1
|
Nayak K, De P. Crosslinked polymethacrylate absorbent with phenylalanine and stearate pendants. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2141124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kasturee Nayak
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| |
Collapse
|
2
|
Wang H, Ullah A. Synthesis and Evaluation of Thermoresponsive Renewable Lipid-Based Block Copolymers for Drug Delivery. Polymers (Basel) 2022; 14:polym14173436. [PMID: 36080511 PMCID: PMC9460350 DOI: 10.3390/polym14173436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Polymeric micelle forming from self-assembly of amphiphilic macromolecules is one of the most potent drug delivery systems. Fatty acids, naturally occurring hydrophobic lipid components, can be considered as potential candidates for the fabrication of block copolymer micelles. However, examples of synthesis of responsive block copolymers using renewable fatty acids are scarce. Herein, we report the synthesis, characterization and testing of block copolymer micelles composed of a renewable fatty-acid-based hydrophobic block and thermoresponsive hydrophilic block for controlled drug delivery. The block copolymers of functionalized fatty acid and poly(N-isopropylacrylamide) (PNIPAM) were prepared via consecutive microwave-assisted reversible addition fragmentation chain transfer (RAFT) polymerization. The block copolymers with variable hydrophobic block length self-assembled in aqueous media and formed spherical nanoparticles of ~30 nm with low critical micelle concentration (CMC). To demonstrate the proof-of-concept, carbamazepine (CBZ) was used as a hydrophobic model drug to evaluate the performance of these micelles as nanocarriers. The in vitro drug release tests were carried out below (25 °C) and above (37 °C) the lower critical solution temperature (LCST) of the block copolymer. The drug release showed obvious temperature-triggered response and an accelerated drug release at 37 °C.
Collapse
|
3
|
Leiske MN, Kempe K. A Guideline for the Synthesis of Amino-Acid-Functionalized Monomers and Their Polymerizations. Macromol Rapid Commun 2021; 43:e2100615. [PMID: 34761461 DOI: 10.1002/marc.202100615] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/31/2021] [Indexed: 12/16/2022]
Abstract
Amino acids have emerged as a sustainable source for the design of functional polymers. Besides their wide availability, especially their high degree of biocompatibility makes them appealing for a broad range of applications in the biomedical research field. In addition to these favorable characteristics, the versatility of reactive functional groups in amino acids (i.e., carboxylic acids, amines, thiols, and hydroxyl groups) makes them suitable starting materials for various polymerization approaches, which include step- and chain-growth reactions. This review aims to provide an overview of strategies to incorporate amino acids into polymers. To this end, it focuses on the preparation of polymerizable monomers from amino acids, which yield main chain or side chain-functionalized polymers. Furthermore, postpolymerization modification approaches for polymer side chain functionalization are discussed. Amino acids are presented as a versatile platform for the development of polymers with tailored properties.
Collapse
Affiliation(s)
- Meike N Leiske
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan, Ghent, 9000, Belgium
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
4
|
Feng W, Huang Z, Kang X, Zhao D, Li H, Li G, Xu J, Wang X. Self-Assembled Nanosized Vehicles from Amino Acid-Based Amphiphilic Polymers with Pendent Carboxyl Groups for Efficient Drug Delivery. Biomacromolecules 2021; 22:4871-4882. [PMID: 34636237 DOI: 10.1021/acs.biomac.1c01164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Developing safe and efficient delivery vehicles for chemotherapeutic drugs has been a long-standing demanding. Amino acid-based polymers are promising candidates to address this challenge due to their excellent biocompatibility and biodegradation. Herein, a series of well-defined amphiphilic block copolymers were prepared by PET-RAFT polymerization of N-acryloyl amino acid monomers. By altering monomer types and the block ratio of the copolymers, the copolymers self-assembled into nanostructures with various morphologies, including spheres, rod-like, fibers, and lamellae via hydrophobic and hydrogen bonding interactions. Significantly, the nanoparticles (NPs) assembled from amphiphilic block copolymers poly(N-acryloyl-valine)-b-poly(N-acryloyl-aspartic acid) (PV-b-PD) displayed an appealing cargo loading efficiency (21.8-32.6%) for a broad range of drugs (paclitaxel, doxorubicin (DOX), cisplatin, etc.) due to strong interactions. The DOX-loaded PV-b-PD NPs exhibited rapid cellular uptake (within 1 min) and a great therapeutic performance. These drug delivery systems provide new insights for regulating the controlled morphologies and improving the efficiency of drug delivery.
Collapse
Affiliation(s)
- Wenli Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zixuan Huang
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Sydney, Sydney 2052, Australia
| | - Xiaoxu Kang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongdong Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haofei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiangtao Xu
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Sydney, Sydney 2052, Australia
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Nayak K, Ghosh P, Khan MEH, De P. Side‐chain amino‐acid‐based polymers: self‐assembly and bioapplications. POLYM INT 2021. [DOI: 10.1002/pi.6278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Kasturee Nayak
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Nadia India
| | - Pooja Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Nadia India
| | - Md Ezaz Hasan Khan
- School of General Education, College of the North Atlantic – Qatar Doha Qatar
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Nadia India
| |
Collapse
|
6
|
Sarkar P, Ghosh S, Saha R, Sarkar K. RAFT polymerization mediated core-shell supramolecular assembly of PEGMA- co-stearic acid block co-polymer for efficient anticancer drug delivery. RSC Adv 2021; 11:16913-16923. [PMID: 35479720 PMCID: PMC9031514 DOI: 10.1039/d1ra01660a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022] Open
Abstract
In this work, core-shell supramolecular assembly polymeric nano-architectures containing hydrophilic and hydrophobic segments were synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization. Herein, polyethylene glycol methyl ether methacrylate (PEGMA), and stearic acid were used to synthesize the poly(PEGMA) homopolymer and stearyl ethyl methacrylate (SEMA), respectively. Then, PEGMA and SEMA were polymerized through controlled RAFT polymerization to obtain the final diblock copolymer, poly(PEGMA-co-SEMA) (BCP). Model anticancer drug, doxorubicin (DOX) was loaded on BCPs. Interestingly, efficient DOX release was observed at acidic pH, similar to the cancerous environment pH level. Significant cellular uptake of DOX loaded BCP50 (BCP50-DOX) was observed in MDA-MB-231 triple negative breast cancer cells and resulted in a 35 fold increase in anticancer activity against MDA MB-231 cells compared to free DOX. Scanning electron microscopy (SEM) imaging confirmed the apoptosis mediated cellular death. These core-shell supramolecular assembly polymeric nano-architectures may be an efficient anti-cancer drug delivery system in the future.
Collapse
Affiliation(s)
- Priyatosh Sarkar
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science and Technology, University of Calcutta 92, A. P. C. Road Kolkata 700009 India http://kishorgttl.com +91-33-2350-1397 ext. 285
| | - Santanu Ghosh
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science and Technology, University of Calcutta 92, A. P. C. Road Kolkata 700009 India http://kishorgttl.com +91-33-2350-1397 ext. 285
- Department of Materials Engineering, Indian Institute of Science C. V. Raman Avenue Bangalore Karnataka 560012 India
| | - Rima Saha
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science and Technology, University of Calcutta 92, A. P. C. Road Kolkata 700009 India http://kishorgttl.com +91-33-2350-1397 ext. 285
| | - Kishor Sarkar
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science and Technology, University of Calcutta 92, A. P. C. Road Kolkata 700009 India http://kishorgttl.com +91-33-2350-1397 ext. 285
| |
Collapse
|
7
|
Hatton FL. Recent advances in RAFT polymerization of monomers derived from renewable resources. Polym Chem 2020. [DOI: 10.1039/c9py01128e] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this Minireview, RAFT polymerization of monomers derived from renewable resources is explored. Methods used to prepare these monomers are discussed, and potential applications of the resulting renewable polymers are highlighted.
Collapse
Affiliation(s)
- Fiona L. Hatton
- Department of Materials
- Loughborough University
- Loughborough
- UK
| |
Collapse
|
8
|
Bai W, Xu J, Guan M, He Y, Xu Y, Lin J. Preparation of superhydrophobic polyimide microstructural layer on copper mesh for oil/water separation. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
|
10
|
Lomège J, Lapinte V, Negrell C, Robin JJ, Caillol S. Fatty Acid-Based Radically Polymerizable Monomers: From Novel Poly(meth)acrylates to Cutting-Edge Properties. Biomacromolecules 2018; 20:4-26. [PMID: 30273485 DOI: 10.1021/acs.biomac.8b01156] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The increasing price of barrels of oil, global warming, and other environmental problems favor the use of renewable resources to replace the petroleum-based polymers used in various applications. Recently, fatty acids (FAs) and their derivatives have appeared among the most promising candidates to afford novel and innovative bio-based (co)polymers because of their ready availability, their low toxicity, and their high versatility. However, the current literature mostly focused on FA-based polymers prepared by condensation polymerization or oxypolymerization, while only a few works have been devoted to radical polymerization due to the low reactivity of FAs through radical process. Thus, the aim of this Review is to give an overview of (i) the most common synthetic pathways reported in the literature to provide suitable monomers from FAs and their derivatives for radical polymerization, (ii) the available radical processes to afford FA-based (co)polymers, and (iii) the different applications in which FA-based (co)polymers have been used since the past few years.
Collapse
Affiliation(s)
- Juliette Lomège
- Institut Charles Gerhardt Montpellier UMR 5253, Univ Montpellier CNRS ENSCM , Université de Montpellier , CC1702, Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - Vincent Lapinte
- Institut Charles Gerhardt Montpellier UMR 5253, Univ Montpellier CNRS ENSCM , Université de Montpellier , CC1702, Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - Claire Negrell
- Institut Charles Gerhardt Montpellier UMR 5253, Univ Montpellier CNRS ENSCM , Université de Montpellier , CC1702, Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - Jean-Jacques Robin
- Institut Charles Gerhardt Montpellier UMR 5253, Univ Montpellier CNRS ENSCM , Université de Montpellier , CC1702, Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - Sylvain Caillol
- Institut Charles Gerhardt Montpellier UMR 5253, Univ Montpellier CNRS ENSCM , Université de Montpellier , CC1702, Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| |
Collapse
|
11
|
Atanase LI, Riess G. Self-Assembly of Block and Graft Copolymers in Organic Solvents: An Overview of Recent Advances. Polymers (Basel) 2018; 10:E62. [PMID: 30966101 PMCID: PMC6414829 DOI: 10.3390/polym10010062] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/04/2018] [Accepted: 01/06/2018] [Indexed: 12/31/2022] Open
Abstract
This review is an attempt to update the recent advances in the self-assembly of amphiphilic block and graft copolymers. Their micellization behavior is highlighted for linear AB, ABC triblock terpolymers, and graft structures in non-aqueous selective polar and non-polar solvents, including solvent mixtures and ionic liquids. The micellar characteristics, such as particle size, aggregation number, and morphology, are examined as a function of the copolymers' architecture and molecular characteristics.
Collapse
Affiliation(s)
- Leonard Ionut Atanase
- Faculty of Dental Medicine, "Apollonia" University, 700399 Iasi, Romania.
- Research Institute "Academician Ioan Haulica", 700399 Iasi, Romania.
| | - Gerard Riess
- University of Haute Alsace, Ecole Nationale Supérieure de Chimie de Mulhouse, Laboratoire de Photochimie et d'Ingénierie Macromoléculaires, 68093 Mulhouse CEDEX, France.
| |
Collapse
|
12
|
Haldar U, Sayala KD, Sivaprakasam K, Ramakrishnan L, De P. Interfacial polycondensation-derived side-chain poly(ethylene glycol)-containing water-soluble polysulfide weak-link polymers as stabilizer for gold nanoparticles. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Qi R, Jin Y, Cheng X, Li H, Lai S, Sun X. Water-Induced Transitions from Ellipsoidal Micelles to Chain-Like Nanostructures Self-Assembled by the Coil-Rod-Coil Block Copolymer Based on Hydrogen-Bonding Urea Groups. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rui Qi
- Center of Polymer Science and Technology; Chengdu Institute of Organic Chemistry; Chinese Academy of Science; Chengdu 610041 China
- University of Chinese Academy of Sciences; No.19A Yuquan Road Beijing 100049 China
| | - Yong Jin
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University); Ministry of Education; Chengdu 610065 China
| | - Xinfeng Cheng
- Center of Polymer Science and Technology; Chengdu Institute of Organic Chemistry; Chinese Academy of Science; Chengdu 610041 China
- University of Chinese Academy of Sciences; No.19A Yuquan Road Beijing 100049 China
| | - Hanping Li
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University); Ministry of Education; Chengdu 610065 China
| | - Shuangquan Lai
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University); Ministry of Education; Chengdu 610065 China
| | - Xiaopeng Sun
- National Engineering Laboratory for Clean Technology of Leather Manufacture; Sichuan University; Chengdu 610065 China
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University); Ministry of Education; Chengdu 610065 China
| |
Collapse
|
14
|
Bai W, Wu C, Shang X, Liu X, Chen K, Lin J. Self-assembly of poly(p-phenylene)-based flower-like 3D micro-nanostructures. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Maiti B, Maiti S, De P. Self-assembly of well-defined fatty acid based amphiphilic thermoresponsive random copolymers. RSC Adv 2016. [DOI: 10.1039/c6ra00336b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Side-chain stearic acid containing thermoresponsive and crystalline random copolymers are synthesized via RAFT technique, which self-assembled to spherical micellar structures in aqueous solution depending on stearate content in the copolymer.
Collapse
Affiliation(s)
- Binoy Maiti
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur – 741246
- India
| | - Sankar Maiti
- Department of Biological Sciences
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur – 741246
- India
| | - Priyadarsi De
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur – 741246
- India
| |
Collapse
|