1
|
Xu C, Wang F, Guan S, Wang L. β-Glucans obtained from fungus for wound healing: A review. Carbohydr Polym 2024; 327:121662. [PMID: 38171680 DOI: 10.1016/j.carbpol.2023.121662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
The cell surface of fungus contains a large number of β-glucans, which exhibit various biological activities such as immunomodulatory, anti-inflammatory, and antioxidation. Fungal β-glucans with highly branched structure show great potential as wound healing reagents, because they can stimulate the expression of many immune- and inflammatory-related factors beneficial to wound healing. Recently, the wound healing ability of many fungal β-glucans have been investigated in animals and clinical trials. Studies have proved that fungal β-glucans can promote fibroblasts proliferation, collagen deposition, angiogenesis, and macrophage infiltration during the wound healing process. However, the development of fungal β-glucans as wound healing reagents is not systematically reviewed till now. This review discusses the wound healing studies of β-glucans obtained from different fungal species. The structure characteristics, extraction methods, and biological functions of fungal β-glucans with wound healing ability are summarized. Researches about fungal β-glucan-containing biomaterials and structurally modified β-glucans for wound healing are also involved.
Collapse
Affiliation(s)
- Chunhua Xu
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, Shandong Province, China
| | - Fengxia Wang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, Shandong Province, China
| | - Shibing Guan
- Department of Hand and Foot Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China.
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, Shandong Province, China.
| |
Collapse
|
2
|
Genesi BP, de Melo Barbosa R, Severino P, Rodas ACD, Yoshida CMP, Mathor MB, Lopes PS, Viseras C, Souto EB, Ferreira da Silva C. Aloe vera and copaiba oleoresin-loaded chitosan films for wound dressings: microbial permeation, cytotoxicity, and in vivo proof of concept. Int J Pharm 2023; 634:122648. [PMID: 36709832 DOI: 10.1016/j.ijpharm.2023.122648] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Chitosan films are commonly used for wound dressing, provided that this polymer has healing, mucoadhesiveness and antimicrobial properties. These properties can be further reinforced by the combination of chitosan with polysaccharides and glycoproteins present in aloe vera, together with copaiba oleoresin's pharmacological activity attributed to sesquiterpenes. In this work, we developed chitosan films containing either aloe vera, copaiba oil or both, by casting technique, and evaluated their microbial permeation, antimicrobial activity, cytotoxicity, and in vivo healing potential in female adult rats. None of the developed chitosan films promoted microbial permeation, while the cytotoxicity in Balb/c 3 T3 clone A31 cell line revealed no toxicity of films produced with 2 % of chitosan and up to 1 % of aloe vera and copaiba oleoresin. Films obtained with either 0.5 % chitosan or 0.5 % copaiba oleoresin induced cell proliferation which anticipate their potential for closure of wound and for the healing process. The in vivo results confirmed that tested films (0.5 % copaiba-loaded chitosan film and 0.5 % aloe vera-loaded chitosan film) were superior to a commercial dressing film. For all tested groups, a fully formed epithelium was seen, while neoformation of vessels seemed to be greater in formulations-treated groups than those treated with the control. Our work confirms the added value of combining chitosan with aloe vera and copaiba oil in the healing process of wounds.
Collapse
Affiliation(s)
- Bianca P Genesi
- Institute of Chemistry, Environmental and Pharmaceutics Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Raquel de Melo Barbosa
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Granada, Spain; Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Patricia Severino
- Instituto de Pesquisa e Tecnologia, Universidade Tiradentes, Aracaju, Sergipe, Brazil
| | | | - Cristiana M P Yoshida
- Institute of Chemistry, Environmental and Pharmaceutics Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Mônica B Mathor
- Nuclear and Energy Research Institute (IPEN/CNEN), São Paulo, Brazil
| | - Patrícia S Lopes
- Institute of Chemistry, Environmental and Pharmaceutics Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Granada, Spain
| | - Eliana B Souto
- UCIBIO - Applied Molecular Biosciences Unit, MEDTECH, Department of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Classius Ferreira da Silva
- Institute of Chemistry, Environmental and Pharmaceutics Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil.
| |
Collapse
|
3
|
Ji M, Li J, Wang Y, Li F, Man J, Li J, Zhang C, Peng S, Wang S. Advances in chitosan-based wound dressings: Modifications, fabrications, applications and prospects. Carbohydr Polym 2022; 297:120058. [DOI: 10.1016/j.carbpol.2022.120058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 12/15/2022]
|
4
|
Hamidi M, Okoro OV, Milan PB, Khalili MR, Samadian H, Nie L, Shavandi A. Fungal exopolysaccharides: Properties, sources, modifications, and biomedical applications. Carbohydr Polym 2022; 284:119152. [DOI: 10.1016/j.carbpol.2022.119152] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/04/2022] [Accepted: 01/15/2022] [Indexed: 12/20/2022]
|
5
|
Rajestary R, Landi L, Romanazzi G. Chitosan and postharvest decay of fresh fruit: Meta‐analysis of disease control and antimicrobial and eliciting activities. Compr Rev Food Sci Food Saf 2020; 20:563-582. [DOI: 10.1111/1541-4337.12672] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Razieh Rajestary
- Department of Agricultural, Food and Environmental Sciences Marche Polytechnic University Via Brecce Bianche 10 Ancona Italy
| | - Lucia Landi
- Department of Agricultural, Food and Environmental Sciences Marche Polytechnic University Via Brecce Bianche 10 Ancona Italy
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences Marche Polytechnic University Via Brecce Bianche 10 Ancona Italy
| |
Collapse
|
6
|
Tabernero A, Cardea S. Microbial Exopolysaccharides as Drug Carriers. Polymers (Basel) 2020; 12:E2142. [PMID: 32961830 PMCID: PMC7570138 DOI: 10.3390/polym12092142] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022] Open
Abstract
Microbial exopolysaccharides are peculiar polymers that are produced by living organisms and protect them against environmental factors. These polymers are industrially recovered from the medium culture after performing a fermentative process. These materials are biocompatible and biodegradable, possessing specific and beneficial properties for biomedical drug delivery systems. They can have antitumor activity, they can produce hydrogels with different characteristics due to their molecular structure and functional groups, and they can even produce nanoparticles via a self-assembly phenomenon. This review studies the potential use of exopolysaccharides as carriers for drug delivery systems, covering their versatility and their vast possibilities to produce particles, fibers, scaffolds, hydrogels, and aerogels with different strategies and methodologies. Moreover, the main properties of exopolysaccharides are explained, providing information to achieve an adequate carrier selection depending on the final application.
Collapse
Affiliation(s)
- Antonio Tabernero
- Department of Chemical Engineering, University of Salamanca, Plaza los Caídos s/n, 37008 Salamanca, Spain;
| | - Stefano Cardea
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
7
|
Luft L, Confortin TC, Todero I, Zabot GL, Mazutti MA. An overview of fungal biopolymers: bioemulsifiers and biosurfactants compounds production. Crit Rev Biotechnol 2020; 40:1059-1080. [DOI: 10.1080/07388551.2020.1805405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Luciana Luft
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Tássia C. Confortin
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Izelmar Todero
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Giovani L. Zabot
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, Cachoeira do Sul, Brazil
| | - Marcio A. Mazutti
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, Brazil
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
8
|
Cottet C, Ramirez-Tapias YA, Delgado JF, de la Osa O, Salvay AG, Peltzer MA. Biobased Materials from Microbial Biomass and Its Derivatives. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1263. [PMID: 32168751 PMCID: PMC7143539 DOI: 10.3390/ma13061263] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 01/15/2023]
Abstract
There is a strong public concern about plastic waste, which promotes the development of new biobased materials. The benefit of using microbial biomass for new developments is that it is a completely renewable source of polymers, which is not limited to climate conditions or may cause deforestation, as biopolymers come from vegetal biomass. The present review is focused on the use of microbial biomass and its derivatives as sources of biopolymers to form new materials. Yeast and fungal biomass are low-cost and abundant sources of biopolymers with high promising properties for the development of biodegradable materials, while milk and water kefir grains, composed by kefiran and dextran, respectively, produce films with very good optical and mechanical properties. The reasons for considering microbial cellulose as an attractive biobased material are the conformational structure and enhanced properties compared to plant cellulose. Kombucha tea, a probiotic fermented sparkling beverage, produces a floating membrane that has been identified as bacterial cellulose as a side stream during this fermentation. The results shown in this review demonstrated the good performance of microbial biomass to form new materials, with enhanced functional properties for different applications.
Collapse
Affiliation(s)
- Celeste Cottet
- Materials Development and Evaluation Laboratory (LOMCEM), Department of Science and Technology, National University of Quilmes, B1876BXD Bernal, Argentina; (C.C.); (Y.A.R.-T.); (J.F.D.); (O.d.l.O.); (A.G.S.)
- Scientific Research Commission (CIC), B1900 La Plata, Buenos Aires, Argentina
| | - Yuly A. Ramirez-Tapias
- Materials Development and Evaluation Laboratory (LOMCEM), Department of Science and Technology, National University of Quilmes, B1876BXD Bernal, Argentina; (C.C.); (Y.A.R.-T.); (J.F.D.); (O.d.l.O.); (A.G.S.)
- National Scientific and Technical Research Council (CONICET), C1425FQB CABA, Buenos Aires, Argentina
| | - Juan F. Delgado
- Materials Development and Evaluation Laboratory (LOMCEM), Department of Science and Technology, National University of Quilmes, B1876BXD Bernal, Argentina; (C.C.); (Y.A.R.-T.); (J.F.D.); (O.d.l.O.); (A.G.S.)
- National Scientific and Technical Research Council (CONICET), C1425FQB CABA, Buenos Aires, Argentina
| | - Orlando de la Osa
- Materials Development and Evaluation Laboratory (LOMCEM), Department of Science and Technology, National University of Quilmes, B1876BXD Bernal, Argentina; (C.C.); (Y.A.R.-T.); (J.F.D.); (O.d.l.O.); (A.G.S.)
| | - Andrés G. Salvay
- Materials Development and Evaluation Laboratory (LOMCEM), Department of Science and Technology, National University of Quilmes, B1876BXD Bernal, Argentina; (C.C.); (Y.A.R.-T.); (J.F.D.); (O.d.l.O.); (A.G.S.)
| | - Mercedes A. Peltzer
- Materials Development and Evaluation Laboratory (LOMCEM), Department of Science and Technology, National University of Quilmes, B1876BXD Bernal, Argentina; (C.C.); (Y.A.R.-T.); (J.F.D.); (O.d.l.O.); (A.G.S.)
- National Scientific and Technical Research Council (CONICET), C1425FQB CABA, Buenos Aires, Argentina
| |
Collapse
|
9
|
Du B, Meenu M, Liu H, Xu B. A Concise Review on the Molecular Structure and Function Relationship of β-Glucan. Int J Mol Sci 2019; 20:E4032. [PMID: 31426608 PMCID: PMC6720260 DOI: 10.3390/ijms20164032] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
β-glucan is a non-starch soluble polysaccharide widely present in yeast, mushrooms, bacteria, algae, barley, and oat. β-Glucan is regarded as a functional food ingredient due to its various health benefits. The high molecular weight (Mw) and high viscosity of β-glucan are responsible for its hypocholesterolemic and hypoglycemic properties. Thus, β-glucan is also used in the food industry for the production of functional food products. The inherent gel-forming property and high viscosity of β-glucan lead to the production of low-fat foods with improved textural properties. Various studies have reported the relationship between the molecular structure of β-glucan and its functionality. The structural characteristics of β-glucan, including specific glycosidic linkages, monosaccharide compositions, Mw, and chain conformation, were reported to affect its physiochemical and biological properties. Researchers have also reported some chemical, physical, and enzymatic treatments can successfully alter the molecular structure and functionalities of β-glucan. This review article attempts to review the available literature on the relationship of the molecular structure of β-glucan with its functionalities, and future perspectives in this area.
Collapse
Affiliation(s)
- Bin Du
- Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Maninder Meenu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
| | - Hongzhi Liu
- Institute of Agro-products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.
| |
Collapse
|
10
|
Electrospun Schizophyllan/polyvinyl alcohol blend nanofibrous scaffold as potential wound healing. Int J Biol Macromol 2019; 127:27-38. [DOI: 10.1016/j.ijbiomac.2018.12.256] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/22/2018] [Accepted: 12/27/2018] [Indexed: 01/28/2023]
|
11
|
Khan AA, Gani A, Khanday FA, Masoodi F. Biological and pharmaceutical activities of mushroom β-glucan discussed as a potential functional food ingredient. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bcdf.2017.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Naseri-Nosar M, Ziora ZM. Wound dressings from naturally-occurring polymers: A review on homopolysaccharide-based composites. Carbohydr Polym 2018; 189:379-398. [DOI: 10.1016/j.carbpol.2018.02.003] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/21/2018] [Accepted: 02/01/2018] [Indexed: 12/18/2022]
|
13
|
Majtan J, Jesenak M. β-Glucans: Multi-Functional Modulator of Wound Healing. Molecules 2018; 23:molecules23040806. [PMID: 29614757 PMCID: PMC6017669 DOI: 10.3390/molecules23040806] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/27/2023] Open
Abstract
β-glucans are derived from a variety of sources including yeast, grain and fungus and belong to the class of drugs known as biological response modifiers. They possess a broad spectrum of biological activities that enhance immunity in humans. One promising area for β-glucans’ application is dermatology, including wound care. Topical applications of β-glucans are increasing, especially due to their pluripotent properties. Macrophages, keratinocytes and fibroblasts are considered the main target cells of β-glucans during wound healing. β-glucans enhance wound repair by increasing the infiltration of macrophages, which stimulates tissue granulation, collagen deposition and reepithelialization. β-glucan wound dressings represent a suitable wound healing agent, with great stability and resistance to wound proteases. This review summarizes the current knowledge and progress made on characterizing β-glucans’ wound healing properties in vitro and in vivo and their safety and efficacy in managing non-healing wounds or other chronic dermatological conditions and diseases.
Collapse
Affiliation(s)
- Juraj Majtan
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51 Bratislava, Slovakia.
| | - Milos Jesenak
- Department of Paediatrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 59 Martin, Slovakia.
| |
Collapse
|
14
|
de Jesus LI, Smiderle FR, Ruthes AC, Vilaplana F, Dal'Lin FT, Maria-Ferreira D, Werner MF, Van Griensven LJLD, Iacomini M. Chemical characterization and wound healing property of a β-D-glucan from edible mushroom Piptoporus betulinus. Int J Biol Macromol 2017; 117:1361-1366. [PMID: 29274425 DOI: 10.1016/j.ijbiomac.2017.12.107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/06/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
Abstract
A water-soluble β-D-glucan was obtained from fruiting bodies of Piptoporus betulinus, by hot aqueous extraction followed by freeze-thawing procedure and dialysis. Its molar mass distribution and conformational behavior in solution was assessed by size-exclusion chromatography coupled with multiangle laser light scattering, showing a polysaccharide with an average molecular weight of 2.5 × 105 Da with a random coil conformation for molecular weights below 1 × 106 Da. Typical signals of β-(1 → 3)-linkages were observed in NMR spectrum (δ 102.7/4.76; 102.8/4.74; 102.9/4.52; and δ 85.1/3.78; 85.0/3.77) and also signals of O-6 substitution at δ 69.2/4.22 and 69.2/3.87. The analysis of partially O-methylated alditol acetates corroborates the NMR results, indicating the presence of a β-D-glucan with a main chain (1 → 3)-linked, substituted at O-6 by single-units of glucose. The β-D-glucan showed no toxicity on human colon carcinoma cell line (Caco-2) up to 1000 μg mL-1 and promoted cell migration on in vitro scratch assay, demonstrating a potential wound healing capacity.
Collapse
Affiliation(s)
- Liana Inara de Jesus
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CP 19046, Curitiba, PR, Brazil
| | - Fhernanda R Smiderle
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CP 19046, Curitiba, PR, Brazil
| | - Andrea C Ruthes
- Division of Glycoscience, AlbaNova University Centre, Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Francisco Vilaplana
- Division of Glycoscience, AlbaNova University Centre, Royal Institute of Technology, 106 91 Stockholm, Sweden
| | | | - Daniele Maria-Ferreira
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CP 19046, Curitiba, PR, Brazil; Department of Pharmacology, Federal University of Parana, CP 19046, Curitiba, PR, Brazil
| | - Maria Fernanda Werner
- Department of Pharmacology, Federal University of Parana, CP 19046, Curitiba, PR, Brazil
| | - Leo J L D Van Griensven
- Plant Research International, Wageningen University and Research, Bornsesteeg 1, 6708 PD Wageningen, The Netherlands
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CP 19046, Curitiba, PR, Brazil.
| |
Collapse
|
15
|
Salgado M, Rodríguez-Rojo S, Reis RL, Cocero MJ, Duarte ARC. Preparation of barley and yeast β-glucan scaffolds by hydrogel foaming: Evaluation of dexamethasone release. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Affiliation(s)
- K.F. Cutting
- Clinical research consultant; Hertfordshire, Tissue Viability Specialist; First Community Health and Care, Surrey
| |
Collapse
|
17
|
Gladkova EV, Babushkina IV, Norkin IA, Mamonova IA, Puchin’yan DM, Konyuchenko EA. Soft Tissue Regeneration under the Effect of Wound Coating Based on Chitosan (Natural Biopolymer). Bull Exp Biol Med 2016; 160:715-7. [DOI: 10.1007/s10517-016-3258-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Indexed: 10/22/2022]
|
18
|
|
19
|
Chitin and Chitosan Nanocomposites for Tissue Engineering. SPRINGER SERIES ON POLYMER AND COMPOSITE MATERIALS 2016. [DOI: 10.1007/978-81-322-2511-9_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
20
|
Veverka M, Murányi A, Bakoš D, Kochan J, Jorík V, Omastová M. Arabinogalactan:β-glucan as novel biodegradable carriers for recombinant human thrombin. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 27:202-17. [PMID: 26708010 DOI: 10.1080/09205063.2015.1116886] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The aim of this work was to evaluate the effects of incorporating thrombin in arabinogalactan (AG)/β-glucan (BG)-based carriers. The products were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray powder diffraction (XRPD) and X-ray photoelectron spectroscopy techniques. Results, especially deconvoluted XRPD patterns indicated creation of new phases and potential complex formation. Results also highlighted that the AG carrier leads to higher residual thrombin-specific activity, while the in vivo haemostatic effect was enhanced when insoluble BG was present in the matrix. Our results confirm that thrombin can be successfully added to the carriers and that these materials are promising alternatives to standard vehicles.
Collapse
Affiliation(s)
- Miroslav Veverka
- a R&D Department , EUROFINS Bel/Novamann Ltd. , Nové Zámky , Slovak Republic
| | - Andrej Murányi
- b Department of Galenical Development , hameln rds a.s. , Modra , Slovak Republic.,c Faculty of Pharmacy, Department of Galenic Pharmacy , Comenius University , Bratislava , Slovak Republic
| | - Dušan Bakoš
- d Faculty of Chemical and Food Technology , Slovak Technical University , Bratislava , Slovak Republic
| | - Ján Kochan
- e Department of Pharmacology , hameln rds a.s. , Modra , Slovak Republic
| | - Vladimír Jorík
- d Faculty of Chemical and Food Technology , Slovak Technical University , Bratislava , Slovak Republic
| | - Mária Omastová
- f Polymer Institute , Slovak Academy of Sciences , Bratislava , Slovak Republic
| |
Collapse
|
21
|
de Jesus Raposo MF, de Morais AMB, de Morais RMSC. Marine polysaccharides from algae with potential biomedical applications. Mar Drugs 2015; 13:2967-3028. [PMID: 25988519 PMCID: PMC4446615 DOI: 10.3390/md13052967] [Citation(s) in RCA: 322] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/26/2015] [Accepted: 05/04/2015] [Indexed: 02/06/2023] Open
Abstract
There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae.
Collapse
Affiliation(s)
- Maria Filomena de Jesus Raposo
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| | - Alcina Maria Bernardo de Morais
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| | - Rui Manuel Santos Costa de Morais
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| |
Collapse
|
22
|
Chitin, chitosan, and its derivatives for wound healing: old and new materials. J Funct Biomater 2015; 6:104-42. [PMID: 25780874 PMCID: PMC4384104 DOI: 10.3390/jfb6010104] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 12/19/2022] Open
Abstract
Chitin (β-(1-4)-poly-N-acetyl-d-glucosamine) is widely distributed in nature and is the second most abundant polysaccharide after cellulose. It is often converted to its more deacetylated derivative, chitosan. Previously, many reports have indicated the accelerating effects of chitin, chitosan, and its derivatives on wound healing. More recently, chemically modified or nano-fibrous chitin and chitosan have been developed, and their effects on wound healing have been evaluated. In this review, the studies on the wound-healing effects of chitin, chitosan, and its derivatives are summarized. Moreover, the development of adhesive-based chitin and chitosan are also described. The evidence indicates that chitin, chitosan, and its derivatives are beneficial for the wound healing process. More recently, it is also indicate that some nano-based materials from chitin and chitosan are beneficial than chitin and chitosan for wound healing. Clinical applications of nano-based chitin and chitosan are also expected.
Collapse
|
23
|
|
24
|
Venkatachalam G, Nandakumar V, Suresh G, Doble M. Characterization and applications of cyclic β-(1,2)-glucan produced from R. meliloti. RSC Adv 2014. [DOI: 10.1039/c3ra47073c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
|
26
|
Novák M, Synytsya A, Gedeon O, Slepička P, Procházka V, Synytsya A, Blahovec J, Hejlová A, Čopíková J. Yeast β(1-3),(1-6)-d-glucan films: Preparation and characterization of some structural and physical properties. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.11.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
27
|
Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 2011; 29:322-37. [DOI: 10.1016/j.biotechadv.2011.01.005] [Citation(s) in RCA: 1316] [Impact Index Per Article: 101.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 12/02/2010] [Accepted: 01/14/2011] [Indexed: 11/19/2022]
|