1
|
Schaefer S, Corrigan N, Brunke S, Lenardon MD, Boyer C. Combatting Fungal Infections: Advances in Antifungal Polymeric Nanomaterials. Biomacromolecules 2024; 25:5670-5701. [PMID: 39177507 DOI: 10.1021/acs.biomac.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fungal pathogens cause over 6.5 million life-threatening systemic infections annually, with mortality rates ranging from 20 to 95%, even with medical intervention. The World Health Organization has recently emphasized the urgent need for new antifungal drugs. However, the range of effective antifungal agents remains limited and resistance is increasing. This Review explores the current landscape of fungal infections and antifungal drugs, focusing on synthetic polymeric nanomaterials like nanoparticles that enhance the physicochemical properties of existing drugs. Additionally, we examine intrinsically antifungal polymers that mimic naturally occurring peptides. Advances in polymer characterization and synthesis now allow precise design and screening for antifungal activity, biocompatibility, and drug interactions. These antifungal polymers represent a promising new class of drugs for combating fungal infections.
Collapse
Affiliation(s)
- Sebastian Schaefer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Megan D Lenardon
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| |
Collapse
|
2
|
Schaefer S, Melodia D, Pracey C, Corrigan N, Lenardon MD, Boyer C. Mimicking Charged Host-Defense Peptides to Tune the Antifungal Activity and Biocompatibility of Amphiphilic Polymers. Biomacromolecules 2024; 25:871-889. [PMID: 38165721 DOI: 10.1021/acs.biomac.3c01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Invasive fungal infections impose a substantial global health burden. They cause more than 1.5 million deaths annually and are insufficiently met by the currently approved antifungal drugs. Antifungal peptides are a promising alternative to existing antifungal drugs; however, they can be challenging to synthesize, and are often susceptible to proteases in vivo. Synthetic polymers which mimic the properties of natural antifungal peptides can circumvent these limitations. In this study, we developed a library of 29 amphiphilic polyacrylamides with different charged units, namely, amines, guanidinium, imidazole, and carboxylic acid groups, representative of the natural amino acids lysine, arginine, histidine, and glutamic acid. Ternary polymers incorporating primary ammonium (lysine-like) or imidazole (histidine-like) groups demonstrated superior activity against Candida albicans and biocompatibility with mammalian cells compared to the polymers containing the other charged groups. Furthermore, a combination of primary ammonium, imidazole, and guanidinium (arginine-like) within the same polymer outperformed the antifungal drug amphotericin B in terms of therapeutic index and exhibited fast C. albicans-killing activity. The most promising polymer compositions showed synergistic effects in combination with caspofungin and fluconazole against C. albicans and additionally demonstrated activity against other clinically relevant fungi. Collectively, these results indicate the strong potential of these easily producible polymers to be used as antifungals.
Collapse
Affiliation(s)
- Sebastian Schaefer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Daniele Melodia
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Christopher Pracey
- Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, UNSW, Sydney, New South Wales 2052, Australia
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Megan D Lenardon
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| |
Collapse
|
3
|
Mai Y, Wang Z, Zhou Y, Wang G, Chen J, Lin Y, Ji P, Zhang W, Jing Q, Chen L, Chen Z, Lin H, Jiang L, Yuan C, Xu P, Huang M. From disinfectants to antibiotics: Enhanced biosafety of quaternary ammonium compounds by chemical modification. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132454. [PMID: 37703742 DOI: 10.1016/j.jhazmat.2023.132454] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
The excessive use of quaternary ammonium compounds (QACs) following the COVID-19 pandemic has raised substantial concerns regarding their biosafety. Overuse of QACs has been associated with chronic biological adverse effects, including genotoxicity or carcinogenicity. In particular, inadvertent intravascular administration or oral ingestion of QACs can lead to fatal acute toxicity. To enhance the biosafety and antimicrobial efficacy of QACs, this study reports a new series of QACs, termed as PACs, with the alkyl chain of benzalkonium substituted by a phthalocyanine moiety. Firstly, the rigid phthalocyanine moiety enhances the selectivity of QACs to bacteria over human cells and reduces alkyl chain's entropic penalty of binding to bacterial membranes. Furthermore, phthalocyanine neutralizes hemolysis and cytotoxicity of QACs by binding with albumin in plasma. Our experimental results demonstrate that PACs inherit the optical properties of phthalocyanine and validate the broad-spectrum antibacterial activity of PACs in vitro. Moreover, the intravascular administration of the most potent PAC, PAC1a, significantly reduced bacterial burden and ameliorated inflammation level in a bacteria-induced septic mouse model. This study presents a new strategy to improve the antimicrobial efficacy and biosafety of QACs, thus expanding their range of applications to the treatment of systemic infections.
Collapse
Affiliation(s)
- Yuhan Mai
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, PR China
| | - Zhiyou Wang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, PR China
| | - Yang Zhou
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, PR China
| | - Guodong Wang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, PR China
| | - Jingyi Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, PR China
| | - Yuxin Lin
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, PR China
| | - Panpan Ji
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China
| | - Wei Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China
| | - Qian Jing
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, PR China
| | - Liyun Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, PR China
| | - Zheng Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, PR China
| | - Haili Lin
- Department of Pharmacy, The Peoples Hospital of Fujian Province, Fuzhou, Fujian 350004, PR China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, PR China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, PR China.
| |
Collapse
|
4
|
Seferyan MA, Saverina EA, Frolov NA, Detusheva EV, Kamanina OA, Arlyapov VA, Ostashevskaya II, Ananikov VP, Vereshchagin AN. Multicationic Quaternary Ammonium Compounds: A Framework for Combating Bacterial Resistance. ACS Infect Dis 2023; 9:1206-1220. [PMID: 37161274 DOI: 10.1021/acsinfecdis.2c00546] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
During previous stages of research, high biocidal activity toward microorganism archival strains has been used as the main indicator in the development of new antiseptic formulations. Although this factor remains one of the most important characteristics of biocide efficiency, the scale of antimicrobial resistance spread causes serious concern. Therefore, focus shifts toward the development of formulations with a stable effect even in the case of prolonged contact with pathogens. Here, we introduce an original isocyanuric acid alkylation method with the use of available alkyl dichlorides, which opened access to a wide panel of multi-QACs with alkyl chains of various lengths between the nitrogen atoms of triazine and pyridine cycles. We used a complex approach for the resulting series of 17 compounds, including their antibiofilm properties, bacterial tolerance development, and antimicrobial activity toward multiresistant pathogenic strains. As a result of these efforts, available compounds have shown higher levels of antibacterial activity against ESKAPE pathogens than widely used commercial QACs. Hit compounds possessed high activity toward clinical bacterial strains and have also demonstrated a long-term biocidal effect without significant development of microorganism tolerance. The overall results indicated a high level of antibacterial activity and the broad application prospects of multi-QACs based on isocyanuric acid against multiresistant bacterial strains.
Collapse
Affiliation(s)
- Mary A Seferyan
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
| | - Evgeniya A Saverina
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
- Tula State University, Lenin pr. 92, 300012 Tula, Russia
| | - Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
| | - Elena V Detusheva
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, 142279 Serpukhov, Moscow Region, Russia
| | | | | | - Irina I Ostashevskaya
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
- Faculty of Chemistry, Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
| | | |
Collapse
|
5
|
Lin Y, Zhang D, Shan S, Zhang W, Li R, Zhang A. Fluorine-containing amphiphilic quaternary ammonium salts for the suppression of Banana fusarium wilt. REACT FUNCT POLYM 2023. [DOI: 10.1016/j.reactfunctpolym.2022.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Study of the Effectiveness of Alumina and HDTMA/Alumina Composite in the Removal of Para-Nitrophenol and the Deactivation of Bacterial Effect of Listeria monocytogenes and Salmonella spp. Life (Basel) 2022; 12:life12111700. [DOI: 10.3390/life12111700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Removal of para-nitrophenol (p-NP) from an aqueous solution was studied under various batch adsorption experiments, using alumina (Al2O3) and its composite hexadecyltrimethylammonium bromide (HDTMA+-Br−) as adsorbents. These were later characterized, before and after adsorption of p-NP, by thermal analysis (DSC-TG), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and UV/Visible spectroscopies. The results show that HDTMA+/Al2O3 adsorbents have a greater affinity toward p-NP than Al2O3 alone. Linear and non-linear forms of kinetics and isotherms were used to analyze the experimental data obtained at different concentrations and temperatures. The results indicate that the pseudo-second order kinetic model provided the best fit to the experimental data for the adsorption of p-NP on both adsorbents, and that the intra-particle diffusion was not only the rate controlling step. Both the Langmuir and Redlich-Peterson (R-P) models were found to fit the sorption isotherm data well, but the Langmuir model was better. Physical adsorption of p-NP onto the adsorbents proved to be an endothermic and spontaneous process at high temperatures, which mainly involves a hydrogen bonding mechanism of interactions between p-NP and functional groups of adsorbents. The antibacterial activity of Al2O3, HDTMA+-Br− and HDTMA+/Al2O3 were evaluated against Listeria monocytogenes and Salmonella spp. strains using both disc diffusion and broth microdilution methods. The HDTMA+-Br− and HDTMA+/Al2O3 displayed a bacteriostatic effect against all tested strains of Listeria monocytogenes and Salmonella spp., while Al2O3 exhibited no bacterial effect against all bacterial strains tested.
Collapse
|
7
|
Choudhury M, Bindra HS, Singh K, Singh AK, Nayak R. Antimicrobial polymeric composites in consumer goods and healthcare sector: A healthier way to prevent infection. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mousam Choudhury
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India
| | | | - Karishma Singh
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India
| | - Alok Kumar Singh
- School of Biotechnology Sher‐e‐Kashmir University of Agricultural Science and Technology of Jammu Jammu and Kashmir India
| | - Ranu Nayak
- Amity Institute of Nanotechnology Amity University Uttar Pradesh Noida India
| |
Collapse
|
8
|
Polymeric diallyl quaternary ammonium salts for inhibiting banana Fusarium wilt. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Bo Y, Zhang L, Wang Z, Shen J, Zhou Z, Yang Y, Wang Y, Qin J, He Y. Antibacterial Hydrogel with Self-Healing Property for Wound-Healing Applications. ACS Biomater Sci Eng 2021; 7:5135-5143. [PMID: 34634909 DOI: 10.1021/acsbiomaterials.1c00719] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogels with inherent antibacterial ability are a focus in soft tissue repair. Herein, a series of antibacterial hydrogels were fabricated by quaternized N-[3-(dimethylamino)propyl] methacrylamide (quaternized P(DMAPMA-DMA-DAA)) bearing copolymers with dithiodipropionic acid dihydrazide (DTDPH) as cross-linker. The hydrogels presented efficient self-healing capability as well as a pH and redox-triggered gel-sol-gel transition property that is based on the dynamic acylhydrazone bond and disulfide linkage. Furthermore, the hydrogels showed good antibacterial activity, biocompatibility, degradability, and sustained release ability. More importantly, the in vivo experiments demonstrated that the hydrogels loaded with mouse epidermal growth factor (mEGF) significantly accelerated wound closure by preventing bacterial infection and promoting cutaneous regeneration in the wound model. The antibacterial hydrogels with self-healing behavior hold great potential in wound treatment.
Collapse
Affiliation(s)
- Yunyi Bo
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Linhua Zhang
- Key Laboratory of Biomedical Material of Tianjin, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Zhifeng Wang
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Jiafu Shen
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, China
| | - Ziwei Zhou
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Yan Yang
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Yong Wang
- Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding, Hebei 071002, China
| | - Jianglei Qin
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, China
| | - Yingna He
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, Hebei 050200, China
| |
Collapse
|
10
|
Zheng Z, Wang B, Chen J, Wang Y, Miao Z, Shang C, Zhang Q. Facile synthesis of Antibacterial, Biocompatible, quaternized Poly(ionic liquid)s with pendant saccharides. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Su G, Jiang YJ, Ju HB, Wang YK, Yu SX, Luo YY, Geng T. Synthesis, Surface Tension, Flocculation and Antibacterial Properties of Cationic Copolymer Methacryloxyethyl Trimethyl Ammonium Chloride-Butyl Acrylate-Acrylamide. TENSIDE SURFACT DET 2021. [DOI: 10.1515/tsd-2020-2285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Three cationic copolymers methacryloxyethyl trimethyl ammonium chloride-butyl acrylate-acrylamide (MTAC-BA-AM terpolymer) were designed and synthesized by emulsion polymerization. Their structures were confirmed by FT-IR and 1H NMR. The effect of content of hydrophobic monomer butyl acrylate (BA) in MTAC-BA-AM terpolymer on surface activities, flocculation and antibacterial properties were investigated. The study of surface tension shows that MTAC-BA-AM terpolymer has good surface activity due to the introduction of hydrophobic monomer BA. The flocculation experiment showed that the light transmittance of the kaolin suspension supernatant was 98.13% when the dose of MTAC-BA-AM terpolymer in the kaolin suspension was 0.03 mg/L, which was obviously better than the P(MTAC-AM) (91.02%) without hydrophobic modification of BA. The bacteriostatic experiment of MTAC-BA-AM terpolymer showed that as the content of hydrophobic monomer BA in MTAC-BA-AM terpolymer increased the inhibitory rate of MTAC-BA-AM terpolymer aginst Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus)
Collapse
Affiliation(s)
- Geng Su
- China Research Institute of Daily Chemical Industry , Taiyuan , Shanxi Province China
| | - Ya-Jie Jiang
- China Research Institute of Daily Chemical Industry , Taiyuan , Shanxi Province China
| | - Hong-Bin Ju
- China Research Institute of Daily Chemical Industry , Taiyuan , Shanxi Province China
| | - Ya-Kui Wang
- China Research Institute of Daily Chemical Industry , Taiyuan , Shanxi Province China
| | - Shui-Xin Yu
- Shanghai ICAN Chemical S&T Co., Ltd , Shanghai , China
| | - Ye-Yuan Luo
- Shanghai ICAN Chemical S&T Co., Ltd , Shanghai , China
| | - Tao Geng
- China Research Institute of Daily Chemical Industry , Taiyuan , Shanxi Province China
| |
Collapse
|
12
|
Qiao J, Liu Z, Cui S, Nagy T, Xiong MP. Synthesis and evaluation of an amphiphilic deferoxamine:gallium-conjugated cationic random copolymer against a murine wound healing infection model of Pseudomonas aeruginosa. Acta Biomater 2021; 126:384-393. [PMID: 33705987 DOI: 10.1016/j.actbio.2021.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 12/30/2022]
Abstract
Multidrug resistant (MDR) Gram-negative bacteria are an urgent global health threat. We report on the design and evaluation of a xenosiderophore-conjugated cationic random copolymer (pGQ-DG) which exhibits selective antibacterial activity against Pseudomonas aeruginosa (P. aeruginosa) by targeting select outer membrane (OM) receptors for scavenging xenosiderophores such as deferoxamine (DFO), while possessing favorable cytocompatibility and exhibiting low hemolysis, to enhance and safely damage the bacterial OM. pGQ-DG demonstrated synergistic properties in combination with vancomycin (VAN) when evaluated in vitro against P. aeruginosa. In addition, pGQ-DG plus VAN cleared the P. aeruginosa infection and efficiently accelerated healing in a murine wound healing model as effectively as colistin, suggesting that this strategy could serve as an alternative to colistin against MDR bacteria. STATEMENT OF SIGNIFICANCE: P. aeruginosa exhibits intrinsic antibiotic resistance due to limited permeability of its outer membrane (OM). A triple combination antipseudomonal approach was investigated by 1) selectively targeting P. aeruginosa through the complex DFO:gallium, 2) disrupting the OM through a cationic random copolymer, and 3) enhancing bacteria sensitivity to VAN as a result of the OM disruption. Synthesis and characterization of the lead polymer pGQ-DG, mechanism of action, antimicrobial activity, and biocompatibility were investigated in vitro and in vivo. Overall pGQ-DG plus VAN cleared the P. aeruginosa infection and accelerated wound healing in mice as effectively as colistin, suggesting that this strategy could serve as an alternative to colistin against multidrug resistant P. aeruginosa.
Collapse
Affiliation(s)
- Jing Qiao
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, United States
| | - Zhi Liu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, United States
| | - Shuolin Cui
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, United States
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602-2352, United States
| | - May P Xiong
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, United States.
| |
Collapse
|
13
|
Chang Y, Zhong W, Liang J, Zhang A, Lin Y. Polydimethylsiloxane-polymethacrylate block copolymers containing quaternary ammonium salts against Fusarium oxysporum f. sp. cubense race 4 in soil: Antifungal activities and pot experiments. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Koc H, Kilicay E, Karahaliloglu Z, Hazer B, Denkbas EB. Prevention of urinary infection through the incorporation of silver-ricinoleic acid-polystyrene nanoparticles on the catheter surface. J Biomater Appl 2021; 36:385-405. [PMID: 33530824 DOI: 10.1177/0885328220983552] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nosocominal infections associated with biofilm formation on urinary catheters cause serious complications. The aim of this study was to investigate the feasibility of the polyurethane (PU) catheter modified with tetracycline hydrochloride (TCH) attached Ag nanoparticles embedded PolyRicinoleic acid-Polystyrene Nanoparticles (PU-TCH-AgNPs-PRici-PS NPs) and the influence on antimicrobial and antibiofilm activity of urinary catheters infected by Escherichia coli and Staphylococcus aureus. For this purpose, AgNPs embedded PRici graft PS graft copolymers (AgNPs-PRici-g-PS) were synthesized via free radical polymerization and characterized by FTIR, HNMR and DSC. AgNPs-PRici-PS NPs were prepared and optimized by the different parameters and the optimized size of nanoparticle was found as about 150 ± 1 nm. The characterization of the nanoparticles and the morphological evaluation were carried out by FTIR and SEM. Short term stability of nanoparticles was realised at 4°C for 30 days. In vitro release profiles of TCH and Ag NPs were also investigated. The formation of biofilm on PU modified TCH-Ag NPs-PRici-PS NPs, was evaluated and the biocompatibility test of the nanoparticles was realized via the mouse fibroblast (L929) and mouse urinary bladder cells (G/G An1). This is the first time that TCH-AgNPs-PRici-PS NPs used in the modification of PU catheter demonstrated high antimicrobial and antibiofilm activities against the urinary tract infection.
Collapse
Affiliation(s)
- Hazal Koc
- Nanotechnology Engineering Department, Institute of Science, Bülent Ecevit University, Zonguldak, Turkey
| | - Ebru Kilicay
- Vocational School of Eldivan Health Services, Karatekin University, Cankiri, Turkey
| | | | - Baki Hazer
- Department of Aircraft Airflame Engine Maintenance, Kapadokya University, Ürgüp, Turkey.,Department of Chemistry, Bulent Ecevit University, Zonguldak, Turkey
| | - Emir B Denkbas
- Bioengineering Division, Institute of Pure and Applied Sciences, Hacettepe University, Ankara, Turkey.,Faculty of Engineering, Department of Biomedical Engineering, Başkent University, Ankara, Turkey
| |
Collapse
|
15
|
Zhong W, Chang Y, Lin Y, Zhang A. Synthesis and antifungal activities of hydrophilic cationic polymers against Rhizoctonia solani. Fungal Biol 2020; 124:735-741. [DOI: 10.1016/j.funbio.2020.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/30/2022]
|
16
|
Novel Quaternary Ammonium Derivatives of 4-Pyrrolidino Pyridine: Synthesis, Structural, Thermal, and Antibacterial Studies. CRYSTALS 2020. [DOI: 10.3390/cryst10050339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Six novel quaternary ammonium derivatives of 4-pyrrolidino pyridine were prepared and isolated via a facile one-pot synthesis and a simple purification procedure. The purity and the molecular structure of the 4-pyrrolidino pyridine derivatives were confirmed with 1H and 13C NMR spectroscopy and powder X-ray diffraction techniques. The crystal structures of the compounds were characterized by single crystal X-ray diffraction (SCXRD) and their thermal properties were studied by Differential Scanning Calorimetry (DSC) analyses. The antibacterial properties of the title compounds against five bacterial strains were evaluated using Kirby–Bauer disk diffusion susceptibility test. The compounds crystallize in the monoclinic or orthorhombic crystal systems (space groups: P21/c, P21/n, or P212121) and their crystal structures are stabilized by a combination of intra- and intermolecular halogen bonding interactions, short contacts and π-π interactions. Above interactions, they contribute to the thermal stability and lack of phase transition effects up to 350 °C. Two of the compounds possess antibacterial effect against E. coli or S. aureus bacterial strains—similar or better than the kanamycin reference.
Collapse
|
17
|
Palencia M, Córdoba A, Melendrez MF. Nanocomposites based on cationic polyelectrolytes and silver nanoparticles: Synthesis, characterization, molybdate retention and antimicrobial activity. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2017.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
18
|
Chung YC, Bae CH, Kim DE, Choi JW, Chun BC. Conversion of the Hydrophobic Surface of Polyurethane into a Hydrophilic Surface Using the Graft Polymerization of 2-(dimethylamino) ethyl Methacrylate and the Resulting Antifungal Effect. Macromol Res 2019. [DOI: 10.1007/s13233-019-7101-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Zhang M, Zeng G, Wang Y, Zhao Z. MGF‐Ct24E‐modified piperazine polymer: A balance of antimicrobial activity and cytotoxicity. J Appl Polym Sci 2019. [DOI: 10.1002/app.47773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Maolan Zhang
- Institute of Biomedical EngineeringChongqing University of Science and Technology Chongqing 401331 China
| | - Guoming Zeng
- School of Civil Engineering and ArchitectureChongqing University of Science and Technology Chongqing 401331 China
| | - Yuanliang Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of EducationChongqing University Chongqing 400030 China
| | - Zhiping Zhao
- College of Chemical EngineeringSichuan University of Science & Engineering Zigong 643000 China
| |
Collapse
|
20
|
Lin Y, Zhong W, Dong C, Zhang C, Feng X, Zhang A. Synthesis and Antifungal Activities of Amphiphilic PDMS-b-QPDMAEMA Copolymers on Rhizoctonia solani. ACS APPLIED BIO MATERIALS 2018; 1:2062-2072. [DOI: 10.1021/acsabm.8b00545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yaling Lin
- College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642 Guangdong, China
| | - Weiqiang Zhong
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641 Guangdong, China
| | - Chenyun Dong
- College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642 Guangdong, China
| | - Chang Zhang
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641 Guangdong, China
| | - Xixiang Feng
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641 Guangdong, China
| | - Anqiang Zhang
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641 Guangdong, China
| |
Collapse
|
21
|
An Effective Flocculation Method to the Kaolin Wastewater Treatment by a Cationic Polyacrylamide (CPAM): Preparation, Characterization, and Flocculation Performance. INT J POLYM SCI 2018. [DOI: 10.1155/2018/5294251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
P(AM-DMC) (PAD) was synthesized by ultraviolet- (UV-) initiated copolymerization with methacryloxyethyl trimethyl ammonium chloride (DMC) and acrylamide (AM) as the monomers and initiator 2,2-azobis [2-(2-imidazolin-2-yl) propane] dihydrochloride (VA-044) as the photoinitiator. Parameters that affect the molecular weight were reviewed by using the single-factor approach. The results showed that the molecular weight (MW) of PAD could come to 7.88 × 106 Da with the optimum polymerization conditions as follows: monomer concentration of 30%, monomer mass ratio m(AM) : m(DMC) of 3 : 1, initiator concentration of 0.6‰, illumination time of 80 min, solution pH value of 4.5, and incident light intensity of 1000 μW cm−2. The PAD was represented by several instruments. The results of FTIR and 1H NMR showed that PAD was indeed polymerized by AM and DMC. The results of TGA showed that PAD was very stable at room temperature while the result of SEM revealed that PAD had a porous structure and rough surface. For PAD used as flocculant in kaolin wastewater treatment, the results confirmed that, at optimal conditions, the turbidity and the floc size d50 could reach to 5.9 NTU and 565.936 μm, respectively, at the optimal conditions (pH = 7.0 and dosage = 2 mg l−1). Kaolin wastewater flocculation test outcome reveals that the PAD with high cationic degree and intrinsic viscosity could boost the charge neutralization and bridging capability. Consequently, the result is an excellent flocculation performance of treating kaolin wastewater.
Collapse
|
22
|
Grace JL, Schneider-Futschik EK, Elliott AG, Amado M, Truong NP, Cooper MA, Li J, Davis TP, Quinn JF, Velkov T, Whittaker MR. Exploiting Macromolecular Design To Optimize the Antibacterial Activity of Alkylated Cationic Oligomers. Biomacromolecules 2018; 19:4629-4640. [PMID: 30359516 DOI: 10.1021/acs.biomac.8b01317] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
There is growing interest in synthetic polymers which co-opt the structural features of naturally occurring antimicrobial peptides. However, our understanding of how macromolecular architecture affects antibacterial activity remains limited. To address this, we investigated whether varying architectures of a series of block and statistical co-oligomers influenced antibacterial and hemolytic activity. Cu(0)-mediated polymerization was used to synthesize oligomers constituting 2-(Boc-amino)ethyl acrylate units and either diethylene glycol ethyl ether acrylate (DEGEEA) or poly(ethylene glycol) methyl ether acrylate units with varying macromolecular architecture; subsequent deprotection produced primary amine functional oligomers. Further guanylation provided an additional series of antimicrobial candidates. Both chemical composition and macromolecular architecture were shown to affect antimicrobial activity. A broad spectrum antibacterial oligomer (containing guanidine moieties and DEGEEA units) was identified that possessed promising activity (MIC = 2 μg mL-1) toward both Gram-negative and Gram-positive bacteria. Bacterial membrane permeabilization was identified as an important contributor to the mechanism of action.
Collapse
Affiliation(s)
- James L Grace
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia.,Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia
| | - Elena K Schneider-Futschik
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia.,Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences , The University of Melbourne , Parkville , VIC 3010 , Australia
| | - Alysha G Elliott
- Institute of Molecular Biosciences , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Maite Amado
- Institute of Molecular Biosciences , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Nghia P Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia.,Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia
| | - Matthew A Cooper
- Institute of Molecular Biosciences , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology , Monash University , Clayton , Victoria 3800 , Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia.,Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia.,Department of Chemistry , Warwick University , Gibbet Hill , Coventry , CV4 7AL , U.K
| | - John F Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia.,Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia.,Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences , The University of Melbourne , Parkville , VIC 3010 , Australia
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia.,Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia
| |
Collapse
|
23
|
Wang B, Wang F, Kong Y, Wu Z, Wang RM, Song P, He Y. Polyurea-crosslinked cationic acrylate copolymer for antibacterial coating. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Dong C, You W, Liuyang R, Lei Y, Zhang A, Lin Y. Anti- Rhizoctonia solani activity by polymeric quaternary ammonium salt and its mechanism of action. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Lei Y, Zhou S, Dong C, Zhang A, Lin Y. PDMS tri-block copolymers bearing quaternary ammonium salts for epidermal antimicrobial agents: Synthesis, surface adsorption and non-skin-penetration. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Controllable synthesis and antimicrobial activities of acrylate polymers containing quaternary ammonium salts. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
27
|
Dalcin AJF, Santos CG, Gündel SS, Roggia I, Raffin RP, Ourique AF, Santos RCV, Gomes P. Anti biofilm effect of dihydromyricetin-loaded nanocapsules on urinary catheter infected by Pseudomonas aeruginosa. Colloids Surf B Biointerfaces 2017; 156:282-291. [PMID: 28544960 DOI: 10.1016/j.colsurfb.2017.05.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/29/2017] [Accepted: 05/10/2017] [Indexed: 01/08/2023]
Abstract
Nosocomial infections associated with biofilm formation on urinary catheters are among the leading causes of complications due to biofilm characteristics and high antimicrobial resistance. An interesting alternative are natural products, such as Dihydromyricetin (DMY), a flavonoid which presents several pharmacological properties, including strong antimicrobial activity against various microorganisms. However, DMY, has low aqueous solubility and consequently low bioavailability. Nanoencapsulation can contribute to the improvement of characteristics of some drugs, by increasing the apparent solubility and sustained release has been reported among other advantages. The aim of this study was to evaluate, for the first time, the feasibility of DMY nanoencapsulation, and to look at its influence on nanoencapsulation of DMY as well as verify its influence on antimicrobial and antibiofilm activity on urinary catheters infected by Pseudomonas aeruginosa. The physicochemical characterization showed an average diameter less than 170nm, low polydispersity index, positive zeta potential (between +11 and +14mV), slightly acidic pH. The values of the stability study results showed that the best condition for suspension storage without losing physical and chemical characteristics was under refrigeration (4±2°C). The antibiofilm activity of the formulations resulted in the eradication of biofilms both in free DMY formulations and in nanocapsules of DMY during those periods. However, within 96h the results of the inhibition of biofilm by DMY nanocapsules were more effective compared with free DMY. Thus, the nanocapsule formulation containing DMY can potentially be used as an innovative approach to urinary catheter biofilm treatment or prevention.
Collapse
Affiliation(s)
- A J F Dalcin
- Laboratory of Nanotechnology, Centro Universitário Franciscano, Santa Maria, Brazil; Post Graduate Program in Nanosciences, Centro Universitário Franciscano, Santa Maria, Brazil.
| | - C G Santos
- Laboratory of Nanotechnology, Centro Universitário Franciscano, Santa Maria, Brazil; Post Graduate Program in Nanosciences, Centro Universitário Franciscano, Santa Maria, Brazil
| | - S S Gündel
- Laboratory of Nanotechnology, Centro Universitário Franciscano, Santa Maria, Brazil
| | - I Roggia
- Laboratory of Nanotechnology, Centro Universitário Franciscano, Santa Maria, Brazil; Post Graduate Program in Nanosciences, Centro Universitário Franciscano, Santa Maria, Brazil
| | - R P Raffin
- Post Graduate Program in Nanosciences, Centro Universitário Franciscano, Santa Maria, Brazil
| | - A F Ourique
- Post Graduate Program in Nanosciences, Centro Universitário Franciscano, Santa Maria, Brazil
| | - R C V Santos
- Post Graduate Program in Nanosciences, Centro Universitário Franciscano, Santa Maria, Brazil; Laboratory of Oral Microbiology Research, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - P Gomes
- Post Graduate Program in Nanosciences, Centro Universitário Franciscano, Santa Maria, Brazil
| |
Collapse
|
28
|
Polymeric quaternary ammonium salt activity against Fusarium oxysporum f. sp. cubense race 4: Synthesis, structure-activity relationship and mode of action. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
29
|
Zhao H. Retracted: Controlled synthesis of magnetic block copolymers for anti-microbial purpose. J Appl Polym Sci 2017. [DOI: 10.1002/app.44598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hongjian Zhao
- School of Materials Science & Engineering; Tianjin University; Tianjin 300072 China
| |
Collapse
|
30
|
Affiliation(s)
- Busra Ates
- Department of Fiber and Polymer Engineering; Bursa Technical University; Bursa 16310 Turkey
| | - Idris Cerkez
- Department of Fiber and Polymer Engineering; Bursa Technical University; Bursa 16310 Turkey
| |
Collapse
|
31
|
Montaser A, Abdel-Mohsen A, Ramadan M, Sleem A, Sahffie N, Jancar J, Hebeish A. Preparation and characterization of alginate/silver/nicotinamide nanocomposites for treating diabetic wounds. Int J Biol Macromol 2016; 92:739-747. [DOI: 10.1016/j.ijbiomac.2016.07.050] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/07/2016] [Accepted: 07/14/2016] [Indexed: 12/20/2022]
|
32
|
Recent Advances in Antimicrobial Polymers: A Mini-Review. Int J Mol Sci 2016; 17:ijms17091578. [PMID: 27657043 PMCID: PMC5037843 DOI: 10.3390/ijms17091578] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/06/2016] [Accepted: 09/14/2016] [Indexed: 12/18/2022] Open
Abstract
Human safety and well-being is threatened by microbes causing numerous infectious diseases resulting in a large number of deaths every year. Despite substantial progress in antimicrobial drugs, many infectious diseases remain difficult to treat. Antimicrobial polymers offer a promising antimicrobial strategy for fighting pathogens and have received considerable attention in both academic and industrial research. This mini-review presents the advances made in antimicrobial polymers since 2013. Antimicrobial mechanisms exhibiting either passive or active action and polymer material types containing bound or leaching antimicrobials are introduced. This article also addresses the applications of these antimicrobial polymers in the medical, food, and textile industries.
Collapse
|
33
|
Lazar MM, Varganici CD, Cazacu M, Dragan ES. Cationic hybrids from poly(N,N-dimethylaminoethyl methacrylate) covalently crosslinked with chloroalkyl silicone derivatives effective in binding anionic dyes. J Appl Polym Sci 2016. [DOI: 10.1002/app.43942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Maria Marinela Lazar
- “Petru Poni” Institute of Macromolecular Chemistry; Grigore Ghica Voda Alley 41A Iasi 700487 Romania
| | - Cristian-Dragos Varganici
- “Petru Poni” Institute of Macromolecular Chemistry; Grigore Ghica Voda Alley 41A Iasi 700487 Romania
| | - Maria Cazacu
- “Petru Poni” Institute of Macromolecular Chemistry; Grigore Ghica Voda Alley 41A Iasi 700487 Romania
| | - Ecaterina Stela Dragan
- “Petru Poni” Institute of Macromolecular Chemistry; Grigore Ghica Voda Alley 41A Iasi 700487 Romania
| |
Collapse
|
34
|
Daoudi S, Benaissa T, Adli DE, Hamini-Kadar N. Synthesis and Antimicrobial Evaluation of Symmetrical Diquaternary Ammonium Salts Bearing Bis-1,3,4-Oxadiazole Rings Moieties. CHEMISTRY JOURNAL OF MOLDOVA 2016. [DOI: 10.19261/cjm.2016.11(1).07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
35
|
|
36
|
Takahashi H, Akiyoshi K, Kuroda K. Affinity-mediated capture and release of amphiphilic copolymers for controlling antimicrobial activity. Chem Commun (Camb) 2015; 51:12597-600. [DOI: 10.1039/c5cc02012c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Capture and release of amphiphilic copolymers by a nano-sized polysaccharide gel (nanogel) was controlled by altering the hydrophobic binding affinity between the copolymer chains and nanogel.
Collapse
Affiliation(s)
- Haruko Takahashi
- Department of Biologic and Materials Sciences
- School of Dentistry
- University of Michigan
- Ann Arbor
- USA
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences
- School of Dentistry
- University of Michigan
- Ann Arbor
- USA
| |
Collapse
|