1
|
Abstract
PURPOSE OF REVIEW We review pathophysiology and clinical features of mitochondrial disorders manifesting with cardiomyopathy. RECENT FINDINGS Mechanistic studies have shed light into the underpinnings of mitochondrial disorders, providing novel insights into mitochondrial physiology and identifying new therapeutic targets. Mitochondrial disorders are a group of rare genetic diseases that are caused by mutations in mitochondrial DNA (mtDNA) or in nuclear genes that are essential to mitochondrial function. The clinical picture is extremely heterogeneous, the onset can occur at any age, and virtually, any organ or tissue can be involved. Since the heart relies primarily on mitochondrial oxidative metabolism to fuel contraction and relaxation, cardiac involvement is common in mitochondrial disorders and often represents a major determinant of their prognosis.
Collapse
Affiliation(s)
- Tudor-Alexandru Popoiu
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Wurzburg, Germany
- "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Wurzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Wurzburg, Germany
| | - Edoardo Bertero
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Wurzburg, Germany.
- Department of Internal Medicine and Specialties (Di.M.I.), University of Genoa, Genoa, Italy.
| |
Collapse
|
2
|
Boufroura FZ, Tomkiewicz-Raulet C, Poindessous V, Castille J, Vilotte JL, Bastin J, Mouillet-Richard S, Djouadi F. Cellular prion protein dysfunction in a prototypical inherited metabolic myopathy. Cell Mol Life Sci 2021; 78:2157-2167. [PMID: 32875355 PMCID: PMC11073170 DOI: 10.1007/s00018-020-03624-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
Inherited fatty acid oxidation diseases in their mild forms often present as metabolic myopathies. Carnitine Palmitoyl Transferase 2 (CPT2) deficiency, one such prototypical disorder is associated with compromised myotube differentiation. Here, we show that CPT2-deficient myotubes exhibit defects in focal adhesions and redox balance, exemplified by increased SOD2 expression. We document unprecedented alterations in the cellular prion protein PrPC, which directly arise from the failure in CPT2 enzymatic activity. We also demonstrate that the loss of PrPC function in normal myotubes recapitulates the defects in focal adhesion, redox balance and differentiation hallmarks monitored in CPT2-deficient cells. These results are further corroborated by studies performed in muscles from Prnp-/- mice. Altogether, our results unveil a molecular scenario, whereby PrPC dysfunction governed by faulty CPT2 activity may drive aberrant focal adhesion turnover and hinder proper myotube differentiation. Our study adds a novel facet to the involvement of PrPC in diverse physiopathological situations.
Collapse
Affiliation(s)
- Fatima-Zohra Boufroura
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université de Paris, 15, rue de L'Ecole de Médecine, 75006, Paris, France
| | - Céline Tomkiewicz-Raulet
- Centre Universitaire des Saints Pères, INSERM U1124, Sorbonne Université, Université de Paris, 75006, Paris, France
| | - Virginie Poindessous
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université de Paris, 15, rue de L'Ecole de Médecine, 75006, Paris, France
| | - Johan Castille
- Université Paris-Saclay, INRAE AgroParisTech, UMR1313 Génétique Animale et Biologie Intégrative, 78350, Jouy-en-Josas, France
| | - Jean-Luc Vilotte
- Université Paris-Saclay, INRAE AgroParisTech, UMR1313 Génétique Animale et Biologie Intégrative, 78350, Jouy-en-Josas, France
| | - Jean Bastin
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université de Paris, 15, rue de L'Ecole de Médecine, 75006, Paris, France
| | - Sophie Mouillet-Richard
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université de Paris, 15, rue de L'Ecole de Médecine, 75006, Paris, France.
| | - Fatima Djouadi
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université de Paris, 15, rue de L'Ecole de Médecine, 75006, Paris, France.
| |
Collapse
|
3
|
Maurer B. [Muscle Complaints - When to Evaluate Further?]. PRAXIS 2020; 109:355-359. [PMID: 32233757 DOI: 10.1024/1661-8157/a003441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Muscle Complaints - When to Evaluate Further? Abstract. Muscle complaints are frequently reported symptoms which can occur in the context of numerous and not always primary muscle diseases. Further diagnostic steps are not always warranted. The presence of distinct warning symptoms represents the base for further decision making. Warning symptoms include among others myalgia/weakness/atrophy/hypertrophy of distinct muscle groups, fasciculations, dysphagia, bulbar signs, abnormal reflexes, signs for a systemic autoimmune disorder/connective tissue disease or a persisting CK elevation (>1000 U/l) even in asymptomatic patients. Depending on the indication important diagnostic steps include lab tests, MRI, E(N)MG, specific endurance tests, muscle biopsy or genetic tests.
Collapse
|
4
|
Boufroura FZ, Le Bachelier C, Tomkiewicz-Raulet C, Schlemmer D, Benoist JF, Grondin P, Lamotte Y, Mirguet O, Mouillet-Richard S, Bastin J, Djouadi F. A new AMPK activator, GSK773, corrects fatty acid oxidation and differentiation defect in CPT2-deficient myotubes. Hum Mol Genet 2019; 27:3417-3433. [PMID: 30007356 DOI: 10.1093/hmg/ddy254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/04/2018] [Indexed: 02/07/2023] Open
Abstract
Carnitine palmitoyl transferase 2 (CPT2) deficiency is one of the most common inherited fatty acid oxidation (FAO) defects and represents a prototypical mitochondrial metabolic myopathy. Recent studies have suggested a pivotal role of adenosine monophosphate-activated protein kinase (AMPK) in skeletal muscle plasticity and mitochondrial homeostasis. Thus, we tested the potential of GSK773, a novel direct AMPK activator, to improve or correct FAO capacities in muscle cells from patients harboring various mutations. We used controls' and patients' myotubes and studied the parameters of FAO metabolism, of mitochondrial quantity and quality and of differentiation. We found that AMPK is constitutively activated in patients' myotubes, which exhibit both reduced FAO and impaired differentiation. GSK773 improves or corrects several metabolic hallmarks of CPT2 deficiency (deficient FAO flux and C16-acylcarnitine accumulation) by upregulating the expression of CPT2 protein. Beneficial effects of GSK773 are also likely due to stimulation of mitochondrial biogenesis and induction of mitochondrial fusion, by decreasing dynamin-related protein 1 and increasing mitofusin 2. GSK773 also induces a shift in myosin heavy chain isoforms toward the slow oxidative type and, therefore, fully corrects the differentiation process. We establish, through small interfering RNA knockdowns and pharmacological approaches, that these GSK773 effects are mediated through peroxisome proliferator-activated receptor gamma co-activator 1-alpha, reactive oxygen species and p38 mitogen-activated protein kinase, all key players of skeletal muscle plasticity. GSK773 recapitulates several important features of skeletal muscle adaptation to exercise. The results show that AMPK activation by GSK773 evokes the slow, oxidative myogenic program and triggers beneficial phenotypic adaptations in FAO-deficient myotubes. Thus, GSK773 might have therapeutic potential for correction of CPT2 deficiency.
Collapse
Affiliation(s)
- Fatima-Zohra Boufroura
- INSERM UMR-1124, Centre Universitaire des Saints-Pères, Université Paris Descartes, Paris, France
| | - Carole Le Bachelier
- INSERM UMR-1124, Centre Universitaire des Saints-Pères, Université Paris Descartes, Paris, France
| | - Céline Tomkiewicz-Raulet
- INSERM UMR-1124, Centre Universitaire des Saints-Pères, Université Paris Descartes, Paris, France
| | - Dimitri Schlemmer
- Service de Biochimie-Hormonologie, Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Robert Debré, Paris, France
| | - Jean-François Benoist
- Service de Biochimie-Hormonologie, Centre de Référence des Maladies Héréditaires du Métabolisme, Hôpital Robert Debré, Paris, France
| | - Pascal Grondin
- Laboratoires Oncodesign, Centre de Recherches François Hyafil, 91140 Villebon-sur-Yvette, France
| | - Yann Lamotte
- Laboratoires Oncodesign, Centre de Recherches François Hyafil, 91140 Villebon-sur-Yvette, France
| | | | - Sophie Mouillet-Richard
- INSERM UMR-S1147 MEPPOT, Centre Universitaire des Saints-Pères, Université Sorbonne Paris Cité, Paris, France
| | - Jean Bastin
- INSERM UMR-1124, Centre Universitaire des Saints-Pères, Université Paris Descartes, Paris, France
| | - Fatima Djouadi
- INSERM UMR-1124, Centre Universitaire des Saints-Pères, Université Paris Descartes, Paris, France
| |
Collapse
|
5
|
El-Gharbawy A, Vockley J. Inborn Errors of Metabolism with Myopathy: Defects of Fatty Acid Oxidation and the Carnitine Shuttle System. Pediatr Clin North Am 2018; 65:317-335. [PMID: 29502916 PMCID: PMC6566095 DOI: 10.1016/j.pcl.2017.11.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fatty acid oxidation disorders (FAODs) and carnitine shuttling defects are inborn errors of energy metabolism with associated mortality and morbidity due to cardiomyopathy, exercise intolerance, rhabdomyolysis, and liver disease with physiologic stress. Hypoglycemia is characteristically hypoketotic. Lactic acidemia and hyperammonemia may occur during decompensation. Recurrent rhabdomyolysis is debilitating. Expanded newborn screening can detect most of these disorders, allowing early, presymptomatic treatment. Treatment includes avoiding fasting and sustained extraneous exercise and providing high-calorie hydration during illness to prevent lipolysis, and medium-chain triglyceride oil supplementation in long-chain FAODs. Carnitine supplementation may be helpful. However, conventional treatment does not prevent all symptoms.
Collapse
Affiliation(s)
- Areeg El-Gharbawy
- Department of Pediatrics, Division of Medical Genetics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Cairo University, Kasr Al-Aini, Cairo, Egypt
| | - Jerry Vockley
- Department of Pediatrics, Division of Medical Genetics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| |
Collapse
|
6
|
El-Gharbawy A, Goldstein A. Mitochondrial Fatty Acid Oxidation Disorders Associated with Cardiac Disease. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0148-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Sjogren's syndrome: New paradigms and areas for future research. Clin Immunol 2017; 182:1-3. [PMID: 28673862 DOI: 10.1016/j.clim.2017.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/28/2017] [Indexed: 12/31/2022]
|
8
|
Stojan G, Christopher-Stine L. Metabolic, drug-induced, and other noninflammatory myopathies. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00151-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
9
|
Bushman RE, Patterson LK. Muscle pain in the emergency department: a case of myositis. J Pediatr Health Care 2012; 26:204-8. [PMID: 22277376 DOI: 10.1016/j.pedhc.2011.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 12/19/2011] [Accepted: 12/19/2011] [Indexed: 11/25/2022]
Affiliation(s)
- Rachael E Bushman
- Duke University School of Nursing, 307 Trent Drive, Durham, NC 27710, USA.
| | | |
Collapse
|