1
|
Wang B, Xu XL, Zhang MY, Bu XM, Wang HL, Shi XZ, Xu X, Chen D. A fully green sample preparation method for synthetic antioxidants determination in edible oils based on natural feather fiber-supported liquid extraction. J Chromatogr A 2023; 1698:464004. [PMID: 37094539 DOI: 10.1016/j.chroma.2023.464004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
The current study proposed a novel feather fiber-supported liquid extraction (FF-SLE) method for extracting analytes from oil samples. The natural feather fibers were used as the oil support material and directly loaded in the plastic tube of a disposable syringe to construct the low-cost extraction device (∼0.5 CNY). The edible oil without any pretreatment including dilution was added directly to the extraction device, followed by the addition of the green extraction solvent of ethanol. As an example, the proposed method was applied to extract nine synthetic antioxidants from edible oils. The optimized extraction conditions for processing 0.5 g of oil were obtained when the syringe dimension was 5 mL, the extraction solvent was 0.5 mL of ethanol, the amount of feather fibers was 200 mg of duck feather fibers and the static extraction time was 10 min. The applications to seven kinds of feathers and seven kinds of edible oils all indicated the excellent oil removal efficiencies (>98.0%). Combined with high-performance liquid chromatography-ultraviolet, a quantification method was validated with satisfied linearity (R2≥0.994), accuracy (95.8-114.6%) and precision (≤8.3%) with the limits of detection ranging from 50 to 100 ng/g. The proposed FF-SLE method was simple, effective, convenient, low-cost, green and environmental-friendly for the extraction of analytes from oil samples prior to instrument analysis.
Collapse
Affiliation(s)
- Bin Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 45001, China
| | - Xin-Li Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 45001, China
| | - Man-Yu Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 45001, China
| | - Xin-Miao Bu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 45001, China
| | - Hong-Lei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 45001, China
| | - Xue-Zhong Shi
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xia Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 45001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou 45001, China.
| | - Di Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 45001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou 45001, China.
| |
Collapse
|
2
|
Xu XL, Wang B, Liu YW, Li WX, Wu JY, Yuan H, Xu X, Chen D. In-pipette-tip natural-feather-supported liquid microextraction for conveniently extracting hydrophobic compounds in aqueous samples: A proof-of-concept study. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Haridharan N, Sundar D, Kurrupasamy L, Anandan S, Liu C, Wu JJ. Oil spills adsorption and cleanup by polymeric materials: A review. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Neelamegan Haridharan
- Department of Environmental Engineering and Science Feng Chia University Taichung Taiwan
- Department of Chemistry Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology Avadi Tamilnadu India
| | - Dhivyasundar Sundar
- Department of Environmental Engineering and Science Feng Chia University Taichung Taiwan
| | - Lakshmanan Kurrupasamy
- Department of Environmental Engineering and Science Feng Chia University Taichung Taiwan
| | - Sambandam Anandan
- Department of Chemistry National Institute of Technology Trichy India
| | - Chen‐Hua Liu
- Department of Environmental Engineering and Science Feng Chia University Taichung Taiwan
| | - Jerry J. Wu
- Department of Environmental Engineering and Science Feng Chia University Taichung Taiwan
| |
Collapse
|
4
|
Sun Z, Li Z, Qu K, Zhang Z, Niu Y, Xu W, Ren C. A review on recent advances in gel adhesion and their potential applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115254] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
|
6
|
Lligadas G, Grama S, Percec V. Recent Developments in the Synthesis of Biomacromolecules and their Conjugates by Single Electron Transfer-Living Radical Polymerization. Biomacromolecules 2017; 18:1039-1063. [PMID: 28276244 DOI: 10.1021/acs.biomac.7b00197] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Single electron transfer-living radical polymerization (SET-LRP) represents a robust and versatile tool for the synthesis of vinyl polymers with well-defined topology and chain end functionality. The crucial step in SET-LRP is the disproportionation of the Cu(I)X generated by activation with Cu(0) wire, powder, or nascent Cu(0) generated in situ into nascent, extremely reactive Cu(0) atoms and nanoparticles and Cu(II)X2. Nascent Cu(0) activates the initiator and dormant chains via a homogeneous or heterogeneous outer-sphere single-electron transfer mechanism (SET-LRP). SET-LRP provides an ultrafast polymerization of a plethora of monomers (e.g., (meth)-acrylates, (meth)-acrylamides, styrene, and vinyl chloride) including hydrophobic and water insoluble to hydrophilic and water soluble. Some advantageous features of SET-LRP are (i) the use of Cu(0) wire or powder as readily available catalysts under mild reaction conditions, (ii) their excellent control over molecular weight evolution and distribution as well as polymer chain ends, (iii) their high functional group tolerance allowing the polymerization of commercial-grade monomers, and (iv) the limited purification required for the resulting polymers. In this Perspective, we highlight the recent advancements of SET-LRP in the synthesis of biomacromolecules and of their conjugates.
Collapse
Affiliation(s)
- Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States.,Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili , Tarragona, Spain
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
7
|
Ying Z, Zhang C, Jiang S, Wu Q, Zhang B, Yu Y, Lan M, Cheng H, Zhao F. Synthesis of a novel hydrophobic polyurea gel from CO 2 and amino-modified polysiloxane. J CO2 UTIL 2016. [DOI: 10.1016/j.jcou.2016.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Boyer C, Corrigan NA, Jung K, Nguyen D, Nguyen TK, Adnan NNM, Oliver S, Shanmugam S, Yeow J. Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications. Chem Rev 2015; 116:1803-949. [DOI: 10.1021/acs.chemrev.5b00396] [Citation(s) in RCA: 356] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cyrille Boyer
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nathaniel Alan Corrigan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Kenward Jung
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Diep Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Thuy-Khanh Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nik Nik M. Adnan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Susan Oliver
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Sivaprakash Shanmugam
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Jonathan Yeow
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
9
|
Xu Y, Sun J, Chen H, Bai L, Wang Y, Yu L. Synthesis of Poly(n-butyl methacrylate- co- pentaerythritolriacrylate) Gel Mediated by Cu(0)/CPDN and Its Oil Absorbent Properties. SEP SCI TECHNOL 2015. [DOI: 10.1080/01496395.2015.1052505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Zhang T, Zhang Q, Wang X, Li Q, Rong J, Qiu F. Synthesis of Mn2O3/poly(styrene-co-butyl methacrylate) resin composites and their oil-absorbing properties. RSC Adv 2015. [DOI: 10.1039/c5ra21132h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This paper reports the synthesis of Mn2O3/poly(styrene-co-butyl methacrylate) resin composites by using a combined biotemplate technology and microwave polymerization method, as well as their application in oil absorption.
Collapse
Affiliation(s)
- Tao Zhang
- Institute of Green Chemistry and Chemical Technology
- Jiangsu University
- Zhenjiang 212013
- China
- School of Chemistry and Chemical Engineering
| | - Qian Zhang
- Key Laboratory of Applied Chemistry
- College of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- China
| | - Xinpei Wang
- Key Laboratory of Applied Chemistry
- College of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- China
| | - Qiurong Li
- Key Laboratory of Applied Chemistry
- College of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- China
| | - Jian Rong
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| |
Collapse
|