1
|
Dhote NS, Patel RD, Kuwar U, Agrawal M, Alexander A, Jain P, Ajazuddin. Application of Thermoresponsive Smart Polymers based in situ Gel as a Novel Carrier for Tumor Targeting. Curr Cancer Drug Targets 2024; 24:375-396. [PMID: 37534485 DOI: 10.2174/1568009623666230803111718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 08/04/2023]
Abstract
The temperature-triggered in situ gelling system has been revolutionized by introducing an intelligent polymeric system. Temperature-triggered polymer solutions are initially in a sol state and then undergo a phase transition to form a gel at body temperature due to various parameters like pH, temperature, and so on. These smart polymers offer a number of advantages, including ease of administration, long duration of release of the drug, low administration frequency with good patient compliance, and targeted drug delivery with fewer adverse effects. Polymers such as poly(N-isopropylacrylamide) (PNIPAAm), polyethylene glycol (PEG), poly (N, N'-diethyl acrylamide), and polyoxypropylene (PPO) have been briefly discussed. In addition to various novel Drug Delivery Systems (DDS), the smart temperature-triggered polymeric system has various applications in cancer therapy and many other disease conditions. This review focuses on the principals involved in situ gelling systems using various temperature-triggered polymers for chemotherapeutic purposes, using smart DDS, and their advanced application in cancer therapy, as well as available marketed formulations and recent advances in these thermoresponsive sol-gel transforming systems.
Collapse
Affiliation(s)
- Nidhi Sudhir Dhote
- Department of Pharmaceutics, School of Pharmacy & Technology Management, Narsee Monjee Institute of Management Studies (NMIMS), Shirpur, 425 405, Maharashtra, India
| | - Rajat Dineshbhai Patel
- Department of Pharmaceutics, School of Pharmacy & Technology Management, Narsee Monjee Institute of Management Studies (NMIMS), Shirpur, 425 405, Maharashtra, India
| | - Utkarsha Kuwar
- Department of Pharmaceutics, School of Pharmacy & Technology Management, Narsee Monjee Institute of Management Studies (NMIMS), Shirpur, 425 405, Maharashtra, India
| | - Mukta Agrawal
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Hyderabad, 509 301, Telangana, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India
| | - Parag Jain
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh, 490024, India
| |
Collapse
|
2
|
Kalhapure RS, Renukuntla J. Thermo- and pH dual responsive polymeric micelles and nanoparticles. Chem Biol Interact 2018; 295:20-37. [DOI: 10.1016/j.cbi.2018.07.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/28/2018] [Accepted: 07/19/2018] [Indexed: 12/31/2022]
|
3
|
Sung Ng W, Connal LA, Forbes E, Mohanarangam K, Franks GV. In situ study of aggregate sizes formed in chalcopyrite-quartz mixture using temperature-responsive polymers. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.04.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
4
|
A review on pH and temperature responsive gels and other less explored drug delivery systems. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.05.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
Lin WC, Liou SH, Kotsuchibashi Y. Development and Characterisation of the Imiquimod Poly(2-(2-methoxyethoxy)ethyl Methacrylate) Hydrogel Dressing for Keloid Therapy. Polymers (Basel) 2017; 9:E579. [PMID: 30965881 PMCID: PMC6419005 DOI: 10.3390/polym9110579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 01/27/2023] Open
Abstract
The imiquimod-poly(2-(2-methoxyethoxy)ethyl methacrylate) hydrogel (poly(MEO₂MA) hydrogel) dressing was developed for the keloid therapy application. Four groups of the hydrogels, including the imiquimod-poly(MEO₂MA) hydrogel, crosslinked with 0.2 mol %, 0.4 mol %, 0.6 mol %, and 0.8 mol % of di(ethylene glycol) dimethacrylate cross-linker (DEGDMA), were synthesised and characterised for fabricating the imiquimod-poly(MEO₂MA) hydrogel pad. The lower critical solution temperature (LCST) of the poly(MEO₂MA) hydrogel was measured at approximately 28 °C and was used as a trigger to control the imiquimod loading and release. The loaded amounts of the imiquimod in the poly(MEO₂MA) hydrogel, crosslinked with 0.2 mol % and 0.8 mol % of DEGDMA, were about 27.4 μg and 14.1 μg per 1 mm³ of the hydrogel, respectively. The imiquimod-release profiles of two samples were characterised in a phosphate buffered saline (PBS) solution at 37 °C and the released imiquimod amount were about 45% and 46% of the total loaded imiquimod. The Cell Counting Kit-8 (CCK-8) assay was utilised to analyse the cell viability of keloid fibroblasts cultured on the samples of imiquimod-poly(MEO₂MA) hydrogel, crosslinked with 0.2 mol % and 0.8 mol % of DEGDMA. There was around a 34% decrease of the cell viabilities after 2 days, compared with the pure-poly(MEO₂MA) hydrogel samples. Therefore, the developed imiquimod-poly(MEO₂MA) hydrogel dressing can affect the proliferation of keloid fibroblasts. It should be possible to utilise the hydrogel dressing for the keloid therapy application.
Collapse
Affiliation(s)
- Wei-Chih Lin
- Department of Mechanical and Electromechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Sin-Han Liou
- Department of Mechanical and Electromechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Yohei Kotsuchibashi
- Department of Materials and Life Science, Shizuoka Institute of Science and Technology, Shizuoka 437-8555, Japan.
| |
Collapse
|
6
|
Ng WS, Connal LA, Forbes E, Mohanarangam K, Franks GV. In situ investigation of aggregate sizes formed using thermo-responsive polymers: Effect of temperature and shear. J Colloid Interface Sci 2017; 494:139-152. [PMID: 28157632 DOI: 10.1016/j.jcis.2017.01.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 01/30/2023]
Abstract
Temperature-responsive flocculants, such as poly(N-isopropylacrylamide) (PNIPAM), induce reversible particle aggregation upon heating above a lower critical solution temperature (LCST). The aim of this work is to investigate the aggregation of ground iron ore using PNIPAM and conventional polyacrylamide (PAM) flocculants in a continuously-sheared suspension, through in situ chord length measurements using Focused Beam Reflectance Measurement techniques and real-time imaging of the particle aggregates. In the presence of uncharged PNIPAM, particle aggregation occurs only upon heating to the LCST, and the aggregates continue to grow with further heating. Subsequent cooling re-disperses the aggregates, and repeated heating causes reformation. Unlike uncharged PNIPAM, anionic PNIPAM produces aggregates at temperatures below the LCST due to the polymer chains binding to two different particles via attractive interactions between the acrylic acid groups and the hematite surfaces, and can be added at temperatures above the LCST due to the formation of charge-stabilised micelles. Under continuous shear, the flocculant most able to resist aggregate size reduction was anionic PAM, followed by PAM, anionic PNIPAM, PNIPAM (6MDa), and PNIPAM (122kDa). Reversible aggregate breakage was found with all samples, except with PNIPAM (6MDa) after being subjected to shear rates above 550s-1. Furthermore, heating of the PNIPAM-dosed suspensions at shear rates below 200s-1 produced larger and more breakage-resistant aggregates.
Collapse
Affiliation(s)
- Wei Sung Ng
- Chemical and Biomolecular Engineering, University of Melbourne, Parkville, VIC 3010, Australia; CSIRO Mineral Resources, Clayton, VIC 3168, Australia.
| | - Luke A Connal
- Chemical and Biomolecular Engineering, University of Melbourne, Parkville, VIC 3010, Australia.
| | | | | | - George V Franks
- Chemical and Biomolecular Engineering, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
7
|
Huang LM, Li LD, Shang L, Zhou QH, Lin J. Preparation of pH-sensitive micelles from miktoarm star block copolymers by ATRP and their application as drug nanocarriers. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Ng WS, Forbes E, Franks GV, Connal LA. Xanthate-Functional Temperature-Responsive Polymers: Effect on Lower Critical Solution Temperature Behavior and Affinity toward Sulfide Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7443-7451. [PMID: 27434760 DOI: 10.1021/acs.langmuir.6b00211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Xanthate-functional polymers represent an exciting opportunity to provide temperature-responsive materials with the ability to selectively attach to specific metals, while also modifying the lower critical solution temperature (LCST) behavior. To investigate this, random copolymers of poly(N-isopropylacrylamide) (PNIPAM) with xanthate incorporations ranging from 2 to 32% were prepared via free radical polymerization. Functionalization with 2% xanthate increased the LCST by 5 °C relative to the same polymer without xanthate. With increasing xanthate composition, the transition temperature increased and the transition range broadened until a critical composition of the hydrophilic xanthate groups (≥18%) where the transition disappeared completely. The adsorption of the polymers at room temperature onto chalcopyrite (CuFeS2) surfaces increased with xanthate composition, while adsorption onto quartz (SiO2) was negligible. These findings demonstrate the affinity of these functional smart polymers toward copper iron sulfide relative to quartz surfaces, presumably due to the interactions between xanthate and specific metal centers.
Collapse
Affiliation(s)
- Wei Sung Ng
- Chemical and Biomolecular Engineering, University of Melbourne , Parkville, VIC 3010, Australia
- CSIRO Mineral Resources Flagship, Clayton, VIC 3168, Australia
| | | | - George V Franks
- Chemical and Biomolecular Engineering, University of Melbourne , Parkville, VIC 3010, Australia
| | - Luke A Connal
- Chemical and Biomolecular Engineering, University of Melbourne , Parkville, VIC 3010, Australia
| |
Collapse
|
9
|
Douglas P, Kuhs M, Sajjia M, Khraisheh M, Walker G, Collins MN, Albadarin AB. Bioactive PCL matrices with a range of structural & rheological properties. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Phan VHG, Lee E, Maeng JH, Thambi T, Kim BS, Lee D, Lee DS. Pancreatic cancer therapy using an injectable nanobiohybrid hydrogel. RSC Adv 2016. [DOI: 10.1039/c6ra07934b] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nanobiohybrid hydrogels, composed of biocompatible inorganic nanoparticles and biodegradable polymeric hydrogels, have been developed as the sustained delivery carrier of gemcitabine for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- V. H. Giang Phan
- Theranostic Macromolecules Research Center and Department of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Eunhye Lee
- Utah-Inha DDS & Advanced Therapeutics Research Center
- Incheon
- Korea
| | - Jin Hee Maeng
- Utah-Inha DDS & Advanced Therapeutics Research Center
- Incheon
- Korea
| | - Thavasyappan Thambi
- Theranostic Macromolecules Research Center and Department of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Bong Sup Kim
- Theranostic Macromolecules Research Center and Department of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| | - Donheang Lee
- Utah-Inha DDS & Advanced Therapeutics Research Center
- Incheon
- Korea
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and Department of Chemical Engineering
- Sungkyunkwan University
- Suwon
- Korea
| |
Collapse
|
11
|
Fang JY, Lin YK, Wang SW, Li YC, Lee RS. Synthesis and characterization of dual-stimuli-responsive micelles based on poly(N-isopropylacrylamide) and polycarbonate with photocleavable moieties. REACT FUNCT POLYM 2015. [DOI: 10.1016/j.reactfunctpolym.2015.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|