1
|
Kopeć M, Lamson M, Yuan R, Tang C, Kruk M, Zhong M, Matyjaszewski K, Kowalewski T. Polyacrylonitrile-derived nanostructured carbon materials. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
2
|
Yoon J, Yang HS, Lee BS, Yu WR. Recent Progress in Coaxial Electrospinning: New Parameters, Various Structures, and Wide Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704765. [PMID: 30152180 DOI: 10.1002/adma.201704765] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 06/01/2018] [Indexed: 05/27/2023]
Abstract
Electrospinning, a common method for synthesizing 1D nanostructures, has contributed to developments in the electrical, electrochemical, biomedical, and environmental fields. Recently, a coaxial electrospinning process has been used to fabricate new nanostructures with advanced performance, but intricate and delicate process conditions hinder reproducibility and mass production. Herein, recent progress in new emerging parameters for successful coaxial electrospinning, and the various nanostructures and critical application areas resulting from these activities. Relationships between the new parameters and final product characteristics are described, new possibilities for nanostructures achievable via coaxial electrospinning are identified, and new research directions with a view to future applications are suggested.
Collapse
Affiliation(s)
- Jihyun Yoon
- Department of Materials Science and Engineering, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Ho-Sung Yang
- Department of Materials Science and Engineering, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Byoung-Sun Lee
- Department of Nanoengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Woong-Ryeol Yu
- Department of Materials Science and Engineering, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
3
|
Wang Y, Tian C, Jiang H, Zhang L, Zhu X. Surface modification of carbon nanotubes by using iron-mediated activators generated by electron transfer for atom transfer radical polymerization. RSC Adv 2018; 8:11150-11156. [PMID: 35541533 PMCID: PMC9078937 DOI: 10.1039/c8ra00988k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/14/2018] [Indexed: 02/04/2023] Open
Abstract
Herein, a surface-initiated activator generated by electron transfer for an atom transfer radical polymerization (AGET ATRP) system was developed on the surface of multiwall carbon nanotubes (MWCNTs) by using FeCl3·6H2O as the catalyst, tris-(3,6-dioxoheptyl) amine (TDA-1) as the ligand and ascorbic acid (AsAc) as the reducing agent. A wide range of polymers, such as polystyrene (PS), poly(methyl methacrylate) (PMMA) and poly(poly(ethylene glycol) methyl ether methacrylate) (PPEGMA), were successfully grafted onto the surfaces. The core-shell structure of MWCNTs@PS was observed by TEM. Both Raman spectra and the results of hydrolysis of MWCNTs@PS (after extraction by THF) confirmed that the PS chains were covalently tethered onto the surfaces of the MWCNTs. Due to superior biocompatibility of the iron catalyst, the strategy of modification of MWCNTs via iron-mediated AGET ATRP provided a promising method for the controllable and biocompatible modification of nanomaterials.
Collapse
Affiliation(s)
- Yingjie Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China +86-512-65882787 +86-512-65882787
| | - Chun Tian
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China +86-512-65882787 +86-512-65882787
| | - Hongjuan Jiang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China +86-512-65882787 +86-512-65882787
- Changzhou Huake Polymers Co., Ltd. No. 602 Yulong Road, Xinbei District Changzhou 213125 China
| | - Lifen Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China +86-512-65882787 +86-512-65882787
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China +86-512-65882787 +86-512-65882787
- Global Institute of Soft Technology No. 5 Qingshan Road, Suzhou National Hi-Tech District Suzhou 215163 China
| |
Collapse
|
4
|
Huang W, Liu B, Chen Z, Wang H, Ren L, Jiao J, Zhuang L, Luo J, Jiang L. Fabrication of Magnetic Nanofibers by Needleless Electrospinning from a Self-Assembling Polymer Ferrofluid Cone Array. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E277. [PMID: 28926978 PMCID: PMC5618388 DOI: 10.3390/nano7090277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 11/21/2022]
Abstract
Magnetic nanofiber has been widely applied in biomedical fields due to its distinctive size, morphology, and properties. We proposed a novel needleless electrospinning method to prepare magnetic nanofibers from the self-assembling "Taylor cones" of poly(vinyl pyrrolidone) (PVP)/Fe₃O₄ ferrofluid (PFF) under the coincident magnetic and electric fields. The results demonstrated that a static PFF Rosensweig instability with a conical protrusion could be obtained under the magnetic field. The tip of the protrusion emitted an electrospinning jet under the coincident magnetic and electric fields. The needleless electrospinning showed a similar process phenomenon in comparison with conventional electrospinning. The prepared nanofibers were composed of Fe₃O₄ particles and PVP polymer. The Fe₃O₄ particles aggregated inside and on the surface of the nanofibers. The nanofibers prepared by needleless electrospinning exhibited similar morphology compared with the conventionally electrospun nanofibers. The nanofibers also exhibited good ferromagnetic and magnetic field responsive properties.
Collapse
Affiliation(s)
- Weilong Huang
- School of Engineering, Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Bin Liu
- School of Engineering, Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Zhipeng Chen
- School of Engineering, Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Hongjian Wang
- School of Engineering, Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Lei Ren
- School of Engineering, Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Jiaming Jiao
- School of Engineering, Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Lin Zhuang
- School of Physics, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Jie Luo
- School of Engineering, Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Lelun Jiang
- School of Engineering, Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 610] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Barlow KJ, Bernabeu V, Hao X, Hughes TC, Hutt OE, Polyzos A, Turner KA, Moad G. Triphenylphosphine-grafted, RAFT-synthesised, porous monoliths as catalysts for Michael addition in flow synthesis. REACT FUNCT POLYM 2015. [DOI: 10.1016/j.reactfunctpolym.2015.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Xu Y, Sun J, Chen H, Bai L. Cobalt(iii) acetylacetonate initiated RAFT polymerization of acrylonitrile and its application in removal of methyl orange after electrospinning. RSC Adv 2015. [DOI: 10.1039/c5ra09515h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Electrostatic repulsion (ER) played a key role at low solution pH. Enhancement of hydrophobic attraction (HA) and hydrogen bond (HB) increased the adsorption capacity at higher solution pH.
Collapse
Affiliation(s)
- Yuanyuan Xu
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Jinming Sun
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Hou Chen
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Liangjiu Bai
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| |
Collapse
|
8
|
Gu Y, Zhao J, Liu Q, Zhou N, Zhang Z, Zhu X. Zero-valent iron (Fe(0)) mediated RAFT miniemulsion polymerization: a facile approach for the fabrication of Fe(0)-encapsulated polymeric nanoparticles. Polym Chem 2014. [DOI: 10.1039/c4py00400k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|