1
|
Zou M, Jin R, Hu Y, Zhang Y, Wang H, Liu G, Nie Y, Wang Y. A thermo-sensitive, injectable and biodegradable in situ hydrogel as a potential formulation for uveitis treatment. J Mater Chem B 2019. [DOI: 10.1039/c9tb00939f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The thermo-sensitive hydrogels with high drug loading rate achieved sustained drug release over 2 weeks. Histopathological examination of retina confirmed the excellent biocompatibility and effective anti-inflammatory property of the hydrogel.
Collapse
Affiliation(s)
- Mengwei Zou
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Yanfei Hu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Ying Zhang
- Department of Ophthalmology
- West China Hospital
- Sichuan University
- Chengdu
- P. R. China
| | - Haibo Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Gongyan Liu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Yu Nie
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- P. R. China
| |
Collapse
|
3
|
Lin YK, Yu YC, Wang SW, Lee RS. Temperature, ultrasound and redox triple-responsive poly(N-isopropylacrylamide) block copolymer: synthesis, characterization and controlled release. RSC Adv 2017. [DOI: 10.1039/c7ra06825e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Triple stimuli-responsive polymers PNiPAAm-S-S-PXCL containing a disulfide (–S–S–) bond as a junction point between hydrophilic and hydrophobic chains were synthesized and characterized.
Collapse
Affiliation(s)
- Yin-Ku Lin
- Department of Traditional Chinese Medicine
- Chang Gung Memorial Hospital at Keelung
- Keelung
- Taiwan
| | - Yung-Ching Yu
- Division of Natural Science
- Center of General Education
- Chang Gung University
- Tao-Yuan 33302
- Taiwan
| | - Shiu-Wei Wang
- Division of Natural Science
- Center of General Education
- Chang Gung University
- Tao-Yuan 33302
- Taiwan
| | - Ren-Shen Lee
- Division of Natural Science
- Center of General Education
- Chang Gung University
- Tao-Yuan 33302
- Taiwan
| |
Collapse
|
4
|
Barouti G, Khalil A, Orione C, Jarnouen K, Cammas-Marion S, Loyer P, Guillaume SM. Poly(trimethylene carbonate)/Poly(malic acid) Amphiphilic Diblock Copolymers as Biocompatible Nanoparticles. Chemistry 2016; 22:2819-30. [PMID: 26791328 DOI: 10.1002/chem.201504824] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 12/18/2022]
Abstract
Amphiphilic polycarbonate-poly(hydroxyalkanoate) diblock copolymers, namely, poly(trimethylene carbonate) (PTMC)-b-poly(β-malic acid) (PMLA), are reported for the first time. The synthetic strategy relies on commercially available catalysts and initiator. The controlled ring-opening polymerization (ROP) of trimethylene carbonate (TMC) catalyzed by the organic guanidine base 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), associated with iPrOH as an initiator, provided iPrO-PTMC-OH, which served as a macroinitiator in the controlled ROP of benzyl β-malolactonate (MLABe) catalyzed by the neodymium triflate salt (Nd(OTf)3). The resulting hydrophobic iPrO-PTMC-b-PMLABe-OH copolymers were then hydrogenolyzed into the parent iPrO-PTMC-b-PMLA-OH copolymers. A range of well-defined copolymers, featuring different sizes of segments (Mn,NMR up to 9300 g mol(-1) ; ÐM =1.28-1.40), were thus isolated in gram quantities, as evidenced by NMR spectroscopy, size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry, and contact angle analyses. Subsequently, PTMC-b-PMLA copolymers with different hydrophilic weight fractions (11-75 %) self-assembled in phosphate-buffered saline upon nanoprecipitation into well-defined nano-objects with Dh =61-176 nm, a polydispersity index <0.25, and a negative surface charge, as characterized by dynamic light scattering and zeta-potential analyses. In addition, these nanoparticles demonstrated no significant effect on cell viability at low concentrations, and a very low cytotoxicity at high concentrations only for PTMC-b-PMLA copolymers exhibiting hydrophilic fractions over 47 %, thus illustrating the potential of these copolymers as promising nanoparticles.
Collapse
Affiliation(s)
- Ghislaine Barouti
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, Campus de Beaulieu, 263 Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Ali Khalil
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, Campus de Beaulieu, 263 Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Clement Orione
- Centre Régional de Mesures Physiques de l'Ouest, Université de Rennes 1, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Kathleen Jarnouen
- INSERM, UMR991, Liver, Metabolisms and Cancer, CHU Pontchaillou, 35033 Rennes Cedex -, Université de Rennes 1, 35043, Rennes Cedex, France
| | - Sandrine Cammas-Marion
- Ecole Nationale Supérieure de Chimie de Rennes, Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, 11 Allée de Beaulieu CS 50837, 35708, Rennes Cedex, France
| | - Pascal Loyer
- INSERM, UMR991, Liver, Metabolisms and Cancer, CHU Pontchaillou, 35033 Rennes Cedex -, Université de Rennes 1, 35043, Rennes Cedex, France
| | - Sophie M Guillaume
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, Campus de Beaulieu, 263 Avenue du Général Leclerc, 35042, Rennes Cedex, France.
| |
Collapse
|
5
|
Fang JY, Lin YK, Wang SW, Li YC, Lee RS. Synthesis and characterization of dual-stimuli-responsive micelles based on poly(N-isopropylacrylamide) and polycarbonate with photocleavable moieties. REACT FUNCT POLYM 2015. [DOI: 10.1016/j.reactfunctpolym.2015.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
7
|
Lee RS, Wang SW, Li YC, Fang JY. Synthesis and characterization of thermo-responsive and photo-cleavable block copolymers as nanocarriers. RSC Adv 2015. [DOI: 10.1039/c4ra13702g] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, we synthesized thermo-responsive and photo-cleavable amphiphilic block copolymers containing photodegradable linkers as junction points between hydrophilic and hydrophobic chains.
Collapse
Affiliation(s)
- Ren-Shen Lee
- Division of Natural Science
- Center of General Education
- Chang Gung University
- Tao-Yuan 333
- Taiwan
| | - Shiu-Wei Wang
- Division of Natural Science
- Center of General Education
- Chang Gung University
- Tao-Yuan 333
- Taiwan
| | - You-Chen Li
- Division of Natural Science
- Center of General Education
- Chang Gung University
- Tao-Yuan 333
- Taiwan
| | - Jia-You Fang
- Graduate Institute of Natural Products
- Chang Gung University
- Tao-Yuan
- Taiwan
| |
Collapse
|
8
|
Dai XH, Wang ZM, Huang YF, Pan JM, Yan YS, Liu DM, Sun L. Biomimetic star-shaped poly(ε-caprolactone)-b-glycopolymer block copolymers with porphyrin-core for targeted photodynamic therapy. RSC Adv 2014. [DOI: 10.1039/c4ra07402e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
9
|
Synthesis and characterization of thermosensitive, star-shaped poly(ε-caprolactone)-block-Poly(N-isopropylacrylamide) with porphyrin-core for photodynamic therapy. JOURNAL OF POLYMER RESEARCH 2014. [DOI: 10.1007/s10965-014-0412-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Xu J, Feng E, Song J. Renaissance of Aliphatic Polycarbonates: New Techniques and Biomedical Applications. J Appl Polym Sci 2014; 131:10.1002/app.39822. [PMID: 24994939 PMCID: PMC4076343 DOI: 10.1002/app.39822] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aliphatic polycarbonates were discovered a long time ago, with their conventional applications mostly limited to low molecular weight oligomeric intermediates for copolymerization with other polymers. Recent developments in polymerization techniques have overcome the difficulty in preparing high molecular weight aliphatic polycarbonates. These in turn, along with new functional monomers, have enabled the preparation of a wide range of aliphatic polycarbonates with diverse chemical compositions and structures. This review summarizes the latest polymerization techniques for preparing well-defined functional aliphatic polycarbonates, as well as the new applications of those aliphatic polycarbonates, esecially in the biomedical field.
Collapse
Affiliation(s)
- Jianwen Xu
- Department of Orthopedics & Physical Rehabilitation, University of Massachusetts Medical School 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Ellva Feng
- Department of Orthopedics & Physical Rehabilitation, University of Massachusetts Medical School 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Jie Song
- Department of Orthopedics & Physical Rehabilitation, University of Massachusetts Medical School 55 Lake Avenue North, Worcester, MA 01655, USA
- Department of Cell and Developmental Biology, University of Massachusetts Medical School 55 Lake Avenue North, Worcester, MA 01655, USA
| |
Collapse
|
12
|
Bian J, Zhang M, He J, Ni P. Preparation and self-assembly of double hydrophilic poly(ethylethylene phosphate)-block-poly[2-(succinyloxy)ethyl methacrylate] diblock copolymers for drug delivery. REACT FUNCT POLYM 2013. [DOI: 10.1016/j.reactfunctpolym.2012.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Luo YL, Zhang LL, Xu F. Synthesis, thermo-responsive micellization and caffeine drug release of novel PBMA-b-PNIPAAm block polymer brushes. POLYMER SCIENCE SERIES A 2012. [DOI: 10.1134/s0965545x12040049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Ajiro H, Takahashi Y, Akashi M. Thermosensitive Biodegradable Homopolymer of Trimethylene Carbonate Derivative at Body Temperature. Macromolecules 2012. [DOI: 10.1021/ma300183t] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Hiroharu Ajiro
- The Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2, Yamada-oka, Suita, Osaka 565-0871,
Japan
- Department of Applied
Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yoshikazu Takahashi
- Department of Applied
Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Mitsuru Akashi
- The Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2, Yamada-oka, Suita, Osaka 565-0871,
Japan
- Department of Applied
Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|