritis from other diseases with similar symptoms, and recent advances in deep learning have made the acquisition, management, and interpretation of imaging data more efficient and accurate. Imaging is useful in monitoring and predicting the prognosis of osteoarthritis, expanding our understanding of its pathophysiology. Ultimately, this enables early detection and personalized medicine for patients with osteoarthritis. This article reviews the current state of imaging in osteoarthritis, focusing on the strengths and limitations of various imaging modalities, and introduces advanced techniques, including deep learning, applied in clinical practice.
Collapse
Affiliation(s)
- Eun Hae Park
- Division of Musculoskeletal Radiology, Department of Radiology, NYU Grossman School of Medicine, New York, USA; Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Jan Fritz
- Division of Musculoskeletal Radiology, Department of Radiology, NYU Grossman School of Medicine, New York, USA.
| |
Collapse
|